
MULTIBODY DYNAMICS 2007, ECCOMAS Thematic Conference
C.L. Bottasso, P. Masarati, L. Trainelli (eds.)

Milano, Italy, 25–28 June 2007

AN ALGORITHM FOR THE SOLUTION OF BORDERED ABD LINEAR
SYSTEMS ARISING FROM BOUNDARY VALUE PROBLEMS

Pierluigi Amodio?, Ian Gladwell†, and Giuseppe Romanazzi‡

?Dipartimento di Matematica
Università di Bari, I-70125 Bari, Italy

e-mail: amodio@dm.uniba.it
web page: http://www.dm.uniba.it/∼amodio

†Department of Mathematics
Southern Methodist University, Dallas, TX 75275, USA

e-mail: gladwell@seas.smu.edu
web page: http://faculty.smu.edu/igladwel/

‡School of Computing
University of Leeds, Leeds LS2 9JT, UK
e-mail: roman@comp.leeds.ac.uk

Keywords: Boundary Value Problems, Linear systems solution, Bordered Almost Block Diag-
onal matrices, Cyclic Reduction.

Abstract. We consider linear systems with coefficient matrices of Bordered ABD structure.
They arise in the discretization of BVPs for ordinary and partial differential equations with
non-separated boundary conditions. We report on tests (and comparisons with the well-known
code COLROW) of the Fortran 90 cyclic reduction algorithm BABDCR, inserted in a modified
version of the BVP code MIRKDC. Also, a distributed parallel version of BABDCR is imple-
mented and tested for possible use replacing the BABD code RSCALE in the parallel version
of MIRKDC.

1

amodio@dm.uniba.it�
http://www.dm.uniba.it/~amodio�
gladwell@seas.smu.edu�
http://faculty.smu.edu/igladwel/�
roman@comp.leeds.ac.uk�

Pierluigi Amodio, Ian Gladwell, and Giuseppe Romanazzi

1 INTRODUCTION

Almost Block Diagonal (ABD) and Bordered ABD (BABD) [1] linear systems arise in dis-
cretizing Boundary Value Problems (BVPs) with, respectively, separated and non-separated
boundary conditions, for both ordinary and partial differential equations. The coefficient ma-
trices associated with ABD linear systems are characterized as follows: the nonzero elements
are grouped in block rows, there is no intersection between the nonzero columns of two non-
consecutive block rows; and, the main diagonal entries always lie inside the nonzero blocks.
BABD matrices must also satisfy: the first (or the last) block row has an additional block in the
right-upper (left-lower) corner whose columns only intersect the nonzero columns of the last
(first) block row. In Figs. 1 and 2, we show the ABD and BABD structures arising most fre-
quently in BVP solvers. All the nonzero blocks in the ABD and BABD structures respectively
are considered dense.




Btop

S0 R1

S1 R2

.
SN−1 RN

Bbot







x0

x1
...

xN−1

xN




=




da

f1

f2
...

fN

db




Figure 1: ABD linear system: Si, Ri ∈ Rm×m, Btop ∈ Rm0×m, Bbot ∈ R(m−m0)×m, fi, xi ∈ Rm, da ∈ Rm0 ,
db ∈ Rm−m0 .




Ba Bb

S0 R1

S1 R2

.
SN−1 RN







x0

x1
...

xN−1

xN




=




d
f1

f2
...

fN




Figure 2: BABD linear system: Si, Ri, Ba, Bb ∈ Rm×m, xi, fi, d ∈ Rm.

1.1 Solvers for ABD systems

For a historical view of solving ABD systems see [1, 11]. The first ABD code was SOLVE-
BLOK [8]; as for standard LU factorization applied to banded systems, it uses Gaussian elim-
ination with partial pivoting to ensure stability and so requires fill-in. Varah’s alternate row
and column stable elimination [18] exploits the structure of the ABD matrices to avoid this fill-
in. The packages COLROW and ARCECO in [9] are based on a modified version of Varah’s
procedure. Numerical experiments reported in [9] demonstrate the effectiveness of COLROW
and ARCECO, and their superiority over SOLVEBLOK on systems arising from BVPs. Mod-
ifications have been proposed to these packages to deal with more specific structures of the
coefficient matrix (see [1] and the references therein).

