# Supraconvergence and supercloseness in Volterra equations 

J.A. Ferreira*, L. Pinto, G. Romanazzi<br>CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal

## A R T I C L E I N F O

Article history:
Received 25 May 2011
Received in revised form 20 February 2012
Accepted 17 June 2012
Available online 28 June 2012

## Keywords:

Integro-differential equations
Finite difference methods
Piecewise linear finite element methods
Supraconvergence
Supercloseness


#### Abstract

Integro-differential equations of Volterra type arise, naturally, in many applications such as for instance heat conduction in materials with memory, diffusion in polymers and diffusion in porous media. The aim of this paper is to study a finite difference discretization of the mentioned integro-differential equations. Second convergence order with respect to the $H^{1}$ norm is established which means that the discretization proposed is supraconvergent in finite difference methods language. As the finite difference method can be seen as a piecewise linear finite element method combined with special quadrature formulas, our result establishes the supercloseness of the gradient in the finite element language. Numerical results illustrating the discussed theoretical results are included.


© 2012 IMACS. Published by Elsevier B.V. All rights reserved.

## 1. Introduction

We consider discretizations of the integro-differential equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}(t)+A u(t)=\int_{0}^{t} B(s, t) u(s) d s+f(t), \quad t \in(0, T] \tag{1}
\end{equation*}
$$

subject to the Dirichlet boundary condition

$$
\begin{equation*}
u(t)=\psi(t) \quad \text { on } \partial \Omega \times(0, T] \tag{2}
\end{equation*}
$$

and with the initial condition

$$
\begin{equation*}
u(0)=u_{0} \tag{3}
\end{equation*}
$$

In (1) $u(t)$ denotes a function defined on $\bar{\Omega} \times[0, T]$ when $t$ is fixed, $\Omega$ is a simple polygonal domain of $\mathbb{R}^{2}, A$ and $B(s, t)$ represent the following differential operators

$$
\begin{aligned}
& A u(t)=-\nabla \cdot(\mathcal{A} \nabla u(t))+\nabla \cdot\left(\mathcal{A}_{0} u(t)\right)+a_{0} u(t) \\
& B(s, t) u(t)=-\nabla \cdot(\mathcal{B}(s, t) \nabla u(t))+\nabla \cdot\left(\mathcal{B}_{0}(s, t) u(t)\right)+b_{0}(s, t) u(t)
\end{aligned}
$$

where $\mathcal{A}, \mathcal{A}_{0}, a_{0}$ dependent on $(x, y), \mathcal{A}_{0}=\left[a_{i}\right], \mathcal{A}=\left[a_{i j}\right], i, j=1,2$, and $a_{12}=a_{21}=a_{m} . \mathcal{B}, \mathcal{B}_{0}, b_{0}$ dependent on $(x, y)$, $s$ and $t, \mathcal{B}_{0}=\left[b_{i}\right], \mathcal{B}=\left[b_{i j}\right], i, j=1,2$, and $b_{12}=b_{21}=b_{m}$.

[^0]Integro-differential equations of type (1) arise in many applications of different branches of engineering sciences as for instance in heat conduction in materials with memory [29], in diffusion processes in porous media [10,27,36] and in diffusion in polymers [25]. In this last application, the integro-differential equation (1), with

$$
\begin{equation*}
\mathcal{A}_{0}=\mathcal{B}_{0}=0, \quad a_{0}=b_{0}=0, \quad \mathcal{B}(s, t)=K(t-s) \mathcal{B} \quad \text { and } \quad K(s)=\frac{1}{\tau} e^{-\frac{s}{\tau}} \tag{4}
\end{equation*}
$$

is used to model a diffusion process occurring in a swellable polymeric matrix. In this case the mass flux is assumed to be split into the sum of two mass fluxes: $J=J_{F}+J_{N F}$, where $J_{F}$ is the mass flux given by Fick's law

$$
J_{F}(t)=-\mathcal{A} \nabla u(t)
$$

and $J_{N F}$ satisfies the differential equation

$$
\frac{\partial J_{N F}}{\partial t}+\frac{1}{\tau} J_{N F}=\frac{1}{\tau} \mathcal{B} \nabla u(t)
$$

where $\tau>0$ is a relaxation parameter (see also [34]). Eq. (1) is then established taking $J_{N F}(0)=0$ and the mass conservation law $\frac{\partial u}{\partial t}(t)+\nabla \cdot J(t)=f(t)$. The same equation can be used to model diffusion processes through glassy polymers. In this case the Fickian flux $J_{F}$ is modified to incorporate the stress effect which is linked with the strain by the Maxwell model [12-14,39].

