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Devise common framework for following two notions:

1 Hypercomplex manifold:
M is smooth manifold
i , j , k are three endomorphisms of TM
i2 = j2 = k2 = ijk = − id
integrability condition satisfied for each
(Nijenhuis tensor vanishes)

2 Holomorphic symplectic manifold:
X = complex manifold
ω = holomorphic symplectic 2-form
(in every holomorphic chart, ω =

∑
i<j fijdzi ∧ dzj with

fij ∈ OX )



1 Motivation

2 Generalized complex geometry

3 Main Theorem

4 Hypercomplex = Holomorphic Symplectic



Given a smooth manifold M, consider vector bundle TM ⊕ T ∗M
endowed with

nondegenerate symmetric pairing
〈X + ξ,Y + η〉 = 1

2(ξY + ηX )

anchor map TM ⊕ T ∗M → TM X + ξ 7→ X
Dorfman bracket
(X + ξ) ◦ (Y + η) = [X ,Y ] + (LXη − iY dξ)

Hitchin, Gualtieri:

almost complex structure: J ∈ End(TM ⊕ T ∗M) such that
J2 = − id and 〈Jv ,w〉+ 〈v , Jw〉 = 0
integrability condition
0 = NJ(v ,w) = Jv ◦ Jw − J(v ◦ Jw)− J(Jv ◦ w) + J2(v ◦ w)



Examples:

1 Complex manifold X
with complex structure j : TX → TX

J =

(
j 0
0 −j∗

)
is a c.s. on TX ⊕ T ∗X

2 Symplectic manifold (M, ω)

ω[ : TM → T ∗M
J =

(
0 ω−1

[
−ω[ 0

)
is a c.s. on TM ⊕ T ∗M

3 Holomorphic Poisson manifold (X , π)

complex structure j : TX → TX
π = (<π) + i(=π) with (=π)] = −j ◦ (<π)]

J =

(
j (<π)]

0 −j∗
)

is a c.s. on TX ⊕ T ∗X



Abstract set-up: “Courant algebroid” (Courant,
Liu-Weinstein-Xu)

E → M smooth vector bundle endowed with

〈, 〉 nondegenerate symmetric pairing on fibers
anchor ρ : E → TM (bundle map)
D : C∞(M)→ Γ(E ) (differential operator)
related by 〈Df , x〉 = 1

2ρ(x)f
Dorfman bracket ◦ (R-bilinear operation on Γ(E ))

satisfying

x ◦ (y ◦ z) = (x ◦ y) ◦ z + y ◦ (x ◦ z)

ρ(x ◦ y) = [ρ(x), ρ(y)]

x ◦ fy =
(
ρ(x)f

)
y + f (x ◦ y)

x ◦ y + y ◦ x = 2D 〈x , y〉
Df ◦ x = 0
ρ(x) 〈y , z〉 = 〈x ◦ y , z〉+ 〈y , x ◦ z〉



Nijenhuis concomitant of F ,G ∈ End(E ):

NF ,G(v ,w) = Fv ◦ Gw − F (v ◦ Gw)− G(Fv ◦ w) + FG(v ◦ w)

+ Gv ◦ Fw − G(v ◦ Fw)− F (Gv ◦ w) + GF (v ◦ w)

v ,w ∈ Γ(E )

Usually not a tensor.
It is a tensor if F and G are skew-symmetric and
FG + GF = λ id (with λ ∈ R).



Almost hypercomplex structure on Courant algebroid:
I, J ,K ∈ End(E ) skew-symmetric (w.r.t. the pairing)
I2 = J2 = K 2 = IJK = − id
Integrability condition:
NI,J , NJ,K , NK ,I , NI,I , NJ,J , and NK ,K vanish



Examples:

1 Hypercomplex manifold (M; i , j , k):

I =

(
i 0
0 −i∗

)
J =

(
j 0
0 −j∗

)
K =

(
k 0
0 −k∗

)

2 Holomorphic symplectic manifold (X , ω):

ω = ω1 − iω2 (ω2)[ = (ω1)[ ◦ j

I =

(
0 (ω1)−1

[
−(ω1)[ 0

)
J =

(
j 0
0 −j∗

)

K =

(
0 (ω2)−1

[
−(ω2)[ 0

)



3 Hyper-Poisson manifold:
(i , j , k) = classical hypercomplex triple on manifold M
π1, π2, π3 ∈ X2(M)
π2 −

√
−1π3 is holomorphic Poisson w.r.t. i

π3 −
√
−1π1 is holomorphic Poisson w.r.t. j

π1 −
√
−1π2 is holomorphic Poisson w.r.t. k

I =

(
i π]

3
0 −i∗

)
J =

(
j 0
0 −j∗

)
K =

(
k −π]

1
0 −k∗

)
Hyper-Kähler

Lemma: Hyper-Poisson =⇒ [πα, πβ] = 0, ∀α, β ∈ {1, 2, 3}



Lemma: Every complex structure F on a Courant algebroid
E → M gives rise to a Poisson bracket on the base manifold M:

{f , g} = 〈FDf ,Dg〉 , ∀f , g ∈ C∞(M).

NF ,F = 0 =⇒ Jacobi identity

Theorem:

IF (I, J ,K ) is a hypercomplex triple on a Courant
algebroid and πI , πJ , πK are the corresponding
Poisson bivectors,

THEN [πα, πβ] = 0 ∀α, β ∈ {I, J ,K}.
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Courant algebroid (E , ρ, 〈, 〉 , ◦) endowed with almost hypercomplex
triple (I, J ,K ).

Theorem: The following assertions are equivalent:

1 all six Nijenhuis concomitants vanish identically;
2 NI,J = 0;
3 NI,I = NI,J = 0;
4 there exists a hypercomplex connection ∇ satisfying
∇I = ∇J = ∇K = 0 and
T∇(v ,w) = ID 〈v , Iw〉+ JD 〈v , Jw〉+ KD 〈v ,Kw〉.



Courant algebroid (E , ρ, 〈, 〉 , ◦) endowed with almost hypercomplex
triple (I, J ,K ).

Definition (Hypercomplex connection):

Γ(E )× Γ(E )
∇−→ Γ(E ) (R-bilinear)

such that ∇fv w = f∇v w
and ∇v (fw) =

(
ρ(v)f

)
w + f (∇v w)−∆I,J,K

f (v ,w)

where

∆I,J,K
f (v ,w) = 〈v ,w〉Df + 〈Iv ,w〉 IDf + 〈Jv ,w〉 JDf

+ 〈Kv ,w〉KDf

Torsion: T∇(v ,w) = ∇v w −∇w v − v◦w−w◦v
2

Curvature: R∇(v ,w)x = ∇v∇w x −∇w∇v x −∇ v◦w−w◦v
2

x



Theorem: The following assertions are equivalent:

1 all six Nijenhuis concomitants vanish identically;
2 NI,J = 0;
3 NI,I = NI,J = 0;
4 there exists a hypercomplex connection ∇ satisfying
∇I = ∇J = ∇K = 0 and
T∇(v ,w) = ID 〈v , Iw〉+ JD 〈v , Jw〉+ KD 〈v ,Kw〉.

This connection is unique and given by the explicit formula
∇v w = −1

2K
(
Jw ◦ Iv − J(w ◦ Iv)− I(Jw ◦ v) + JI(w ◦ v)

)
.

Isotropic and involutive subbundles of E are Lie algebroids
(Dirac structures).
IF a Dirac structure L is stable under I, J , and K , THEN the
hypercomplex connection ∇ on E induces a Lie algebroid
connection on L.



Examples:

1 Hypercomplex manifold (M; i , j , k):
Given (the tangent distribution of a) foliation F , we get the
isotropic and involutive subbundle F ⊕ F⊥ .
IF F is stable under i , j , and k, THEN F ⊕F⊥ is stable under
I, J , and K .
Get torsionfree connection ∇ on the Lie algebroid F ⊕ F⊥
such that ∇I = ∇J = ∇K = 0.
Taking F = TM :

Corollary (Obata 1956): Given a hypercomplex triple (i , j , k) on a
smooth manifold M, the formula

∇X Y = − 1
2 k
(
(LjY i − jLY i)X

)
defines a torsionfree connection on M such that ∇i = ∇j = ∇k = 0.



2 Holomorphic symplectic manifold (X ;ω):
Complex Lagrangian foliation L yields Dirac subbundle L⊕L⊥
stable under I, J , and K .
Get torsionfree connection ∇ on the Lie algebroid L⊕L⊥ such
that ∇I = ∇J = ∇K = 0.

Corollary: Given a holomorphic symplectic structure ω = ω1 −
√
−1ω2

on a complex manifold X , the formula

∇X Y = − 1
2 (ω2)−1

[

(
(LjY (ω1)[)X + j∗(LY (ω1)[)X

)
defines a torsionfree connection on the tangent bundle to the Lagrangian
foliation L.

This connection appears in Behrend & Fantechi’s recent
construction of a Gerstenhaber algebra structure on the
“structure sheaf” of a Lagrangian intersection in a
holomorphic symplectic manifold. (motivation:
Donaldson-Thomas invariants)
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Extended Poisson Manifolds (introduced by Chen-S-Xu)
Motivation: semi-classical limit of algebroid stacks arising in DQ of
complex manifolds.

Consider complex mfd X , complex structure j : TX → TX .

Get complex structure J =

(
j 0
0 −j∗

)
on TX ⊕ T ∗X .

Eigenbundles:

L = T 1,0 ⊕ (T 0,1)∗ for λ = +
√
−1,

L∗ = T 0,1 ⊕ (T 1,0)∗ for λ = −
√
−1.

∧2L = ∧2T 1,0 ⊕
(
T 1,0 ⊗ (T 0,1)∗

)
⊕ ∧2(T 0,1)∗

An extended Poisson structure on X is a section H of ∧2L
satisfying the Maurer-Cartan equation

∂H + 1
2 [H,H] = 0.



Extended Symplectic Manifolds

X = complex manifold
L = T 1,0 ⊕ (T 0,1)∗

Choose Ω ∈ Γ(∧2L) s.t. Ω] ◦ Ω
]

= − idL (nondegeneracy).
Get almost hypercomplex triple

I = Ω] + Ω
] J =

(
j 0
0 −j∗

)
K = i(Ω

] − Ω]).

The following assertions are equivalent:
dL∗ Ω + [Ω,Ω] = 0
[Ω,Ω] = 0
dL∗ Ω = 0
(I, J ,K ) is integrable



The above construction is a special instance of the following

Theorem: Given a complex structure J on a Courant algebroid
(with eigenbundles L and L∗) and a section Ω of ∧2L such that
Ω] ◦ Ω

]
= − idL, set I = Ω] + Ω

] and K = i(Ω
] − Ω]).

The triple (I, J ,K ) is hypercomplex iff dL∗Ω = 0.

Philosophy: “In the generalized context, hypercomplex =
holomorphic symplectic.”
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