Simultaneous deformations of Maurer-Cartan elements

Marco Zambon (UAM-ICMAT) with Yaël Frégier (Univ. Lens)

Poisson Geometry and Applications Figueira da Foz, June 2011

《曰》 《聞》 《臣》 《臣》 三臣 …

Before we start

Example (Poisson structures)

Let M be a manifold.

A Poisson structure is $\pi \in \Gamma(\wedge^2 TM)$ such that $[\pi, \pi] = 0$.

A deformation of π is given by $\tilde{\pi} \in \Gamma(\wedge^2 TM)$ such that

$$0 = [\pi + \tilde{\pi}, \pi + \tilde{\pi}] = 2[\pi, \tilde{\pi}] + [\tilde{\pi}, \tilde{\pi}] = 2(\underbrace{d_{\pi}\tilde{\pi} + \frac{1}{2}[\tilde{\pi}, \tilde{\pi}]}_{\text{Maurer-Cartan equation}}).$$

There are many mathematical structures whose deformations are given by a Maurer-Cartan equation.

In this talk we deform two structures simultaneously.

Outline

A motivating example

- 2 L_{∞} -algebras and Maurer-Cartan elements
- Oeformations of MC elements
 - 4 Example: morphisms of Lie algebras
- 5 Example: twisted Poisson structures

<ロ> (四) (四) (三) (三) (三) (三)

A motivating example

 L_∞ -algebras and Maurer-Cartan elements

3 Deformations of MC elements

4 Example: morphisms of Lie algebras

5 Example: twisted Poisson structures

◆□> ◆□> ◆臣> ◆臣> ─ 臣

Example: Lie algebra morphisms

Let U, V be Lie algebras.

Let $\phi: U \to V$ be a morphism, i.e. $d_U \phi + \frac{1}{2} [\phi, \phi]_V = 0$.

1) Deformation of morphisms: Let $\tilde{\phi}: U \to V$ be a linear map.

Φ

$$\phi + \tilde{\phi} \text{ is a morphism } \Leftrightarrow \underbrace{d_{U,\phi}\tilde{\phi} + \frac{1}{2}[\tilde{\phi}, \tilde{\phi}]_V = 0}_{\text{is a Maurer-Cartan equation (1966)}}$$

2) Deformation of Lie algebras and of morphisms: Let $\tilde{d}_U \in \wedge^2 U^* \otimes U$, $\tilde{d}_V \in \wedge^2 V^* \otimes V$.

 $\begin{cases} (U, d_U + \tilde{d_U}) \text{ and } (V, d_V + \tilde{d_V}) \text{ are Lie algebras} \\ \phi + \tilde{\phi} \text{ is a morphism between them} \end{cases}$

 \Leftrightarrow (some cubic equation in $\tilde{d_U}, \tilde{d_V}, \tilde{\phi}$).

is a Maurer-Cartan equation (2008)

AIM: Find a criteria to determine when:

pair of algebraic/geometric structures ↓?

their simultaneous deformations are given by the MC equation of some L_{∞} -algebra.

WHY?

- {deformations} acquires a natural equivalence relation.
- the deformations of A and B are governed by quasi-isomorphic L_{∞} -algebras
 - \Rightarrow the deformation theories for A and B are equivalent.
- $H^1 = 0$
 - \Rightarrow first order deformations can be extended to (formal) deformations.

2 L_{∞} -algebras and Maurer-Cartan elements

- 3 Deformations of MC elements
- 4 Example: morphisms of Lie algebras
- 5 Example: twisted Poisson structures

L_∞ -algebras and Maurer-Cartan elements

Definition

A $L_{\infty}[1]$ -algebra consists of a graded vector space $W = \bigoplus_{i \in \mathbb{Z}} W_i$ and

$$\{\cdot, \cdots, \cdot\}_n : \otimes^n W \longrightarrow W \qquad (n \ge 1)$$

graded symmetric, of degree 1, satisfying "higher Jacobi identities":

•
$$d^2 = 0$$
, where $d := \{\cdot\}_1$
• $d\{a, b\}_2 = \{da, b\}_2 + (-1)^{|a|} \{b, da\}_2$
• $\{\{a, b\}_2, c\}_2 \pm c.p. = \pm d\{a, b, c\}_3 \pm (\{da, b, c\}_3 \pm c.p.)$
• ...