The development of efficient and accurate numerical methods to solve the initial boundary value problem (IBVP) defined by (1) has attracted the attention of several researchers during the last two decades. A significative number of contributions can be found in the literature. Without be exhaustive we mention $[32,33,44,48]$ for the study of finite element semidiscrete approximations. Generally, in these papers, it is shown that several results known for finite element semi-discrete approximations for solutions of parabolic problems also hold for the corresponding semi-discrete approximations for the solutions of (1). For instance, it is established, under convenient assumptions on the partition of the domain, that piecewise linear finite element semi-discrete approximations are second order convergent with respect to the $L^{2}$-norm and they are first order convergent with respect to the $H^{1}$-norm. Similar convergent results were also established in [37] for semi-discrete lumped mass approximations with respect to discrete norms and assuming that the solutions of the continuous problems are smooth enough.

Second order estimates for finite volume semi-discrete approximations with respect to the $L^{2}$-norm were shown in [17] and [18] provided that the solution $u$ of the IBVP (1)-(3) satisfies the following: $u(t) \in H^{3}$ and $\int_{0}^{t}\left(\|u(s)\|_{3}+\right.$ $\left.\left\|\frac{d u}{d t}(s)\right\|_{3}\right) d s<\infty, t \in[0, T]$. In [40], under weaker assumptions, the same convergence orders were established for a finite volume semi-discrete approximation. The authors assume that $\|u(t)\|_{2}, \int_{0}^{t}\left(\|u(s)\|_{2}^{2}+s^{2}\left\|\frac{d u}{d t}(s)\right\|_{2}^{2}\right) d s, t \in[0, T]$, are finite.

Integro-differential equations (1) can be rewritten as equivalent linear differential systems: a partial differential equation involving only a time derivative and an integro-differential equation presenting only partial derivatives with respect to the space variables. This approach was used, for instance, in [19] and recently in [41] where mixed finite element methods were studied. Systems of differential equations that are equivalent to nonlinear versions of Eq. (1) for the particular case defined by (4) with a nonlinear kernel $K, K(s, t, u)=e^{-\int_{s}^{t} \gamma(u(\xi)) d \xi}$, were considered in [7,38]. In the first work, Galerkin finite-element method with Crank-Nicolson method for time integration was analyzed, while in [38] discontinuous Galerkin finite element methods were studied.

Recently, finite difference methods (FDM) for IBVP's defined by (1) presenting the same qualitative behavior of the corresponding continuous models were proposed in [1,8,9,20,21]. Applications of integro-differential models in drug release were considered in [4,5,21].

In the present paper we study a fully discrete scheme constructed using the so-called MOL approach: the spatial discretization is defined by a standard FDM and the time integration is defined by an implicit-explicit method. The standard FDM is based on a sequence of nonuniform grids $\bar{\Omega}_{H}, H \in \Lambda$, with maximal mesh-size $H_{\max }$ converging to zero, without any restriction on the nonuniformity. It is shown that the error of the semi-discrete approximation and its gradient are second order convergent. However the truncation error induced by the spatial discretization is only of first order. The stability and convergence of the fully discrete scheme are also established.

We introduce a new convergence analysis that is different from the one introduced in [47] which is usually followed in the literature, as for instance in [40], where a finite volume approximation for the IBVP (1)-(3) was studied. The method is based on a quasi-uniform family of triangulations and the authors proved that the semi-discretization error is second order convergent with respect to the $L^{2}$-norm. This was done introducing a Ritz-Galerkin projection and splitting the semidiscretization error into the sum of two errors that are then studied separately. The same approach was followed in [11, $33,44]$ to study the accuracy of semi-discrete finite element approximations for the solutions of the same class of integrodifferential IBVP's. Second convergence order for the semi-discretization error with respect to $H^{1}$-norm was established in [6] for the one-dimensional version of (1) but following again the approach introduced by Wheeler [47].

In this paper we prove error estimates for the semi-discrete and fully discrete finite difference approximations for the solution of (1)-(3) and for its gradient. Considering a convenient representation of the semi-discretization error we avoid the split of this error and we reduce the smoothness requirements for the solution which are usually needed when such splitting approach is used. We show that, when the domain $\Omega$ is a rectangle, the error and its gradient have second convergence
order while the truncation error is only of first order. This convergence order is lower when the domain presents an oblique side. Second order estimates with respect to $H^{1}$-norm are reported in the literature. For instance in [11] these estimates were obtained for finite element solutions based on piecewise quadratic elements instead of piecewise linear elements. It should be pointed out that the results, introduced in [22] for elliptic problems with smooth solutions and in [23] for problems with solutions with lower smoothness, have a central role in the proof of the main results of the present paper.

As in [23], our FDM can be seen as a lumped mass method. In fact it can be obtained considering the piecewise linear finite element on a triangulation $\mathcal{T}_{H}$ generated by the rectangular grid $\bar{\Omega}_{H}$ and applying convenient quadrature rules to each term of the variational form of the variational problem. This means that our finite difference solution can be seen as a piecewise linear finite element solution where the triangulation $\mathcal{T}_{H}$ does not satisfy any smoothness requirement, and so our results can be seen as supercloseness results [45]. For FDM for elliptic equations and for parabolic equations, this property is usually called supraconvergence [3,15,16,22-24,26,28,30,31,35].