2

Pierluigi Amodio, Ian Gladwell, and Giuseppe Romanazzi

1.2 ABD and BABD solvers in BVODE packages

Most modern nonlinear BVP packages employ ABD packages. The BVP code COLSYS [4]
uses SOLVEBLOK to solve ABD linear systems arising from using orthogonal spline collo-
cation (OSC) at Gauss points with B-spline bases. COLNEW [5] uses a modified version of
SOLVEBLOK to solve ABD linear systems arising from using OSC at Gauss points with mono-
mial spline bases. The Mono Implicit Runge Kutta (MIRK) code with defect control MIRKDC
[10] uses COLROW as a solver for ABD systems. Modified versions of COLROW are used in
TWPBVP [7], a deferred correction code, in COLMOD [17], a modified version of COLNEW,
and in ACDC [6], which uses automatic continuation and OSC at Lobatto points to solve singu-
larly perturbed BVODEs. The code PMIRKDC, a parallel version of MIRKDC, uses the BABD
package RSCALE which has a shared memory parallel implementation.

We propose BABDCR as an alternative to COLROW for the solution of BABD systems, and
to RSCALE in a parallel environment. In Section 3, we discuss a modified version of MIRKDC
which is effective for solving BVPs with non-separated boundary conditions. Numerical tests
comparing BABDCR with COLROW and RSCALE are presented in Section 4. In Section 5, we
present numerical results from a distributed memory implementation of BABDCR.

2 THE BABDCR PACKAGE

BABDCR [3, 2] solves BABD systems as in Fig. 2. The algorithm cyclically reduces the
BABD matrix to derive systems of lower dimension with the same BABD structure. Suppose
that the matrix in Fig. 2 is nonsingular; we reduce each pair of block row equations, for i =
2j − 1, j = 1, 2, . . . , bN/2c,

(
Si−1 Ri

Si Ri+1

) 


xi−1

xi

xi+1


 =

(
fi

fi+1

)
(1)

into one block row equation
S ′i−1xi−1 + R′

i+1xi+1 = f ′i+1 (2)

involving only the unknowns xi−1 and xi+1. Since the columns overlapped by the 2m × m

matrix
(

Ri

Si

)
are linearly independent, we use a LU factorization with partial pivoting

Pi

(
Ri

Si

)
=

(
Li

Ti

)
Ui =

(
Li

Ti I

)(
Ui

0

)
(3)

where we premultiply (1) by the permutation matrix Pi and the inverse of the lower triangular
matrix in (3) to obtain

(
Li

Ti I

)−1

Pi

(
Si−1 Ri

Si Ri+1

)
≡

(
S̃i−1 Ui R̃i+1

S ′i−1 R′
i+1

)
,

(
Li

Ti I

)−1

Pi

(
fi

fi+1

)
≡

(
f̃i

f ′i+1

)
,

(4)

where S ′i−1, R′
i+1 and f ′i+1 are the blocks of the reduced equation (2). After k steps of reduction,

the coefficient matrix obtained is of size dN/se + 1 where s = 2k, and can be further reduced

3

Pierluigi Amodio, Ian Gladwell, and Giuseppe Romanazzi

by combining two successive block row equations (for each i = (2j − 1)s + 1, with j =
1, 2, . . . , bdN/se/2c)

(
S

(k)
i−s R

(k)
i

S
(k)
i R

(k)
i+s

)


xi−s

xi

xi+s


 =

(
f

(k)
i

f
(k)
i+s

)

to give the block row equation S
(k+1)
i−s xi−s + R

(k+1)
i+s xi+s = f

(k+1)
i+s . The reduction ends after

p = dlog2 Ne steps with the 2× 2 block linear system
(

Ba Bb

S
(p)
0 R

(p)
N

)(
x0

xN

)
=

(
d

f
(p)
N

)
. (5)

The algorithm then proceeds by solving (5) and using a back-substitution phase to compute the
unknowns x1, . . . , xN−1.

The null blocks in equation (4) permit us to reduce the memory requirement and the com-
putational cost. In the reduction, after k + 1 steps, we save the matrices S

(k+1)
i−s and R

(k+1)
i+s in

place of S
(k)
i−s and R

(k)
i+s, the product TiL

−1
i in place of S

(k)
i and the vector f

(k+1)
i+s in place of f

(k)
i+s,

respectively. In the back-substitution phase, we save the first m elements of P
(k)
i

(
f

(k)
i

f
(k)
i+s

)
in

place of f
(k)
i . The additional memory required has size m×m for each of the N − 1 reductions

corresponding to the first m rows of P
(k)
i

(
S

(k)
i−s

R
(k)
i+s

)
. To leading order in powers of m and N the

computational cost of the factorization is 14
3
m3N flops and of the back-substitution is 6m2N .

