
Algorithm 859: BABDCR—A Fortran 90
Package for the Solution of Bordered ABD
Linear Systems

PIERLUIGI AMODIO and GIUSEPPE ROMANAZZI

Università di Bari, Italy

BABDCR is a package of Fortran 90 subroutines for the solution of linear systems with bordered

almost block diagonal coefficient matrices. It is designed to handle matrices with blocks of the

same size, that is, having a block upper bidiagonal structure with an additional block in the right

upper corner. The algorithm implemented in the package performs cyclic reduction of the coefficient

matrix in order to reduce the fill-in due to the corner block.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra—

Sparse, structured, and very large systems (direct and iterative methods); G.4 [Mathematics of
Computing]: Mathematical Software—Algorithm design and analysis; documentation

General Terms: Algorithms, Documentation

Additional Key Words and Phrases: Linear systems, bordered almost block diagonal matrices,

numerical solution, cyclic reduction

1. INTRODUCTION

Almost block diagonal (ABD) matrices are sparse matrices characterized by a
very special sparsity pattern: The nonzero elements are grouped in block rows;
there is no intersection between the nonzero columns of two nonconsecutive
block rows; finally, the main diagonal entries always lie in the nonzero blocks.
Bordered ABD (BABD) matrices satisfy a further property: The first (or the
last) block row has an additional block in the right upper (left lower) corner
whose nonzero columns intersect only the nonzero columns of the last (first)
block row.

In this article we are interested in BABD linear systems

Ax = f (1)

with the coefficient matrix A having the special BABD structure shown in

Authors’ address: P. Amodio and G. Romanazzi, Dipartimento di Matematica, Università di Bari,

Bari, Italy; email: {amodio; romanazzi}@dm.uniba.it.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0098-3500/06/1200-0597 $5.00

ACM Transactions on Mathematical Software, Vol. 32, No. 4, December 2006, Pages 597–608.

598 • P. Amodio and G. Romanazzi

Fig. 1. Structure of the BABD matrix.

Fig. 2. Successive blocks in the BABD coefficient matrix.

Figure 1; the blocks Vi all have the same size and overlap (the number of
columns shared by two successive blocks) as predecessor and successor blocks.

Specifically, using the same notation as in Diaz et al. [1983a, 1983b], we
require that each block Vi, for i = 1, . . . , NBLOKS, has NRWBLK rows and
2 ∗ NRWBLK columns, while Ba and Bb (called boundary blocks) are square
blocks of dimension NRWBLK. Moreover, in this structure the overlap between
two adjacent blocks is always NRWBLK. This means that for any index i, the
blocks Vi and Vi+1 can be represented as in Figure 2, where Si−1, Ri, Si and
Ri+1 all have size NRWBLK by NRWBLK.

This kind of linear system arises in a large variety of contexts, particularly
in the discretization of boundary value problems (BVPs) for ordinary and par-
tial differential equations (see, e.g., Ascher et al. [1995]). The presence of the
boundary blocks is due to the occurrence of nonseparated boundary conditions.

Because of its relevance in BVP codes, the solution of ABD systems has been
the subject of long-term research, and several codes have been proposed. For
a survey on the topic, we refer to Amodio et al. [2000] and the more recent
article of Fairweather and Gladwell [2004]. The first code to be applied to ABD
systems is SOLVEBLOK in De Boor and Weiss [1980]; it requires fill-in to
ensure stability, as in the case of standard LU factorization applied to banded
systems. In Varah [1976] the sparsity structure of ABD matrices is exploited
in order to perform the alternate row and column elimination and thus avoid
fill-in. The algorithm in Varah [1976] is based on Lam’s method [1974] in which
alternate row and column interchanges are used to avoid fill-in, but only row
elimination is performed throughout. The packages COLROW and ARCECO
in Diaz et al. [1983a, 1983b], as well as the NAG routine F01LHF in Brankin
and Gladwell [1990], are based on Varah’s algorithm. The same algorithm has
been applied to the solution of ABD systems with additional zeroes inside each
block. For example, ABDPACK in Majaess et al. [1992a, 1992b] implements an

ACM Transactions on Mathematical Software, Vol. 32, No. 4, December 2006.