The paper is organized as follows. In Section 2 we introduce the variational formulation of our problem. In Section 3 we define a semi-discrete approximation of (1)-(3) and its stability and convergence are studied. A fully discrete scheme is presented in Section 4 and its stability and convergence are analyzed. Some numerical experiments illustrating the results of this paper are presented in Section 5. Finally in Section 6 we draw some conclusions.

## 2. The variational problem

This section begins with the introduction of the functional spaces needed in this work and then introduces the Galerkin formulation of our IBVP. Let $\mathcal{D}$ be a bounded open set of $\mathbb{R}^{2}$. For $m \in \mathbb{N}_{0}$ we denote by $C^{m}(\overline{\mathcal{D}})$ the space of functions $v$ such that $\frac{\partial^{|\alpha|} v_{v}}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}}$ is continuous in $\overline{\mathcal{D}}$ for $\alpha=\left(\alpha_{1}, \alpha_{2}\right), \alpha_{i} \in \mathbb{N}_{0}, i=1,2,|\alpha|=\alpha_{1}+\alpha_{2} \leqslant m$. In this space we consider the following norm

$$
\|v\|_{C^{m}(\overline{\mathcal{D}})}=\max _{|\alpha| \leqslant m} \max _{(x, y) \in \overline{\mathcal{D}}}\left|\frac{\partial^{|\alpha|} v}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}}(x, y)\right| .
$$

For $p \in\left[2,+\infty\left[, W^{m, p}(\mathcal{D})\right.\right.$ denotes the usual Sobolev space with the semi-norm and norm given respectively by

$$
|v|_{m, p}=\left(\sum_{|\alpha|=m}\left\|\frac{\partial^{m} v}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}}\right\|_{0, p}^{p}\right)^{1 / p}, \quad\|v\|_{m, p}=\left(\sum_{|\alpha| \leqslant m}\left\|\frac{\partial^{|\alpha|} v}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}}\right\|_{0, p}^{p}\right)^{1 / p}
$$

where

$$
\left\|\frac{\partial^{|\alpha|} v}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}}\right\|_{0, p}^{p}=\int_{\mathcal{D}}\left|\frac{\partial^{|\alpha|} v}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}}\right|^{p} d x d y
$$

For $p=\infty$, we consider the norm

$$
\|v\|_{m, \infty} \max _{|\alpha| \leqslant m} \operatorname{ess} \sup _{\mathcal{D}}\left|\frac{\partial^{|\alpha|} v}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}}\right|
$$

By $H^{m}(\mathcal{D})$ we represent the Sobolev space $W^{m, 2}(\mathcal{D})$ and $H^{0}(\mathcal{D})=L^{2}(\mathcal{D})$. The norm $\|\cdot\|_{m, 2}$ is represented by $\|\cdot\|_{m}$ and in $L^{2}(\mathcal{D})$ we consider the usual inner product $(., .)_{0}$. The subspace of $H^{m}(\mathcal{D})$ of functions null on the boundary is denoted by $H_{0}^{m}(\mathcal{D})$.

Let $V$ be a Banach space with respect to the norm $\|.\|_{V}$. We denote by $L^{p}(0, T ; V)$, with $p \in[2,+\infty[$, the space of functions $v:(0, T) \rightarrow V$ such that

$$
\begin{equation*}
\|v\|_{L^{p}(0, T ; V)}=\left(\int_{0}^{T}\|v(t)\|_{V}^{p} d t\right)^{1 / p} \tag{5}
\end{equation*}
$$

is finite. We also consider, for $m, r \in \mathbb{N}_{0}$, the space $W^{r, p}(0, T ; V)$ of functions $v:(0, T) \rightarrow V$ such that $\frac{d^{j} v}{d t^{j}} \in L^{p}(0, T ; V)$ for $j=0, \ldots, r$, and

$$
\begin{equation*}
\|v\|_{W^{r, p}(0, T ; V)}:=\left(\sum_{j=0}^{r} \int_{0}^{T}\left\|\frac{d^{j} v}{d t^{j}}(t)\right\|_{V}^{p} d t\right)^{1 / p} \tag{6}
\end{equation*}
$$

is finite. When $p=2$ this space is represented by $H^{r}(0, T ; V)$ with $H^{0}(0, T ; V)=L^{2}(0, T ; V)$.

Let $V$ be a Hilbert space with respect to the inner product $(., .)_{V}$. We consider in $H^{r}(0, T ; V)$ the inner product

$$
\begin{equation*}
(v, w)_{H^{r}(0, T ; V)}:=\sum_{j=0}^{r} \int_{0}^{T}\left(\frac{d^{j} v}{d t^{j}}(t), \frac{d^{j} w}{d t^{j}}(t)\right)_{V} d t \tag{7}
\end{equation*}
$$

By $L^{\infty}(0, T ; V)$ we represent the space of functions $v:(0, T) \rightarrow V$ such that

$$
\begin{equation*}
\|v\|_{L^{\infty}(0, T ; V)}:=\underset{[0, T]}{\operatorname{ess} \sup ^{2}}\|v(t)\|_{V}<\infty \tag{8}
\end{equation*}
$$

The space of functions $v:(0, T) \rightarrow V$ such that $\frac{d^{j} v}{d t^{j}} \in L^{\infty}(0, T ; V)$ for $j=0, \ldots, r$, and

$$
\begin{equation*}
\|v\|_{W^{r, \infty}(0, T ; V)}:=\max _{j=0, \ldots, r} \operatorname{ess} \sup _{[0, T]}\left\|\frac{d^{j} v}{d t^{j}}(t)\right\|_{V}<\infty \tag{9}
\end{equation*}
$$

is denoted by $W^{r, \infty}(0, T ; V)$.
Let $L^{2}\left(0, T ; H^{-1}(\Omega)\right)$ be the dual space of $L^{2}\left(0, T ; H^{1}(\Omega)\right)$ where $H^{-1}(\Omega)$ denotes the dual space of $H^{1}(\Omega)$. We define

$$
\mathcal{W}(0, T)=\left\{g \in L^{2}\left(0, T ; H^{1}(\Omega)\right) \text { such that } \frac{d g}{d t} \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)\right\}
$$

which is a Hilbert space (see Theorem 25.4 of [46]).
For $f \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)$ and $u_{0} \in L^{2}(\Omega)$, we consider the following variational formulation of problem (1)-(3): find $u \in \mathcal{W}(0, T)$ such that $u(t)=\psi(t)$ on $\partial \Omega$ and

$$
\left\{\begin{array}{l}
\left\langle\frac{d u}{d t}(t), v\right\rangle+a(u(t), v)=\int_{0}^{t} b(s, t, u(s), v) d s+(f(t), v)_{0} \quad \text { a.e. in }(0, T) \text { for all } v \in H_{0}^{1}(\Omega)  \tag{10}\\
u(0)=u_{0}
\end{array}\right.
$$

where $\langle.,$.$\rangle denotes the duality pairing between H^{-1}(\Omega)$ and $H_{0}^{1}(\Omega), a(.,),. b(s, t, \ldots$.$) are the sesquilinear forms defined$ respectively by

$$
\begin{equation*}
a(v, w)=(\mathcal{A} \nabla v, \nabla w)_{0}-\left(\mathcal{A}_{0} v, \nabla w\right)_{0}+\left(a_{0} v, w\right)_{0}, \quad \text { for } v, w \in H^{1}(\Omega) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
b(s, t, v, w)=(\mathcal{B}(s, t) \nabla v, \nabla w)_{0}-\left(\mathcal{B}_{0}(s, t) v, \nabla w\right)_{0}+\left(b_{0}(s, t) v, w\right)_{0}, \quad \text { for } v, w \in H^{1}(\Omega) \tag{12}
\end{equation*}
$$

In (11) and (12) we use the notation: $\left(\left(p_{1}, p_{2}\right),\left(q_{1}, q_{2}\right)\right)_{0}=\left(p_{1}, q_{1}\right)_{0}+\left(p_{2}, q_{2}\right)_{0}, p_{i}, q_{i} \in L^{2}(\Omega), i=1,2$.
The coefficient functions of the integro-differential equation (1) are assumed to be smooth enough with respect to the space variables $x$ and $y$, e.g. they are in $W^{m, \infty}(\Omega), m \in\{1,2\}$.

## 3. A semi-discrete Galerkin approximation

### 3.1. The semi-discrete problem

In what follows we introduce the semi-discretization of (10) (see [23]). The spacial grid $\bar{\Omega}_{H}$ is defined by $\mathbb{R}_{H} \cap \bar{\Omega}$ where $H=(\mathbf{h}, \mathbf{k}), \mathbf{h}=\left(h_{j}\right)_{\mathbb{Z}}, \mathbf{k}=\left(k_{\ell}\right)_{\mathbb{Z}}$ are two sequences of mesh-sizes and $\mathbb{R}_{H}=\mathbb{R}_{\mathbf{h}} \times \mathbb{R}_{\mathbf{k}}$ is a non-equidistant grid introduced in $\mathbb{R}^{2}$ with

$$
\mathbb{R}_{\mathbf{h}}=\left\{x_{j} \in \mathbb{R}: x_{j+1}=x_{j}+h_{j+1}, j \in \mathbb{Z}\right\}
$$

where $x_{0} \in \mathbb{R}$ is given and $\mathbb{R}_{\mathbf{k}}$ is defined analogously with the mesh-size vector $\mathbf{k}$ in place of $\mathbf{h}$ and $y_{0}$ in place of $x_{0}$. We also introduce

$$
\Omega_{H}:=\Omega \cap \mathbb{R}_{H}, \quad \partial \Omega_{H}:=\partial \Omega \cap \mathbb{R}_{H}
$$

Since we are considering polygonal domains, the following compatibility condition between the grid $\bar{\Omega}_{H}$ and the domain $\Omega$ is assumed:
(Geom) The intersection of $\partial \Omega$ with the rectangles $\square:=\left(x_{j}, x_{j+1}\right) \times\left(y_{\ell}, y_{\ell+1}\right)$ spanned by points $\left(x_{j}, y_{\ell}\right)$, $\left(x_{j+1}, y_{\ell+1}\right)$ of $\mathbb{R}_{H}$ is either empty or it is a diagonal of $\square$

We consider a sequence of grids $\mathbb{R}_{H}$ such that the maximal mesh-size $H_{\max }:=\max \left\{h_{j}, k_{\ell}, j, \ell \in \mathbb{Z}\right\}$ tends to zero. We use the symbol " $\Lambda$ " for the sequence of mesh-size vectors and write " $(H \in \Lambda)$ " for the convergence with respect to $H$ running through this sequence.

By $W_{H}$ we denote the space of grid functions on $\bar{\Omega}_{H}$ and by $W_{H, 0}$ the subspace of $W_{H}$ of grid functions vanishing on $\partial \Omega_{H}$. For convenience we assume that functions in $W_{H}$ are also defined outside of $\bar{\Omega}_{H}$ with value equal to zero. For $\left(x_{j}, y_{\ell}\right) \in \bar{\Omega}_{H}$, we represent by $\square_{j, \ell}$ the box $\left(x_{j-1 / 2}, x_{j+1 / 2}\right) \times\left(y_{\ell-1 / 2}, y_{\ell+1 / 2}\right) \cap \Omega$ where $x_{j-1 / 2}=x_{j}-\frac{h_{j}}{2}, x_{j+1 / 2}=x_{j}+\frac{h_{j+1}}{2}$ being $y_{\ell \pm 1 / 2}$ defined analogously, and we denote its measure by $\omega_{j, \ell}$. Then

$$
\begin{equation*}
\left(v_{H}, w_{H}\right)_{H}:=\sum_{\left(x_{j}, y_{\ell}\right) \in \bar{\Omega}_{H}} \omega_{j, \ell} v_{j, \ell} \bar{w}_{j, \ell}, \quad \text { for } v_{H}, w_{H} \in W_{H}, \tag{13}
\end{equation*}
$$

defines an inner product on $W_{H}$.
By $R_{H}$ we denote the operator of pointwise restriction to the grid $\bar{\Omega}_{H}$. Let $\mathcal{T}_{H}$ be a triangulation of $\Omega$ using the set $\bar{\Omega}_{H}$ as vertices. By $P_{H} v_{H}$ we denote the continuous piecewise linear interpolation of $v_{H}$ with respect to $\mathcal{T}_{H}$.

The discrete version of $L^{2}\left(0, T ; H^{1}(\Omega)\right)$, denoted by $L^{2}\left(0, T ; W_{H}\right)$, is the space of functions $w_{H}:[0, T] \rightarrow W_{H}$ such that

$$
\begin{equation*}
\int_{0}^{T}\left\|w_{H}(t)\right\|_{1}^{2} d t \tag{14}
\end{equation*}
$$

is finite, where $\left\|w_{H}\right\|_{1}^{2}=\left\|w_{H}\right\|_{H}^{2}+\left|P_{H} w_{H}\right|_{1}^{2}$ being $\|\cdot\|_{H}$ the norm induced by the inner product (13) and $|.|_{1}$ the usual semi-norm in $H^{1}(\Omega)$.

Let $W_{H}^{*}$ be the dual space of $W_{H}$ and

$$
\mathcal{W}_{H}(0, T)=\left\{g \in L^{2}\left(0, T ; W_{H}\right) \text { such that } \frac{d g}{d t} \in L^{2}\left(0, T ; W_{H}^{*}\right)\right\}
$$

The semi-discrete version of (10) has the form: find $u_{H} \in \mathcal{W}_{H}(0, T)$ such that $u_{H}(t)=R_{H} \psi(t)$ on $\partial \Omega_{H}$ and

$$
\left\{\begin{array}{l}
\left\langle\frac{d u_{H}}{d t}(t), v_{H}\right\rangle_{H}+a_{H}\left(u_{H}(t), v_{H}\right)=\int_{0}^{t} b_{H}\left(s, t, u_{H}(s), v_{H}\right) d s+\left(f_{H}(t), v_{H}\right)_{H}  \tag{15}\\
\quad \text { a.e. in }(0, T), \text { for all } v_{H} \in W_{H, 0} \\
u_{H}(0)=u_{0, H},
\end{array}\right.
$$

where $\langle., .\rangle_{H}$ denotes the duality pairing between $W_{H}$ and $W_{H}^{*}$, and $u_{0, H} \in W_{H}$ is an approximation of $u_{0}$. In (15) $a_{H}(\cdot, \cdot)$ and $b_{H}(s, t, \ldots)$ are sesquilinear forms that we define in what follows.