Definition

A Maurer-Cartan element of a $L_{\infty}[1]$ -algebra W is an element $Q \in W_0$ satisfying

$$\sum_{n=1}^{\infty} \frac{1}{n!} \{Q, \dots, Q\}_n = 0.$$

4/12

Example (DGLA)

Suppose that only $d := \{\cdot\}_1$ and $\{\cdot, \cdot\}_2$ are non-zero. Then W[-1] is a differential graded Lie algebra (DGLA). The MC equation reads

$$dQ + \frac{1}{2} \{Q, Q\}_2 = 0.$$



- 4 Example: morphisms of Lie algebras
- 5 Example: twisted Poisson structures

Voronov's construction of $L_{\infty}[1]$ -algebras

Definition

- A V-data consists of a quadruple $(L, \mathfrak{a}, P, \Delta)$ where
 - $(L, [\cdot, \cdot])$ is a graded Lie algebra
 - a an abelian Lie subalgebra
 - $P: L \rightarrow \mathfrak{a}$ a projection whose kernel is a Lie subalgebra of L
 - $\Delta \in Ker(P)_1$ such that $[\Delta, \Delta] = 0$.

Theorem (Th. Voronov)

Let $(L, \mathfrak{a}, P, \Delta)$ be a V-data.

a) a has an induced $L_{\infty}[1]$ -structure with multibrackets ($n \ge 1$)

$$\{a_1, \ldots, a_n\} = P[\ldots [[\Delta, a_1], a_2], \ldots, a_n].$$

Notation: $\mathfrak{a}^{P}_{\Delta}$.

 b) L[1] ⊕ a has an induced L_∞[1]-structure extending a^P_Δ. Notation: (L[1] ⊕ a)^P_Δ.

An algebraic theorem: deformations of MC elements

Theorem (Frégier-Z.)
Let
•
$$(L, \mathfrak{a}, P, \Delta)$$
 be a V-data
• $\Phi \in MC(\mathfrak{a}^{P}_{\Delta})$,
denote $P_{\Phi} := P \circ e^{[\cdot, \Phi]} : L \to \mathfrak{a}$.
1) For any $\tilde{\Phi} \in \mathfrak{a}_{0}$:
• $\Phi + \tilde{\Phi} \in MC(\mathfrak{a}^{P}_{\Delta}) \Leftrightarrow \tilde{\Phi} \in MC(\mathfrak{a}^{P_{\Phi}}_{\Delta})$.
2) For all $\tilde{\Delta} \in (ker(P))_{1}$ and $\tilde{\Phi} \in \mathfrak{a}_{0}$:
 $\left\{ \begin{bmatrix} \Delta + \tilde{\Delta}, \Delta + \tilde{\Delta} \end{bmatrix} = 0 \\ \Phi + \tilde{\Phi} \in MC(\mathfrak{a}^{P}_{\Delta + \tilde{\Delta}}) \end{cases} \Leftrightarrow (\tilde{\Delta}, \tilde{\Phi}) \in MC((L[1] \oplus \mathfrak{a})^{P_{\Phi}}_{\Delta}). \right\}$



 L_∞ -algebras and Maurer-Cartan elements

3 Deformations of MC elements

Applying the theorem

Let U, V be Lie algebras. Choose

- $L = \wedge (U^* \times V^*) \otimes (U \times V)$
- $\mathfrak{a} = \wedge U^* \otimes V$
- $P: L \rightarrow \mathfrak{a}$ the natural projection
- $\Delta = d_U + d_V$

MC elements of $\mathfrak{a}^{P}_{\Delta}$ are exactly morphisms $U \to V!$

• $\Phi \in MC(\mathfrak{a}^P_{\Delta}).$

$$\Rightarrow 1) \text{ For any } \tilde{\Phi}: U \to V \text{ linear:}$$

$$\Phi + \tilde{\Phi} \text{ is a morphism } \Leftrightarrow \tilde{\Phi} \in MC(\mathfrak{a}_{\Delta}^{P_{\Phi}}).$$
2) For all $\tilde{d_U} \in \wedge^2 U^* \otimes U$, $\tilde{d_V} \in \wedge^2 V^* \otimes V$:
$$\begin{cases} (U, d_U + \tilde{d_U}) \text{ and } (V, d_V + \tilde{d_V}) \text{ are Lie algebras} \\ \Phi + \tilde{\Phi} \text{ is a morphism between them} \end{cases}$$

$$\Leftrightarrow (\tilde{d_U} + \tilde{d_V}, \tilde{\Phi}) \in MC((L[1] \oplus \mathfrak{a})_{\Delta}^{P_{\Phi}}).$$



- L_∞ -algebras and Maurer-Cartan elements
- 3 Deformations of MC elements
- 4 Example: morphisms of Lie algebras
- 5 Example: twisted Poisson structures

<ロ> (四) (四) (三) (三) (三) (三)

Twisted Poisson structures

Let M be a manifold.