Algorithm 859: A Fortran 90 Package for the Solution of BABD Linear Systems • 599

alternate row and column elimination that exploits the sparsity structure due
to the approximation of BVPs by means of spline collocation.

Due to the difficulty of treating boundary blocks, the solution of BABD sys-
tems has received much less consideration. BABD systems may be rewritten
as ABD systems in order to use ABD packages, but this approach requires dou-
bling the size of the system. On the other hand, the boundary block outside
the ABD structure necessarily implies fill-in. To the best of our knowledge, the
only routines that can handle BABD systems are DECOMP/SOLVE (for the fac-
torization and solution, respectively) inside the PASVAR code in Lentini and
Pereyra [1977], which is designed to solve BVPs for ODEs. These two routines
use an alternate row and column elimination with fill-in within the bottom
block row associated with the presence of the nonseparated boundary condi-
tions. Alternative approaches have been specifically designed for parallel im-
plementation. We recall the SLU and SQR algorithms in Wright [1992, 1994]
and the RSCALE routine inside the PMIRKDC package of Muir et al. [2003],
which is designed to solve BVPs for ODEs.

In this article we describe the use of a new sequential package, BABDCR,
for the solution of BABD systems. It is based on the cyclic reduction algorithm
originally proposed in Amodio and Paprzycki [1997] that was implemented on a
parallel computer. It is well-known that cyclic reduction applied to block tridi-
agonal (or ABD) systems is extremely competitive only on parallel computers.
However, the presence of boundary blocks implies fill-in and a higher computa-
tional cost in all sequential algorithms (e.g., the LU factorization). Therefore,
we show that the cyclic reduction algorithm can also be effective on a sequential
computer.

In Sections 2 and 3 we summarize this cyclic reduction approach and evaluate
its computational cost. Then, in Section 4 we describe the software. Our package
is written in Fortran 90 and available in double precision. It has been tested on
an AlphaServer DS20E with a 667 MHz EV67 processor with a Compaq Fortran
90 (formerly Digital Fortran 90) compiler. Finally, in Section 5 we compare the
BABDCR code with other available codes.

2. THE BABDCR ALGORITHM

The basic idea in developing this code (see Amodio and Paprzycki [1997]) is to
reduce Eq. (1) cyclically in order to derive systems of lower dimension (involving
less unknowns) with the same BABD structure. Let us rewrite system (1) as

⎛
⎜⎜⎜⎜⎜⎝

Ba Bb

S0 R1

S1 R2

. . .
. . .

SNBLOKS−1 RNBLOKS

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x0

x1

...
xNBLOKS−1

xNBLOKS

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

f0

f1

...
fNBLOKS−1

fNBLOKS

⎞
⎟⎟⎟⎟⎟⎠ , (2)

where each block in the BABD matrix has dimension NRWBLK by NRWBLK.
Suppose for the moment that NBLOKS = 2p. Since operations involving the
boundary block Bb would create fill-in, all the reduced systems always keep

ACM Transactions on Mathematical Software, Vol. 32, No. 4, December 2006.

600 • P. Amodio and G. Romanazzi

x0 and xNBLOKS among the unknowns, and leave unchanged the first row of
Eq. (2). For this reason, the first reduction produces the following linear system
of dimension (NBLOKS/2 + 1)

⎛
⎜⎜⎜⎜⎜⎝

Ba Bb

S′
0 R ′

2

S′
2 R ′

4
. . .

. . .

S′
NBLOKS−2 R ′

NBLOKS

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x0

x2

...
xNBLOKS−2

xNBLOKS

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

f0

f ′
2
...

f ′
NBLOKS−2

f ′
NBLOKS

⎞
⎟⎟⎟⎟⎟⎠ .

There are several ways to derive the aforementioned reduced system from
Eq. (2). But, since the original matrix is essentially block bidiagonal (the first
block row is not modified), each block row of the reduced system may be obtained
by two consecutive rows in Eq. (2). That is, for i odd, the subsystem

(
Si−1 Ri

Si Ri+1

) ⎛
⎝ xi−1

xi

xi+1

⎞
⎠ =

(
fi

fi+1

)
(3)

is transformed in order to obtain one row of the reduced system involving only
the unknowns xi−1 and xi+1

S′
i−1xi−1 + R ′

i+1xi+1 = f ′
i+1. (4)

If Ri is nonsingular, this could be achieved by multiplying Eq. (3) on the left by(
I

−Si R−1
i I

)
, (5)

thus obtaining Eq. (4) with S′
i−1 = −Si R−1

i Si−1, R ′
i+1 = Ri+1 and f ′

i+1 = fi+1 −
Si R−1

i f i.
However, this procedure might be unstable (see the next section). For this

reason, we perform a partial pivoting LU factorization of the 2 ∗ NRWBLK by
NRWBLK overlap columns:

Pi

(
Ri

Si

)
=

(
Li

Ti

)
Ui =

(
I

Gi

)
LiUi =

(
I

Gi I

) (
LiUi

O

)
, (6)

(Gi = Ti L−1
i), where Pi is a 2 ∗ NRWBLK by 2 ∗ NRWBLK permutation matrix

obtained by the NRWBLK row interchanges. Then,(
I

−Gi I

)
Pi

(
Si−1 Ri

Si Ri+1

)
=

(
Ŝi−1 LiUi R̂i+1

S′
i−1 R ′

i+1

)
(7)

and (
I

−Gi I

)
Pi

(
fi

fi+1

)
=

(
f̂ i

f ′
i+1

)
. (8)

Taking into account the second row in Eqs. (7) and (8) yields Eq. (4) of the re-
duced system. The first row of Eqs. (7) and (8) are used in the back-substitution

ACM Transactions on Mathematical Software, Vol. 32, No. 4, December 2006.

Algorithm 859: A Fortran 90 Package for the Solution of BABD Linear Systems • 601

phase to compute xi from xi−1 and xi+1. The elements Ŝi−1, R̂i+1, and f̂ i are ob-
tained by simple permutations with the matrix Pi. Therefore, the total number
of nonzero rows in the two blocks Ŝi−1 and R̂i+1 is, at most, NRWBLK. We note
also that in the computation of S′

i−1 and R ′
i+1 some operations are not actually

performed because of the sparsity structure of the matrices involved (there are
some null rows in the matrices multiplied by Gi).

In general, after k steps of reduction, the reduced block matrix obtained
has dimension NBLOKS/s + 1, where s = 2k , and this can be further re-
duced by combining two consecutive rows (for each i = (2 j − 1)s, with j =
1, 2, . . . , NBLOKS/(2s))

(
S(k)

i−s R(k)
i

S(k)
i R(k)

i+s

) ⎛
⎝ xi−s

xi

xi+s

⎞
⎠ =

(
f (k)

i
f (k)

i+s

)
(9)

so as to obtain

S(k+1)
i−s xi−s + R(k+1)

i+s xi+s = f (k+1)
i+s . (10)

In analogy with Eqs. (7) and (8), from Eq. (9) we also deduce the following
equality

Ŝ(k)
i−sxi−s + LiUixi + R̂(k)

i+sxi+s = f̂ (k)
i , (11)

which is used in the back-substitution phase to compute xi from xi−s and xi+s.
The reduction ends after p steps, when the two by two block linear system(

Ba Bb

S(p)
0 R(p)

NBLOKS

) (
x0

xNBLOKS

)
=

(
f0

f (p)
NBLOKS

)
(12)

is obtained. The algorithm proceeds with the solution of system (12) and the
back-substitution phase where the unknowns x1, . . . , xNBLOKS−1 are computed.

If NBLOKS is not a power of two, the algorithm behaves in an essen-
tially similar manner. The first block row is never modified until, after p =
�log2(NBLOKS)� steps, system (12) is obtained. After the k-th step of reduction
is performed, the dimension of the reduced system is �NBLOKS/s� + 1, where
s = 2k and ��NBLOKS/s�/2� reductions from Eqs. (9) to (10) are required to
derive the new reduced matrix. Since the first and last unknowns need not
be affected by the reduction process, if the dimension of the reduced matrix
(including the row with boundary blocks) is even, then also the last block row
remains unchanged in the reduction. Thus, for example, if NBLOKS is odd,
then after one step of reduction, the dimension of the first reduced block matrix
is ((NBLOKS + 1)/2 + 1) and the unknowns of the first reduced system are
x0, x2, x4, . . . , xNBLOKS−1, xNBLOKS.

3. COMPUTATIONAL COST AND STABILITY

We measure the computational cost of the BABDCR algorithm in terms of total
number of flops (each flop represents one of the four arithmetic floating point
operations) and required memory. In Section 5 we will compare the values we
obtain with those given by the existing codes when applied to BABD systems.

ACM Transactions on Mathematical Software, Vol. 32, No. 4, December 2006.

602 • P. Amodio and G. Romanazzi

The factorization of the coefficient matrix (i.e., one call to the subrou-
tine BABDCR FACT described next) requires NBLOKS − 1 reductions from
Eq. (9) to Eq. (10) and the partial pivoting LU factorization of the two by
two block matrix in system (12). The cost of each reduction is approximately
14
3

∗ NRWBLK3 flops, and that of the two by two block factorization is approxi-

mately 16
3

∗ NRWBLK3 flops. Thus, the factorization requires 14
3

∗ NRWBLK3 ∗
NBLOKS flops to leading order in powers of NBLOKS and NRWBLK.

Solving the linear system (2) when the matrix is already factorized (i.e., one
call to the subroutine BABDCR SOLV described next) requires NBLOKS − 1
reductions of the righthand-side from Eq. (9) to Eq. (10), NBLOKS − 1 back-
substitutions in Eq. (11) to compute the unknown xs from xi−s and xi+s (pre-
viously determined), and the solution of the two by two block linear sys-
tem (12) previously factorized. The cost of each reduction is approximately
2 ∗ NRWBLK2 flops, that of each back-substitution step is 4 ∗ NRWBLK2, and
of the solution of the two by two block system is 8∗NRWBLK2 flops. Therefore,
the solution of a linear system with the BABDCR algorithm requires approxi-
mately 6 ∗ NRWBLK2 ∗ NBLOKS flops.

The flop component of the cost of the BABDCR algorithm does not change
if the factorization and solution steps are performed together. However, the
memory component of the cost changes drastically. If the reduction phase of the
coefficient matrix and the righthand-side are carried out at the same time (this
is obtained by one call to the subroutine BABDCR FACTSOLV described next),
then the relevant part of the factorization of the matrix is stored in place of the
original coefficient matrix and the algorithm does not require fill-in. If we want
to compute the factorization only once and solve several linear systems, then
we need to store the permutation matrices and all the computed blocks Gi, as
well. This means that the algorithm requires a fill-in array of size NRWBLK2 ∗
(NBLOKS − 1) (which is almost one-half of the memory required to store the
coefficient matrix) and an integer array of size 2 ∗ NRWBLK ∗ NBLOKS.

We now discuss the stability of our algorithm in the special case Si = S and
Ri = R for each i. Such a situation arises, for example, when an autonomous
ODE-BVP is discretized by using constant stepsize. Let λ and x be one eigen-
value and the corresponding eigenvector of the matrix pencil (S, R). Then from
Eqs. (6) and (7) (the indices i have been neglected because of the constant
blocks), we have

S′x = (−G I
)

P
(

S
0

)
x = λ

(−G I
)

P
(

R
0

)
x = −λ

(−G I
)

P
(

0
S

)
x

= −λ2
(−G I

)
P

(
0
R

)
x = −λ2 R ′x,

where we have used

(
R
0

)
=

(
R
S

)
−

(
0
S

)
and

(−G I
)

P
(

R
S

)
= 0.

This means that as the reduction process goes on, the eigenvalues with mod-
ulus less than 1 approach 0 and the eigenvalues with modulus greater than 1
approach infinity. Hence, the reduction by means of matrix (5) may be unsta-
ble because there is no control on the growth (in modulus) of the elements in
S(k) (obtained after k steps of reduction). Conversely, the BABDCR algorithm

ACM Transactions on Mathematical Software, Vol. 32, No. 4, December 2006.

Algorithm 859: A Fortran 90 Package for the Solution of BABD Linear Systems • 603

should be stable because all the elements of both Ti and Li have modulus less
or equal to 1. Therefore, we expect that the rows of G(k)

i go quickly to zero, and
the matrices S(k) and R(k) converge to S∗ and R∗ with the property that if one
row in S∗ is nonzero, then the corresponding one in R∗ is zero (see Section 5).
Due to the use of the partial pivoting LU factorization, “pathological” cases may
occur; however, in such cases the growth of the elements of S′ and R ′ depends
on NRWBLK 	 NBLOKS and is restricted only to one step of reduction.

4. DESCRIPTION OF THE SOFTWARE

The BABDCR package has four main subroutines:

—BABDCR FACT factorizes the BABD coefficient matrix in Eq. (2);

—BABDCR SOLV solves the linear system (2) with a coefficient matrix factor-
ized by BABDCR FACT;

—BABDCR SOLVT solves the linear system (2) with the transposed of the
coefficient matrix factorized by BABDCR FACT; and

—BABDCR FACTSOLV factorizes the BABD coefficient matrix, and at the
same time solves the linear system (2).

The last subroutine is convenient if only one BABD linear system needs to be
solved. The original coefficient matrix is replaced with part of the factorization
and cannot be used any longer. On the other hand, the first two subroutines
(contained in the module BABDCR) solve system (2) in two successive steps:
BABDCR SOLV uses the output of BABDCR FACT to compute the solution
of system (2) (the arrays containing the cyclic reduction factorization are not
modified by successive calls to BABDCR SOLV). Thus, the solution of p linear
systems with the same coefficient matrix can be computed by means of one
call to BABDCR FACT followed by p calls to BABDCR SOLV. This procedure
yields a great decrease in the number of operations compared to the multiple use
of BABDCR FACTSOLV; however, it requires fill-in vectors (see the following).
Finally, if A is factorized with BABDCR FACT, then BABDCR SOLVT uses its
output to solve the linear system AT z = f . This subroutine is essentially used
to compute the one-norm of the inverse of the coefficient matrix by means of the
subroutine DONEST in Higham [1989] that, in order to evaluate the one-norm
of a square, double precision matrix B, requires the products Bx and BT x for
some given vectors x.

We include in our package a driver program to link the four subroutines.
Specifically, it allocates storage, reads the input dataset, and calls the
subroutines.

The package requires that the coefficient matrix in input is given as in
Figure 3, that is, the blocks Vi = (Si−1, Ri) must be given sequentially in a
NRWBLK by NRWBLK by 2 ∗ NBLOKS three-dimensional array MATR A;
boundary blocks are saved in two NRWBLK by NRWBLK arrays LFTBLK
and RGTBLK. The righthand-side f must be assigned in a vector of length
NRWBLK ∗ (NBLOKS + 1) and is stored in a NRWBLK by NBLOKS+1 array.

Header comments in each procedure provide details regarding the specifi-
cation of input and output parameters and the workspace requirements. The

ACM Transactions on Mathematical Software, Vol. 32, No. 4, December 2006.

604 • P. Amodio and G. Romanazzi

Fig. 3. Structure of the input coefficient matrix.

Fig. 4. BABDCR FACT subroutine hierarchy.

structure of BABDCR FACT and BABDCR SOLV is represented in Figures 4
and 5. Dashed blocks contain the Fortran 90 intrinsic procedure RESHAPE, the
BLAS routines DGER, DTRSM, DGEMV, and DDOT, and the Lapack routines
DGETRF and DGETRS.

In BABDCR FACT there are calls to REASSEMBLE and REDUCE
BLOCK. The subroutine REASSEMBLE allows the assembly of a 2∗NRWBLK
by NRWBLK block from two consecutive blocks of size NRWBLK by NRWBLK.
The output obtained is used by REDUCE BLOCK, which applies one step of re-
duction to obtain one block row from two consecutive ones (see Eqs. (9) and (10)).
The operations performed in REDUCE BLOCK are summarized in Figure 6,
where the variables considered have the same meaning as those in Section 2.

Since the reduction is applied only to the coefficient matrix (not to the
righthand-side), we need to save the block Gi which is used in REDUCE RHS;
moreover, the matrices Li and Ui of the LU factorization of the 2∗NRWBLK by

NRWBLK block

(
R(k)

i
S(k)

i

)
(computed by means of the LAPACK routine DGETRF)

and the fill-in block Fi of size NRWBLK by NRWBLK containing the nonzero
rows of Ŝ(k)

i−s and R̂(k)
i+s, which are used in SOLVE BLOCK. Finally, S(k)

i−s and R(k)
i+s

are replaced by the computed blocks of the new reduced matrix, namely, S(k+1)
i−s

and R(k+1)
i+s .

On exit, BABDCR FACT outputs two new arrays containing the fill-in blocks
Fi and the permutations, saved in a NRWBLK by NRWBLK by NBLOKS − 1
array and a 2 ∗ NRWBLK by NBLOKS array, respectively. The arrays contain-
ing the coefficient matrix now have the structure shown in Figure 7: the first
and last blocks of MATR A and the boundary blocks contain the LU factoriza-
tion of the matrix in Eq. (12) (see Figure 8), whereas each LUGi block contains

ACM Transactions on Mathematical Software, Vol. 32, No. 4, December 2006.

Algorithm 859: A Fortran 90 Package for the Solution of BABD Linear Systems • 605

Fig. 5. BABDCR SOLV subroutine hierarchy.

Fig. 6. Operations performed in REDUCE BLOCK.

Fig. 7. Structure of the coefficient matrix on exit from BABDCR FACT.

Fig. 8. Structure of the LU factorization of Eq. (12).

Li, Ui, and Gi (saved as in Figure 6) reshaped as a 2 ∗ NRWBLK by NRWBLK
array.

The subroutine BABDCR SOLV uses the subroutines REDUCE RHS to
compute the righthand-side of Eq. (10) from Eq. (9), and SOLVE BLOCK to
go back, that is, to compute xs from Eq. (11) (xi−s and xi+s are known values).
The LAPACK routine DGETRS performs the solution of the last two by two
block system factorized with DGETRF.

Finally, the subroutine BABDCR FACTSOLV makes use of the sub-
routines REDUCE (which include the subroutines REDUCE BLOCK and
REDUCE RHS), REASSEMBLE, and SOLVE BLOCK. Since the linear

ACM Transactions on Mathematical Software, Vol. 32, No. 4, December 2006.

606 • P. Amodio and G. Romanazzi

system is solved step-by-step with the factorization, the block Gi is used as
soon as it is computed and so does not need to be saved. For this reason, the
fill-in block Fi is saved in place of Gi and the subroutine essentially does not
generate fill-in. The coefficient matrix is modified by the subroutine, but cannot
be considered for solving other systems with different righthand-sides because
the fill-in blocks are not saved and the permutation matrices not output.

5. COMPARISON WITH OTHER APPROACHES

In this section we analyze the reduction process in the BABDCR algorithm on
the Wright example in Wright [1993]. Moreover, we compare our method with
ABD packages applied to the doubled system (we are not aware of any available
sequential code specifically designed to solve BABD systems).

The Wright example shows that the simple well-conditioned BABD matrix⎛
⎜⎜⎜⎜⎜⎝

I I
−C I

−C I
. . .

. . .

−C I

⎞
⎟⎟⎟⎟⎟⎠ , (13)

may give rise to instability when factored by means of the LU factorization
with row partial pivoting. In fact, suppose that the matrix (13) arises from
the numerical solution of the well-conditioned BVP-ODE with nonseparated
BCs

y ′(x) = Ay(x) + r(x), A =
(− 1

6
1

1 − 1
6

)
in x ∈ [0, 60],

y(0) + y(60) = η,

(14)

by means of multiple shooting. Then C = ehA, where h is the stepsize used to
discretize the ODE problem. If h is such that the elements of C have modulus
less than 1 (e.g., h = 0.3 and NBLOKS = 200 in Eq. (14)), then no permutation
is ever performed and the right upper corner block implies fill-in in the last
block column of the matrix U of the factorization, with elements C, C2, C3, . . .

(see Wright [1993]). The same drawback appears when ehA is approximated by
means of the trapezoidal rule, thus obtaining C = (I −hA/2)−1(I +hA/2). Since
one of the eigenvalues has modulus greater than 1, there is an exponential
growth in the elements of the last block column, and the solution becomes
incorrect, even if a moderate number of meshpoints is used.

For this reason, Garrett and Gladwell [2001] suggest solving BABD systems
by means of an orthogonal factorization, thus obtaining a stable factorization,
but with very large computational cost and memory requirement. In fact, QR
is much more expensive than LU factorization and, in addition, since this al-
gorithm is not specifically designed for BABD matrices, implies fill-in both on
the last block column and on a further upper diagonal of the matrix R of the
factorization. In such a case, a block scaling of the coefficient matrix (in order to
obtain some blocks equal to the identity) before computing the QR factorization
reduces the number of operations, but may be dangerous if performed on ill-
conditioned blocks.

ACM Transactions on Mathematical Software, Vol. 32, No. 4, December 2006.

Algorithm 859: A Fortran 90 Package for the Solution of BABD Linear Systems • 607

Table I. Operation Counts for the Solution of the BABD System (2)

Factorization Solution Required Memory

BABDCR 14/3 ∗ NRWBLK3 6 ∗ NRWBLK2 3 ∗ NRWBLK2

COLROW 46/3 ∗ NRWBLK3 16 ∗ NRWBLK2 8 ∗ NRWBLK2

SOLVEBLOK 76/3 ∗ NRWBLK3 20 ∗ NRWBLK2 12 ∗ NRWBLK2

Each term must be multiplied by NBLOKS.

The BABDCR algorithm does not exhibit instability when applied to the
Wright problem. In fact, the first step of reduction gives a matrix with the
same structure as matrix (13) and C2, instead of C (Pi = I and Gi = −C
in Eq. (7)). Similarly, the successive steps give matrices S(k) with increasing
powers of C (Cs, s = 2k , after k steps), until the elements of the blocks become
larger than 1 in modulus. At this point, since row pivoting is performed on the

2 ∗ NRWBLK by NRWBLK block

(
I

Cs

)
, the permutation allows control of the

growth of elements of the new reduced matrices. For example, if h = 0.3, there
is no permutation for the first step and the matrices S(k) and R(k) converge to

S∗ =
(−1.6487 −1.6487

0 0

)
and R∗ =

(
0 0

−1 1

)
.

In Ascher et al. [1995] and Garrett and Gladwell [2001], a further possibility is
considered to solve BABD systems by using the existing ABD solvers. Following
this approach we introduce NBLOKS new unknowns yi such that x0 = y0 =
· · · = yNBLOKS and obtain the new equations

y0 = x0, yi+1 = yi, for i = 0, . . . , NBLOKS − 1;

the boundary condition may be replaced by Ba yNBLOKS + BbxNBLOKS = f0. This
means that, reassembling the unknowns and the equations appropriately, the
linear system obtained has an ABD structure and may be treated by using
any specific software for these problems. Garrett and Gladwell [2001] have
tested SOLVEBLOK and the methods in Lam [1974] and Varah [1976]. These
approaches do not show instability when applied to the Wright problem. How-
ever, the doubling of the size of each block required in these methods implies a
larger computational cost than the BABDCR method. Table I summarizes the
computational cost required by the BABDCR solver and packages COLROW
and SOLVEBLOK applied to the rearranged ABD system.

ACKNOWLEDGMENTS

We thank the staff of the Department of Mathematics of the Southern Methodist
University (Dallas, Texas, USA) who have provided technical support for com-
pleting this work during a semester of research spent by Giuseppe Romanazzi.
The authors gratefully acknowledge, especially, Ian Gladwell for his comments.

REFERENCES

AMODIO, P., CASH, J. R., ROUSSOS, G., WRIGHT, R. W., FAIRWEATHER, G., GLADWELL, I., KRAUT, G. L., AND

PAPRZYCKI, M. 2000. Almost block diagonal linear systems: Sequential and parallel solution

techniques, and applications. Numer. Linear Algebra Appl. 7, 275–317.