3 BVPS AND THE MIRKDC/PMIRKDC CODES

MIRKDC [10] solves BVPs

y′ = f(t,y(t)), t ∈ [a, b] (6)

where y ∈ Rm and f : R× Rm → Rm, with separated BCs

g(y(a),y(b)) =

(
g0(y(a))
g1(y(b))

)
= 0. (7)

It uses Mono-Implicit Runge Kutta (MIRK) formulas to discretize (6) on a subdivision {ti}N
i=0

of [a, b]. A continuous solution approximation is obtained by means of a Continuous MIRK
(CMIRK) scheme, and is used to provide defect control and mesh selection capabilities. The
MIRK scheme applied to the BVP system (6)-(7) on N subintervals, yields the nonlinear system

Φ(Y) = (Φ0(Y)T , . . . ,ΦN (Y)T)T = 0, where Φi : Rm(N+1) −→ Rm

and Y = (yT
0 , . . . ,yT

N)T , yj ∈ Rm. This is solved using a modified version of the Newton
iteration described by Y(q+1) = Y(q) + ∆Y(q), for q = 0, 1, . . . , where

[
∂Φ(Y(q))

∂Y

]
∆Y(q) = −Φ(Y(q)) (8)

4

Pierluigi Amodio, Ian Gladwell, and Giuseppe Romanazzi

given Y(0). For separated boundary conditions (7), the ABD linear system arising in (8) is as
shown in Fig. 1 with

Si = −I − hiKi,i, Ri = I − hiKi+1,i,

where the dense block Ki,j depends on f and on the Runge-Kutta formulas chosen.
MIRKDC uses COLROW to solve systems of the form (8). The computational cost of this

ABD solver, to leading order in m and m0 (the number of boundary conditions at x = a), is(
5
3
m3 + mm2

0

)
N flops for the factorization and 4m2N for the solution. This means that its

computational cost varies from approximately 5
3
m3N and 8

3
m3N (when m0 ≈ 0 and m0 ≈ m,

respectively), and is 23
12

m3N in the most commonly occurring case where m0 ≈ m
2

. COLROW
does not require fill-in vectors.

Since linear algebra is the most expensive (in term of execution times) part of MIRKDC
and since COLROW is a sequential algorithm, the parallel version (written for a shared mem-
ory computer) PMIRKDC [14] uses the parallel linear system solver RSCALE . This package
solves BABD systems and has a computational cost of approximately 20

3
m3N and 6m2N for

the factorization and the solution, respectively. Moreover, it requires fill-in vectors of length
m2(N + 1).

Our sequential variant, MIRKDC NS, solves BVPs (6) with non-separated boundary condi-
tions

g(y(a),y(b)) = 0. (9)

We stress that (6), (9) may also be solved directly by MIRKDC by recasting the problem in the
form

y′ = f(t,y(t)), z′ = 0, t ∈ [a, b], (10)

with separated boundary conditions

y(a)− z(a) = 0, g(z(b),y(b)) = 0. (11)

If the function g in (9) comprises k nonseparated and m−k separated boundary conditions with
m0 boundary conditions at x = a, then the size of the equivalent BVP is (m+k) with (m0 +k)
boundary conditions at x = a.

MIRKDC NS is equivalent to MIRKDC. The only essential difference is that the linear sys-
tems (8) have a BABD structure as in Fig. 2 and are solved using BABDCR. We made the
following further modifications in MIRKDC:

• The permutation array of length m(N + 1) becomes one of length 2mN ;

• The fill-in described in Section 2, adds m2(N−1) locations in the array containing blocks
Si, Ri of the current BABD Jacobian in (8);

• The arrays containing blocks Ba, Bb of the Jacobian in (8), in Fig. 2, are of dimension
m×m instead of m0 ×m, (m−m0)×m, respectively;

• In BABDCR the right hand side is overwritten by the solution (COLROW does not over-
write the solution). Therefore, before calling BABDCR , the right hand side must already
occupy the locations where the solution will be placed.

5

Pierluigi Amodio, Ian Gladwell, and Giuseppe Romanazzi

4 COMPARING THE LINEAR SYSTEM SOLVERS

We compare BABDCR with COLROW and RSCALE on the ABD and BABD linear systems
generated by the codes MIRKDC and MIRKDC NS respectively. In our experiments, we use a
fourth order method, based on the optimal 4-th order, 3-stage MIRK scheme, see [10].

Consider the ABD linear systems generated by MIRKDC applied to a linear BVP

y′ = My(t), M ∈ Rm×m (12)

with linear boundary conditions

Btopy(a) = da ∈ Rm0 , Bboty(b) = db ∈ Rm−m0

First, we fix m = 20 and m0 = 10 then m = 40 and m0 = 20. Btop, Bbot, both of full rank
m0 = m − m0, and M are randomly generated full matrices. The matrix M is obtained by
computing M = QΛQT where Q is an orthogonal matrix arising from the QR factorization
of a random matrix and Λ is a diagonal matrix with m/2 positive and m/2 negative values of
moderate size such that the resulting BVP is well conditioned. BABDCR and RSCALE use

Ba =

(
Btop

0

)
, Bb =

(
0

Bbot

)
∈ Rm×m, d =

(
da

db

)
∈ Rm,

to obtain a BABD system as in Fig. 2.
Overall timings and errors, given in Tables 1 and 2, show that COLROW is more than twice

as fast as BABDCR and more than four times as fast as RSCALE. The errors for COLROW and
BABDCR are similar, but RSCALE is less accurate. These computational costs are close to the
predictions of theory. Since m0 = m/2, COLROW should be approximately 2.4 and 3.5 times
faster then BABDCR and RSCALE, respectively.

time error
N=256 N=512 N=1024 N=256 N=512 N=1024

BABDCR 3.71e-02 7.12e-02 0.152 1.65e-13 2.88e-13 3.46e-13
COLROW 1.46e-02 2.83e-02 6.34e-02 1.55e-13 2.05e-13 7.08e-13
RSCALE 6.83e-02 0.136 0.274 2.54e-12 6.02e-12 3.01e-11

Table 1: ABD systems generated by MIRKDC applied to a linear BVP of size m = 20.

time error
N=256 N=512 N=1024 N=256 N=512 N=1024

BABDCR 0.213 0.461 0.924 6.51e-13 9.20e-13 1.64e-12
COLROW 8.69e-02 0.201 0.402 7.02e-13 5.36e-13 8.07e-13
RSCALE 0.481 0.972 1.950 1.66e-11 3.20e-11 2.74e-10

Table 2: ABD systems generated by MIRKDC applied to a linear BVP of size m = 40.

For BABD linear systems, we apply MIRKDC NS to a linear BVP (12) with non-separated
boundary conditions

Bay(a) + Bby(b) = d ∈ Rm.

For m = 20 we investigate two cases:

6

Pierluigi Amodio, Ian Gladwell, and Giuseppe Romanazzi

(a) M is a well-conditioned matrix with eigenvalues -102, -10, -7, -4, -3, -2.5, -1.3, -1, -0.5,
-0.4, 0.2, 0.3, 1, 1, 2, 2.5, 3, 4, 11, 25;

(b) M is an ill-conditioned matrix with eigenvalues -9, -3.5, -3, -2, -2, -1.5, -1.5, -1.25, -0.5,
-1e-08, 0.25, 0.5, 0.5 , 1, 3, 4, 5, 7, 8, 1e+08.

For m = 40 we just consider a well-conditioned case with M having eigenvalues -102, -90,
-75, -53, -51, -42.5, -38, -30, -27, -14, -13, -12.5, -9.3, -8, -5.5, -4, -2.5, -1.3, -1, -0.5, 0.2, 0.3,
1, 1, 2, 2.5, 3, 4, 11, 15, 20.5, 25, 28, 33, 40, 45, 46, 50.5, 54, 57

To use COLROW, we convert the BABD system to an ABD linear system with blocks of
double the size, see Fig. 3. In the case of k nonseparated boundary conditions and m0 =
b(m− k)/2c separated boundary conditions at x = a, we observe that BABDCR is faster than
COLROW when k > dm/3e. Since, in our example, the number of nonseparated boundary
conditions is k = m, the computational cost of COLROW is approximately 46

3
m3N for the

factorization and 16m2N for the solution. So, theoretically BABDCR is more than three times
as fast as COLROW.




−I I
S0 0 R1

−I 0 I
.

SN−1 0 RN

−I 0 I
Bb Ba







x0

z0

x1

z1
...

xN

zN




=




0
f1
0
...

fN
0
d




Figure 3: ABD system of doubled size (corresponding to the BABD system in Fig. 2). zi, i = 0, . . . , N are the
new unknowns, zN = zN−1 = . . . = z0 = x0.

In Tables 3-4 we compare the errors and timings of the three linear solvers. From the results
in Table 3, for the cases (a) and (b) BABDCR is approximately 3 times as fast as COLROW and
more than 1.5 times as fast as RSCALE. Timings associated with COLROW include converting
the linear system from BABD to ABD structure in Fig. 3 (which is between 10% and 15%
of the total time taken by COLROW). The errors associated with BABDCR and COLROW are
similar, and RSCALE is the least accurate algorithm. The errors of the three methods for case
(b), are given in Table 4. These errors are large, because the BVP is ill-conditioned. Observe
that BABDCR and COLROW are still significantly more accurate than RSCALE. Table 5 for
m = 40 in comparison with Table 3 for m = 20 shows that the relative costs of the three
algorithms increase consistently cubically with m.

N=256 N=512 N=1024
BABDCR 3.61e-02 7.03e-02 0.151
COLROW 0.102 0.224 0.464
RSCALE 6.83e-02 0.136 0.287

Table 3: Timings for the solution of BABD systems generated by MIRKDC NS applied to a linear BVP with
m = 20. (For COLROW the timings without the conversion phase are 0.0859, 0.190, 0.394 for N= 256, 512, 1024
respectively.)

7

Pierluigi Amodio, Ian Gladwell, and Giuseppe Romanazzi

case (a) case (b)
N=256 N=512 N=1024 N=256 N=512 N=1024

BABDCR 7.62e-13 1.22e-12 1.19e-12 6.28e-04 2.22e-04 8.00e-05
COLROW 7.53e-13 4.10e-13 1.25e-12 2.80e-04 2.16e-04 9.25e-05
RSCALE 5.17e-12 2.90e-11 6.02e-11 1.90e-02 8.55e-03 1.08e-02

Table 4: Errors for the solution of BABD systems generated by MIRKDC NS with m = 20.

N=256 N=512 N=1024
BABDCR 0.211 0.449 0.924
COLROW 0.740 1.481 2.971
RSCALE 0.481 0.967 1.949

Table 5: Timings for the solution of BABD systems generated by MIRKDC NS applied to a linear BVP with
m = 40. (For COLROW the timings without the conversion phase are 0.684, 1.370, 2.746 for N= 256, 512, 1024
respectively.)

To emphasize the advantages of BABDCR, Tables 4-4 give statistics for one call to MIRKDC NS
applied to the BVP (6), (9) and to MIRKDC applied to the equivalent BVP of double the size
(10) with separated boundary conditions (11). The columns represent the size, N , of the com-
puted mesh (initially set equal to 256) and the number (with the timings) of the factorizations
performed and linear system solutions on that mesh. Then, in the last two rows, we give the
total time for the linear algebra calls and for the remaining operations.

Both codes were applied to the problem with M having eigenvalues as in case (a) using the
MIRK/CMIRK scheme of order 4 [10]. From Tables 4 and 4, starting from the same mesh, the
same number of factorizations and linear system solutions are required. Observe that BABDCR
in MIRKDC NS saves more than one half of the linear algebra time in comparison with COL-
ROW. Since the error given by the two codes is similar and the time required outside the linear
algebra calls remains constant, we expect that, in general, for a well-conditioned BVP with non-
separated boundary conditions, the two codes will perform the same number of factorizations
and linear system solutions and that MIRKDC NS will run faster than MIRKDC.

MESH]FACTs time]SOLVEs time
256 1 0.32e-01 2 0.98e-02
224 1 0.25e-01 2 0.78e-02
246 1 0.29e-01 2 0.78e-02

Total: 3 0.87e-01 6 0.25e-01
Total monitored Linear Algebra time: 0.11 secs.

Total monitored non Linear Algebra time: 0.12 secs.

Table 6: MIRKDC NS (using BABDCR) applied to the linear problem in case (a) with an initial mesh of 256 points
and error tolerance 1e-07.

5 PARALLEL IMPLEMENTATION OF BABDCR

In the previous section we observed the superiority in timings of MIRKDC NS (using BAB-
DCR) over MIRKDC (using COLROW) when BVPs with nonseparated boundary conditions are

8

Pierluigi Amodio, Ian Gladwell, and Giuseppe Romanazzi

MESH]FACTs time]SOLVEs time
256 1 0.11 2 0.16e-01
224 1 0.75e-01 2 0.12e-01
246 1 0.82e-01 2 0.14e-01

Total: 3 0.27 6 0.41e-01
Total monitored Linear Algebra time: 0.31 secs.

Total monitored non Linear Algebra time: 0.12 secs.

Table 7: MIRKDC (using COLROW) applied to the linear problem of doubled size in case (a) with an initial mesh
of 256 points and error tolerance 1e-07.

solved. Here, we show that a parallel implementation of BABDCR also pays off in this context.
To this aim, we consider a straightforward distributed memory parallel implementation of

BABDCR that uses MPI procedures [16] to implement the clearly defined parallel structures
visible in the CR algorithm. We preliminarily observe that all the reductions from (1) to (2)
may be performed in parallel if the two adjacent block rows are stored in the same processor.
Therefore, following the idea in PMIRKDC [14], we suppose that the original BVP has been
discretized in order so that each processor is only involved with a subinterval of [a, b]. This
implies that, before calling the factorization procedure, each processor has been assigned some
consecutive block rows of the original matrix and the boundary conditions. In the factorization
step, the first reductions are computed in parallel on all the p processors without any commu-
nication. When each processor has one block row of the reduced matrix, than it is necessary
to perform a send/receive communication before each additional reduction step. This means
that, if N À p, the computational cost of the factorization is reduced by a factor p and requires
dlog2 pe communications of blocks of size m × 2m. We proceed analogously for the linear
system solution, where each vector which is sent/received has length m. Finally, each processor
only computes its own part of the solution. See [15] for more details and [2] for the original
proposal.

We use a cluster of 32 processors (2.4 GHz Intel Xeon, 4Mb L2 cache) with the Intel Fortran
compiler 8.1 for Linux. In Table 8 we show the speedup of the algorithm. Here, the speedup
is defined as the ratio between the execution time (time of factorization plus time of solution)
of the serial version of the algorithm and the execution time of the parallel version run on the
specified number of processors. (The time for the serial version on one processor and for the
parallel version run on one processor are essentially the same.) Note that the cyclic reduction
algorithm has improved speed-up as the dimension m increases. Particularly, for 32 processors
we need large values of m to observe almost linear speedup. In fact, since the factorization
of an m ×m matrix is the principal cost in each reduction, as m increases the arithmetic cost
O(m3) prevails over the time spent in the communication O(m2).

The slightly better than linear speedup (observed in many cases for m > 4) is at least in part
due to a cache effect. In the serial version (p = 1) all the data is stored on a single processor, and
the cache (4Mbytes) is always full hence requiring frequent data transfers from main memory.
So, memory access takes longer than for the parallel runs with p > 1 processors where the data
is shared over the processors, each with its own 4Mbytes cache memory, resulting in needing
fewer accesses to main memory.

Direct comparisons with PMIRKDC[14] using RSCALE are not possible since PMIRKDC is
designed specifically for shared memory architectures and a distributed memory version would
require redesign of parts of the algorithm, not simply a change of implementation language.

9

Pierluigi Amodio, Ian Gladwell, and Giuseppe Romanazzi

p = 2 p = 4 p = 8 p = 16 p = 32
m = 4 1.983 3.398 5.474 6.426 6.978
m = 16 2.052 4.109 7.913 15.116 24.965
m = 64 2.069 4.141 7.940 15.263 25.458
m = 256 2.169 4.395 8.536 16.316 29.519

Table 8: Speedup for the parallel BABDCR algorithm with N = 1024.