Definition

Let

- $H \in \Omega^3(M)$ be a closed 3-form
- $\pi \in \chi^2(M)$ be a bivector field.

We say

 π is a *H*-twisted Poisson structure $\Leftrightarrow [\pi, \pi]_{Schouten} = 2(\wedge^3 \pi^{\sharp})H$,

where $\pi^{\sharp} \colon T^*M \to TM, \xi \mapsto \iota_{\xi}\pi$.

Such structures are interesting

- in geometry (Courant algebroids, Dirac structures...)
- in physics (String theory, sigma models with Wess-Zumino-Witten terms...).

Applying the theorem

Let M be a manifold. Choose

- $L = C(T^*[2]T^*[1]M)[2]$
- $\mathfrak{a} = \mathcal{C}(T^*[1]M)[2]$
- $P: L \rightarrow \mathfrak{a}$ the restriction to the zero section
- $\Delta =$ "de Rham"

MC elements of \mathfrak{a}^P_Δ are exactly Poisson bivector fields

• $0 \in MC(\mathfrak{a}^P_\Delta).$

 \Rightarrow 2) For all $H \in \Omega^3(M)$, for all $\pi \in \chi^2(M)$:

 $\begin{cases} dH = 0 \\ \pi \text{ is a } H \text{-twisted Poisson structure} \\ \Leftrightarrow (-H, \pi) \in MC((L[1] \oplus \mathfrak{a})^P_{\Delta}). \end{cases}$

The relevant subalgebra of $(L[1] \oplus \mathfrak{a})^P_\Delta$.

Corollary

Let M be a manifold. There is an $L_\infty[1]\mbox{-algebra structure on}$

 $\mathfrak{L} := \oplus_{i \ge -2} [\Omega^{i+3}(M) \oplus \chi^{i+2}(M)]$

whose only non-vanishing multibrackets are

- a) d_{DeRham} on differential forms
- b) $\pm[\cdot,\cdot]_{Schouten}$ on multivector fields

c) for all $n \ge 1$

$$\{H, \pi_1, \dots, \pi_n\} = \pm (\pi_1^{\sharp} \wedge \dots \wedge \pi_n^{\sharp}) H \in \chi^{\bullet}(M)$$

where $H \in \Omega^n(M)$ and $\pi_i \in \chi^{\bullet}(M)$.

Its MC elements are exactly

 $\{(-H, \pi) : \pi \text{ is a } H \text{-twisted Poisson structure}\}.$

Without the algebraic theorem, it would have been hard to find an L_{∞} -algebra as above!

Equivalences of MC elements

Given an $L_{\infty}[1]$ -algebra W, there is a map

 $W_{-1} \to \{ \text{vector fields on } W_0 \}, \qquad z \mapsto \mathcal{Y}^z$

where the value of \mathcal{Y}^z at $m \in W_0$ is

$$\mathcal{Y}^{z}|_{m} := dz + \{z, m\} + \frac{1}{2!}\{z, m, m\} + \frac{1}{3!}\{z, m, m, m\} + \dots \in W_{0} = T_{m}W_{0}.$$

This gives an involutive (singular) distribution on $MC(W) \subset W_0$ \rightsquigarrow equivalence relation on MC(W).

Example

Let \mathfrak{L} be the $L_{\infty}[1]$ -algebra whose MC elements are twisted Poisson structures. The following coincide:

- The equivalence classes in $MC(\mathfrak{L})$
- the orbits of the (partial) group action

 $\Omega^2(M) \rtimes \mathsf{Diff}(M) \quad \circlearrowleft \quad MC(\mathfrak{L}) \subset \Omega^3(M) \times \chi^2(M)$

 $(B,\phi) \cdot (H,\pi) = ((\phi^{-1})^*H + dB, e^B\phi_*\pi).$

Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで