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On the solution of general Bordered ABD linear systems
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In this paper we analyze the solution of Borderd Almost Bl@ikgonal (BABD) linear systems arising from
the discretization of BVPs with nonseparated boundary itimmg using some well known numerical methods,
for example spline collocation at Gaussian points. Sewagptoaches based on cyclic reduction are proposed
and compared.
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1 Introduction

One of the most expensive parts of any package for the solatidboundary value problems (BVPS) is the
solution of the linear systems generated internally. Sochmaf the effort in constructing such codes, is first
devoted to defining numerical schemes in order to obtairatisgstems with well defined and simple sparsity
structure, and, second to minimizing the number of gendrateshes, which is proportional to the number of
matrix factorizations.

Each package for BVPs uses well established codes for theé@obf sparse structured linear systems. Among
the others, SOLVEBLOK [5] is widely used since it solves gugeneral block banded linear systems. Since some
BVP codes require the solution of so-called Almost Blockdaiaal (ABD) systems, specific codes constructed
for such systems, such as COLROW [6], ARCECO[6] and ABDPACKdre often preferred. Because of
their linear algebra requirements, these codes can onlyppked to BVPs with separated boundary conditions.
The discretization of BVPs with non-separated boundandamns leads to Bordered Almost Block Diagonal
(BABD) matrices, with one additional block which is comgist outside the ABD structure (either in the left-
lower corner or in the right-upper). Though it is possibleg¢arrange BVPs with non-separated BCs into BVPs
of double the size with separated BCs, in [3] it is shown thitis not always efficient.

For this reason in [2], based on an idea in [1], a Fortran 9G¢c&ABDCR, was proposed for the solution
of BABD matrices. This code solves BABD systems which candensas block bidiagonal matrices with an
additional corner block. In [3], BABDCR has been succes$gfapplied in the codes MIRKDC and PMIRKDC.
Here, we generalize the cyclic reduction approach in [1p2he solution of general BABD linear systems

Ar = f 1)

where the structure of the coefficient matdxs depicted in Figure 1.

ABD matrices are characterized by a very special sparsigpa the nonzero elements are grouped in block
rows; there is no intersection between the nonzero colurhtvgmnon consecutive block rows; finally, the main
diagonal entries always lie in the nonzero blocks. BABD ticat satisfy an additional property: the last (or the
first) block row has an extra block in the left—lower (righpper) corner whose nonzero columns only intersect
the nonzero columns of the first (last) block row. The blockshis row are calledboundary blocks since they
arise due to the boundary conditions when solving a BVP.

Since each block row of the BABD matrix has columns overlagpiith the previous and the successive block
rows, and there is no intersection between these overlappladns, we recognize three blocks in each block
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Fig. 1 Structure of a general BABD matrix.
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where the columns aff; andC; overlap the columns df;_; andV;, 1, respectively. Moreovef;; andVy have

the same structure as each othir A; is overlapped withD, andCy is overlapped withD,. Matrices with this
shape arise, for example, from the numerical solution ofpgt boundary value problems with non-separated
boundary conditions when using spline collocation with@irees or monomial splines at Gaussian points (see
[4]). The idea is to determine a piecewise polynomial appnation to the exact solution satisfying continuity
conditions on a given mesh. The blodkshave sizgn + k) x (2n + k) and boundary blocks have sizex n,
wheren represents the order of the ODE ahdhe number of Gaussian points in each subinterval of the mesh
In addition, when monomial splines are used,

m, G (o0
Ai:(_ci>, Bz(_DZ) and 07—(I>,

wherel is an identity matrix of sizer, andO is ak x n null matrix.

In general, suppose th&t hasm; rows while A; and B; haven; andk; columns, respectively. Then each
blockV; ism; x (n; + k; +n,11) and is overlapped by;_; in the firstn; columns and by, in the lastn; 1
columns. BlocksD, and D, have dimensionsigc x n; andmpe X nyi1, respectively. Therefore, we must

have
N+1 N

N
ch+Zmi = Z nl+zkl
i=1 i—1 i—1

To satisfy the properties of a structurally nonsingular BABhatrix, the following conditions must also be satis-
fied:

mi—|—mi+12k‘i+ni+1—|—k‘i+1, i=1,...,N—1 (2)

ny+nyy1 = Mpo-

Since in block form the coefficient matrix haé+ 1 rows an®N + 1 columns, in the next section we use for
simplicity the following definitions for the right hand si@dad for the unknown vector:

T T
f:(dT, flT, R fﬁ) , x:(le, wlT, zQT, wg, R z%, w%, z%_H) .
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2 The cyclic reduction algorithm

The idea (see [1]) is to cyclically reduce (1) in order to dersystems of lower dimension (involving less un-
knowns) with the same BABD structure. At the first step of i&ehn, fori = 1,3,5.. ., two consecutive block
rows

Aizi + Byw; + Cizip1 = fi 3)
Aip12zi1 + Bipiwip1r + Cigazig2 = fira

are coupled to obtain the row
Ajzi + Biw; + Ciy1zi2 = f] 4)

involving the unknowns; andz; 2, and a new unknowm defined below.

Blocks A andCj_; in (4) have the same number of columnsAsandC; 1, respectively. Moreover;
overlaps the columns @f;_, obtained by the reduction of the previous pair of rowls pverlapsD,), andC;_
overlaps the columns of the matrik , obtained by the reduction of the next pair of block row(overlaps
Dy). If N is odd, the last row is unchanged in the reduced matrix. Toerethe number of block rows of the
new matrix is[N/2] + 1.

The size of equation (4) strongly depends on the choice afixnéf; used to obtain (4) from (3)}4; is chosen
as one of the matrices:

1= (B Ci leading to a null vectow), (sinceB, = O);
Air1 Bipa '

C .
2. M; = ’ leading tow’, = wy;;
< Ait1 Bipa ) glow; =w

3= B G leading tow] = w;1;
A1 !

of . w;
4. M; = ! leading tow! = ! .
( Aitr ) eading tow, ( Wit1 )

The choice among the variodd; depends strongly on the sparsity structure of the blocksled. The choice
of M; in 4. rather than in 1. reduces the number of operations topcdenthe factorization ofif; but gives a
reduced system of larger size.lf = 0 for anyi, then the only available choice 4. has been investigatedtald
in [1, 2]. Because of (2) and the non-singularityAfwe can sefl/; to size equal t¢m; + m;11) x s; and rank
s;. Then, the number of equations in (4)ig = m; + m;41 — s; and By ism) x (k; + nip1 + kix1 — Si).
That is, the reduced system does not involve at least theambsr;, i = 2,4,6,.. ., and its size is reduced by
[N/2]

Z s9i_1. In general from

i=1
L;

Jo=(5 1) ()

whereP; is a (m; + m;41) X (m; + m;41) permutation matrix and.;, U; are the triangular matrices of the
corresponding LU factorization, the reduced system isiobthby multiplying (3) byP; and the inverse of the
lower triangular matrix of thel/; factorization. For example, in case &f; in 4., one has

71 ~ ~ ~ ~
L; P A; B G _( 4 Bi U Bit1 Cina )
S; T ’ Aiy1 Bit1 Cipx A Bj By Cipg

whereB] in (4) equals( B, B, ) in(5). The right hand side is modified accordingly. For theestchoices
of M; the procedure is obviously simplified sinég and/orB;; are included inM; and thus do not appear in
the reduced system.
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For the factorization of\/;, suppose for simplicit;; = k& # 0, n;, = n andm; = n + k, and consider the
factorization ofM; in 1. (for the other cases the factorization may be easilyuded). There are two stages: in
the first,k steps of factorization are performed independentlyon- k) x k blocks B; and B, thus obtaining

L U, T
< Qi ) ( Bi G ) | s i
Qiv1 Aiv1 Biyn ) Lit1 Tiy1 Ui
Si+1 I x‘L‘+1

whereL andU arek x k triangular matrices] is the identity matrix of size, ( are permutation matrices, and the
other blocks are defined accordingly. In the second stagteps of factorization are performed t{n AG: )
41

thus obtaining

U; T; r U; T;
Q Ci B _ L7, Ui B
1}‘+1 U¢+1 _ I Ti+1 Ui+1
Ai+1 S7 I

The lower triangular matrix must be non singular. This isrgs&son of the fourth null row of the upper triangular
matrix (and the identity matrix in the fourth column of theMer triangular matrix). Then, the reduced system in
(5) is obtained by pre-multiplying

—1 —1

I I~/i
Si

El‘ ~ I Ql
I @ Lita ( Qi+1 )
S I Siv1 1

to the equations in (3). None of the factorizations requitarfi Additional storage is however required for
the successive reduced matrices if (as is usual in the #hgasi devoted to BVP solution) the factorization is
computed once and used to solve several linear systems.

The reduction must be iterated until, afie= log, (V) steps, th@ x 2 block linear system

D, Dy z d
(2o b ) (ot )= (i) ©®

(of sizem; + my41) is obtained. Then, the algorithm for the solution of (1) greds with a back-substitution
phase that first computes andz_; from (6), and then the other unknowns in reverse order.
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