We consider

$$
\begin{equation*}
a_{H}(., .)=\sum_{i=1}^{2} a_{i i, H}(., .)+\sum_{i=0}^{2} a_{i, H}(., .)+a_{m, H}(., .), \tag{16}
\end{equation*}
$$

where $a_{i i, H}(.,),. a_{i, H}(.,$.$) are sesquilinear forms corresponding to different terms in the continuous sesquilinear form a(.,$. and $a_{m, H}(.,$.$) corresponds to the mixed terms \left(a_{12}=a_{21}=a_{m}\right)$. The sesquilinear form $a_{11, H}(.,$.$) is defined by$

$$
\begin{equation*}
a_{11, H}\left(v_{H}, w_{H}\right):=\sum_{\Delta \in \mathcal{T}_{H}} a_{11}\left(\Delta_{x}\right) \int_{\Delta}\left(P_{H} v_{H}\right)_{x}\left(P_{H} \bar{w}_{H}\right)_{x} d x d y \tag{17}
\end{equation*}
$$

where $\Delta_{X}$ is the midpoint of the side of $\Delta \in \mathcal{T}_{H}$ parallel to the $x$-axis. Similarly, we define $a_{22, H}(.,$.$) by$

$$
\begin{equation*}
a_{22, H}\left(v_{H}, w_{H}\right):=\sum_{\Delta \in \mathcal{T}_{H}} a_{22}\left(\Delta_{y}\right) \int_{\Delta}\left(P_{H} v_{H}\right)_{y}\left(P_{H} \bar{w}_{H}\right)_{y} d x d y \tag{18}
\end{equation*}
$$

where $\Delta_{y}$ represents the midpoint of the side of $\Delta$ parallel to the $y$-axis.
The approximation of the first order terms is achieved by

$$
\begin{align*}
& a_{1, H}\left(v_{H}, w_{H}\right):=-\sum_{\Delta \in \mathcal{T}_{H}}\left[P_{H}\left(a_{1} v_{H}\right)\right]\left(\Delta_{x}\right) \int_{\Delta}\left(P_{H} \bar{w}_{H}\right)_{x} d x d y  \tag{19}\\
& a_{2, H}\left(v_{H}, w_{H}\right):=-\sum_{\Delta \in \mathcal{T}_{H}}\left[P_{H}\left(a_{2} v_{H}\right)\right]\left(\Delta_{y}\right) \int_{\Delta}\left(P_{H} \bar{w}_{H}\right)_{y} d x d y . \tag{20}
\end{align*}
$$



Fig. 1. Triangulation $\mathcal{T}_{H}^{(\nu)}$. $\Delta$ indicates triangles of $\mathcal{T}_{H, 2}^{(\nu)}$.

Finally, we set

$$
\begin{equation*}
a_{0, H}\left(v_{H}, w_{H}\right):=\left(\left(R_{H} a_{0}\right) v_{H}, w_{H}\right)_{H} . \tag{21}
\end{equation*}
$$

The function $f$ in the right-hand side of (1) is discretized by the grid function

$$
\begin{equation*}
f_{H}\left(x_{j}, y_{\ell}, t\right):=\frac{1}{\omega_{j, \ell}} \int_{\square_{j, \ell}} f(x, y, t) d x d y, \quad\left(x_{j}, y_{\ell}\right) \in \bar{\Omega}_{H} . \tag{22}
\end{equation*}
$$

To define the sesquilinear form associated with the mixed derivatives, we consider two special triangulations of $\Omega$ that we call $\mathcal{T}_{H}^{(1)}$ and $\mathcal{T}_{H}^{(2)}$. They are obtained from the disjoint decomposition

$$
\mathbb{R}_{H}=\mathbb{R}_{H}^{(1)} \dot{\cup} \mathbb{R}_{H}^{(2)}
$$

where the sum $j+\ell$ of the indices of the points $\left(x_{j}, y_{\ell}\right)$ in $\mathbb{R}_{H}^{(1)}$ and in $\mathbb{R}_{H}^{(2)}$ is even and odd, respectively. In order to simplify the following definitions we introduce $\mathbb{R}_{H}^{(3)}:=\mathbb{R}_{H}^{(1)}$. To each point $\left(x_{j}, y_{\ell}\right) \in \mathbb{R}_{H}$ we associate the four (open) triangles $\Delta_{j, \ell}^{(i)}$, $i=1,2,3,4$, that have an angle $\pi / 2$ at $\left(x_{j}, y_{\ell}\right)$ and two of the four horizontal/vertical neighbor grid points of $\left(x_{j}, y_{\ell}\right)$ as further vertices. We then define for $v \in\{1,2\}$ the triangulations