ACM Transactions on Mathematical Software, Vol. 32, No. 4, December 2006.

608 • P. Amodio and G. Romanazzi

AMODIO, P. AND PAPRZYCKI, M. 1997. A cyclic reduction approach to the numerical solution of

boundary value ODEs. SIAM J. Sci. Comput. 18, 1, 56–68.

ASCHER, U. M., MATTHEIJ, R. M., AND RUSSELL, R. D. 1995. Numerical Solution of Boundary Value
Problems for Ordinary Differential Equations. Classics in Applied Mathematics 13. SIAM Press,

Philadelphia, PA.

BRANKIN, R. AND GLADWELL, I. 1990. Codes for almost block diagonal systems. Comput. Math.
Appl. 19, 7, 1–6.

DE BOOR, C. AND WEISS, R. 1980. Solveblok: A package for solving almost block diagonal linear

systems. ACM Trans. Math. Softw. 6, 80–87.

DIAZ, J., FAIRWEATHER, G., AND KEAST, P. 1983a. Algorithm 603: Colrow and arceco: Fortran pack-

ages for solving certain almost block diagonal linear systems by modified alternate row and

column elimination. ACM Trans. Math. Softw. 9, 3, 376–380.

DIAZ, J., FAIRWEATHER, G., AND KEAST, P. 1983b. FORTRAN packages for solving certain almost

block diagonal linear systems by modified alternate row and column elimination. ACM Trans.
Math. Softw. 9, 3, 358–375.

FAIRWEATHER, G. AND GLADWELL, I. 2004. Algorithms for almost block diagonal linear systems.

SIAM Rev. 46, 1, 49–58.

GARRETT, B. AND GLADWELL, I. 2001. Solving bordered almost block diagonal systems stably and

efficiently. J. Comput. Meth. Sci. Eng. 1, 75–98.

HIGHAM, N. J. 1989. Algorithm 674: FORTRAN codes for estimating the one-norm of a real or

complex matrix, with applications to condition estimation. ACM Trans. Math. Softw. 15, 2, 168.

LAM, D. 1974. Implemantation of the box scheme and model analysis of diffusion—convenction

equations. Ph.D. thesis, University of Waterloo, Waterloo, Canada.

LENTINI, M. AND PEREYRA, V. 1977. An adaptive finite difference solver for nonlinear two-point

boundary problems with mild boundary layers. SIAM J. Numer. Anal. 14, 91–111.

MAJAESS, F., KEAST, P., FAIRWEATHER, G., AND BENNETT, K. R. 1992a. Algorithm 704: ABDPACK

and ABBPACK-FORTRAN programs for the solution of almost block diagonal linear systems

arising in spline collocation at Gaussian points with monomial basis functions. ACM Trans.
Math. Softw. 18, 2, 205–210.

MAJAESS, F., KEAST, P., FAIRWEATHER, G., AND BENNETT, K. R. 1992b. The solution of almost block

diagonal linear systems arising in spline collocation at Gaussian points with monomial basis

functions. ACM Trans. Math. Softw. 18, 2, 193–204.

MUIR, P., PANCER, R., AND JACKSON, K. 2003. Pmirkdc: A parallel mono-implicit Runge–Kutta code

with defect control for boundary value odes. Parallel Comput. 29, 6, 711–741.

VARAH, J. 1976. Alternate row and column elimination for solving certain linear systems. SIAM
J. Numer. Anal. 13, 71–75.

WRIGHT, S. 1992. Stable parallel algorithms for two-point boundary value problems. SIAM J. Sci.
Stat. Comput. 13, 3, 742–764.

WRIGHT, S. 1993. A collection of problems for which gaussian elimination with row partial pivoting

is unstable. SIAM J. Sci. Stat. Comp. 14, 231–238.

WRIGHT, S. 1994. Stable parallel elimination for boundary value odes. Numer. Math. 67, 4, 521–

535.

Received September 2004; revised November 2005; accepted December 2005

ACM Transactions on Mathematical Software, Vol. 32, No. 4, December 2006.