6 CONCLUSIONS

COLROW has long been considered a fast code for solving ABD linear systems and is widely
used in packages for the solution of BVPs with separated boundary conditions. In these pack-
ages, the solution of problems with non-separated boundary conditions can only be achieved by
modifying the original problem to give a new problem of double the size with separated bound-
ary conditions. Starting from the BVP package MIRKDC, we have shown that BABDCR runs
faster than COLROW and with approximately the same accuracy when the original problem has
non-separated boundary conditions. In addition, when it is possible to use a distributed parallel
computer (with a moderate number of processors) the implementation of BABDCR within a
version of MIRKDC leads to close to linear speedup.

REFERENCES

[1] P. Amodio, J.R. Cash, G. Roussos, R.W. Wright, G. Fairweather, I. Gladwell, G.L. Kraut
and M. Paprzycki. Almost block diagonal linear systems: sequential and parallel solution
techniques, and applications, Numer. Linear Algebra Appl., 7, no. 5, 275–317, 2000.

[2] P. Amodio and M. Paprzycki. A cyclic reduction approach to the numerical solution of
boundary value ODEs. SIAM J. Sci. Comput., 18, no. 1, 56–68, 1997.

[3] P. Amodio and G. Romanazzi. BABDCR: a Fortran 90 package for the solution of Bor-
dered ABD systems. ACM Trans. Math. Software, 32, no. 4, 597–608, 2006.

[4] U.M. Ascher, J. Christiansen and R.D. Russell. Algorithm 569: COLSYS: Collocation
Software for Boundary-Value ODEs. ACM Trans. Math. Software, 7, no. 2, 223–229,
1981.

[5] G. Bader and U. Ascher. A new basis implementation for a mixed order boundary value
ODE solver. SIAM J. Sci. Statist. Comput., 8, no. 4, 483–500, 1987.

[6] J.R. Cash, G. Moore and R.W. Wright. An automatic continuation strategy for the solution
of singularly perturbed nonlinear boundary value problems. ACM Trans. Math. Software,
27, no. 2, 245–266, 2001.

[7] J.R. Cash and R.W. Wright. A deferred correction method for nonlinear two-point bound-
ary value problems: Implementations and numerical evaluation. SIAM J. Sci. Statist. Com-
put., 12, no. 4, 971–989, 1991.

[8] C. De Boor and R. Weiss. SOLVEBLOK: A package for solving almost block diagonal
linear systems. ACM Trans. Math. Software 6 no. 1 (1980) 80–87.

10

Pierluigi Amodio, Ian Gladwell, and Giuseppe Romanazzi

[9] J.C. Diaz, G. Fairweather and P. Keast. FORTRAN packages for solving certain almost
block diagonal linear systems by modified alternate row and column elimination. ACM
Trans. Math. Software, 9, no. 3, 358–375, 1983.

[10] W.H. Enright and P.H. Muir. Runge-Kutta software with defect control for boundary value
ODEs. SIAM J. Sci. Comput., 17, no. 2, 479–497, 1996.

[11] G. Fairweather and I. Gladwell. Algorithms for almost block diagonal linear systems.
SIAM Rev., 46, no. 1, 49–58, 2004.

[12] B. Garrett and I. Gladwell. Solving bordered almost block diagonal systems stably and
efficiently. J. Comput. Methods Sci. Engrg., 1, 75–98, 2001.

[13] K.R. Jackson and R.N. Pancer. The parallel solution of ABD systems arising in numerical
methods for BVPs for ODEs. Techinical Report n. 255/91, Computer Science Department,
University of Toronto, 1992.

[14] P.H. Muir, R.N. Pancer and K.R. Jackson. PMIRKDC: a parallel mono-implicit Runge-
Kutta code with defect control for boundary value ODEs. Parallel Comput., 29, 711–741,
2003.

[15] G. Romanazzi. Numerical Solution of Bordered Almost Block Diagonal linear systems
arising from BVPs. Ph.D. Thesis, Università di Bari, 2006.

[16] M. Snir, S.W. Otto, S. Huss-Lederman, D. Walker and J. Dongarra. MPI: The Complete
Reference. The MIT Press, Cambridge, Massachusetts, 1996.

[17] R.W. Wright, J. Cash and G. Moore. Mesh selection for stiff two-point boundary value
problems. Numer. Algorithms, 7, 205–224, 1994.

[18] J.M. Varah. Alternate row and column elimination for solving certain linear systems. SIAM
J. Numer. Anal., 13, 71–75, 1976.

11