$$
\begin{align*}
& \mathcal{T}_{H, 1}^{(\nu)}:=\left\{\Delta_{j, \ell}^{(i)} \subset \Omega:\left(x_{j}, y_{\ell}\right) \in \mathbb{R}_{H}^{(\nu)}, i \in\{1,2,3,4\}\right\}, \\
& \mathcal{T}_{H, 2}^{(\nu)}:=\left\{\Delta_{j, \ell}^{(i)} \subset\left(\Omega \backslash \bigcup\left\{\Delta \mid \Delta \in \mathcal{T}_{H, 1}^{(\nu)}\right\}\right):\left(x_{j}, y_{\ell}\right) \in \mathbb{R}_{H}^{(\nu+1)}, i \in\{1,2,3,4\}\right\}, \\
& \mathcal{T}_{H}^{(\nu)}:=\mathcal{T}_{H, 1}^{(\nu)} \cup \mathcal{T}_{H, 2}^{(\nu)} \tag{23}
\end{align*}
$$

By $\mathcal{T}_{H}^{o b l}$ we denote the set of triangles which have one side on the oblique part of $\partial \Omega$. $\mathcal{T}_{H}^{o b l}$ is empty for a domain $\Omega$ that is union of rectangles. Fig. 1 shows an example of a triangulation $\mathcal{T}_{H}^{(\nu)}$ in a polygonal domain.

For $v=1,2$, the continuous piecewise linear interpolation $P_{H}^{(\nu)} v_{H}$ of a grid function $v_{H} \in W_{H}$ with respect to the triangulations $\mathcal{T}_{H}^{(\nu)}$ is well defined.

For each triangle $\Delta \in \mathcal{T}_{H}^{(\nu)},\left(x_{\Delta}, y_{\Delta}\right)$ denotes the vertex of $\Delta$ associated with its angle $\pi / 2,\left(\tilde{x}_{\Delta}, y_{\Delta}\right)$ denotes the vertex that has the $y$-coordinate of $\left(x_{\Delta}, y_{\Delta}\right)$ and $\left(x_{\Delta}, \tilde{y}_{\Delta}\right)$ denotes the other vertex of $\Delta$. Then, for $v \in\{1,2\}$, we define

$$
a_{m}\left(\Delta_{x}\right):=\left\{\begin{array}{ll}
a_{m}\left(x_{\Delta}, y_{\Delta}\right) & \text { if } \Delta \in \mathcal{T}_{H, 1}^{(\nu)}, \\
a_{m}\left(\tilde{x}_{\Delta}, y_{\Delta}\right) & \text { if } \Delta \in \mathcal{T}_{H, 2}^{(\nu)},
\end{array} \quad a_{m}\left(\Delta_{y}\right):= \begin{cases}a_{m}\left(x_{\Delta}, y_{\Delta}\right) & \text { if } \Delta \in \mathcal{T}_{H, 1}^{(\nu)}, \\
a_{m}\left(x_{\Delta}, \tilde{y}_{\Delta}\right) & \text { if } \Delta \in \mathcal{T}_{H, 2}^{(\nu)}\end{cases}\right.
$$

and

$$
\begin{equation*}
a_{m, H}\left(v_{H}, w_{H}\right):=\frac{1}{2}\left(a_{m, H}^{(1)}\left(v_{H}, w_{H}\right)+a_{m, H}^{(2)}\left(v_{H}, w_{H}\right)\right) \quad \text { for } v_{H} \in W_{H}, w_{H} \in W_{H, 0} \text {, } \tag{24}
\end{equation*}
$$

where

$$
a_{m, H}^{(\nu)}\left(v_{H}, w_{H}\right):=\sum_{\Delta \in \mathcal{T}_{H}^{(\nu)}} \int_{\Delta}\left[a_{m}\left(\Delta_{x}\right)\left(P_{H}^{(\nu)} v_{H}\right)_{x}\left(P_{H}^{(\nu)} \bar{w}_{H}\right)_{y}+a_{m}\left(\Delta_{y}\right)\left(P_{H}^{(\nu)} v_{H}\right)_{y}\left(P_{H}^{(\nu)} \bar{w}_{H}\right)_{x}\right] d x d y
$$

The definition of the sesquilinear form

$$
\begin{equation*}
b_{H}(s, t, ., .)=\sum_{i=1}^{2} b_{i i, H}(s, t, ., .)+\sum_{i=0}^{2} b_{i, H}(s, t, \ldots)+b_{m, H}(s, t, \ldots) \tag{25}
\end{equation*}
$$

is analogous to the definition of $a_{H}(.,$.$) with the convenient replacements.$
The semi-discrete approximation defined by the semi-discrete variational problem (15) is obtained solving an ordinary differential system. To define such system we introduce the following finite difference operators

$$
\begin{align*}
A_{H} v_{H}= & -\delta_{x}^{(1 / 2)}\left(a_{11} \delta_{x}^{(1 / 2)} v_{H}\right)-\delta_{x}\left(a_{12} \delta_{y} v_{H}\right)-\delta_{y}\left(a_{21} \delta_{x} v_{H}\right)-\delta_{y}^{(1 / 2)}\left(a_{22} \delta_{y}^{(1 / 2)} v_{H}\right) \\
& +\delta_{x}\left(a_{1} v_{H}\right)+\delta_{y}\left(a_{2} v_{H}\right)+a_{0} v_{H}, \tag{26}
\end{align*}
$$

where

$$
\begin{aligned}
& \delta_{x}^{(1 / 2)} v_{H}\left(x_{i}, y_{j}\right)=\frac{v_{H}\left(x_{i+1 / 2}, y_{j}\right)-v_{H}\left(x_{i-1 / 2}, y_{j}\right)}{h_{i+1 / 2}}, \\
& \delta_{x}^{(1 / 2)} v_{H}\left(x_{i+1 / 2}, y_{j}\right)=\frac{v_{H}\left(x_{i+1}, y_{j}\right)-v_{H}\left(x_{i}, y_{j}\right)}{h_{i+1}} \\
& \delta_{x} v_{H}\left(x_{i}, y_{j}\right)=\frac{v_{H}\left(x_{i+1}, y_{j}\right)-v_{H}\left(x_{i-1}, y_{j}\right)}{h_{i+1}+h_{i}}
\end{aligned}
$$

with $h_{i+1 / 2}=\frac{h_{i}+h_{i+1}}{2}$. The corresponding operators in $y$-direction are defined analogously.
The finite difference operator $B_{H}(s, t)$ is defined as $A_{H}$ with the coefficient of $A$ replaced by the correspondent coefficients of $B(s, t)$.

If the operator $A$ (or $B(s, t)$ ) contains mixed derivatives then $A_{H}$ (or $B_{H}(s, t)$ ) acts, next to oblique parts of the boundary, on grid points outside $\bar{\Omega}_{H}$. As in [23], the missing quantities to build $A_{H} u_{H}$ (or $B_{H}(s, t) u_{H}$ ) are determined by auxiliary variables which are obtained by a kind of antisymmetric extension. For example, if ( $x_{j}, y_{\ell}$ ) $\in \Omega_{H}$ is a grid point such that $\left(x_{j-1}, y_{\ell+1}\right) \notin \bar{\Omega}_{H}$, then the auxiliary value $u_{j-1, \ell+1}$ in the approximation of ( $\left.a_{m} u_{x}\right)_{y}$ is determined using

$$
\begin{equation*}
u_{j-1, \ell+1}-\psi_{j-1, \ell}=-\left(u_{j, \ell}-\psi_{j, \ell+1}\right) \tag{27}
\end{equation*}
$$

Considering the procedure adopted in [3,6,23], it can be shown that the solution $u_{H} \in \mathcal{W}_{H}(0, T)$ of (15) solves the finite difference problem

$$
\begin{cases}\frac{d u_{H}}{d t}(t)+A_{H} u_{H}(t)=\int_{0}^{t} B_{H}(s, t) u_{H}(s) d s+f_{H}(t) & \text { in } \Omega_{H}  \tag{28}\\ u_{H}(t)=R_{H} \psi(t) & \text { on } \partial \Omega_{H} \\ u_{H}(0)=u_{0, H} & \end{cases}
$$

We assume in what follows that $a_{H}(.,$.$) is continuous, that is, there exists a positive constant a_{c}$ such that

$$
\begin{equation*}
\left|a_{H}\left(v_{H}, w_{H}\right)\right| \leqslant a_{c}\left\|P_{H} v_{H}\right\|_{1}\left\|P_{H} w_{H}\right\|_{1}, \quad \text { for all } v_{H}, w_{H} \in W_{H, 0}, \tag{29}
\end{equation*}
$$

and $a_{H}(.,$.$) is coercive, that is, there exists a positive constant a_{e}$ and $\lambda \in \mathbb{R}$ such that

$$
\begin{equation*}
a_{H}\left(v_{H}, v_{H}\right) \geqslant a_{e}\left\|P_{H} v_{H}\right\|_{1}^{2}-\lambda\left\|v_{H}\right\|_{H}^{2}, \quad \text { for all } v_{H} \in W_{H, 0} \tag{30}
\end{equation*}
$$

We also suppose that $b_{H}(s, t, \ldots)$ is bounded uniformly with respect to $s, t$, that is, there exists a positive constant $b_{c}$ such that

$$
\begin{equation*}
\left|b_{H}\left(s, t, v_{H}, w_{H}\right)\right| \leqslant b_{c}\left\|P_{H} v_{H}\right\|_{1}\left\|P_{H} w_{H}\right\|_{1}, \quad \text { for all } v_{H}, w_{H} \in W_{H, 0}, s, t \in[0, T] . \tag{31}
\end{equation*}
$$

### 3.2. Stability analysis

In the stability analysis we consider homogeneous boundary conditions $(\psi=0)$ and we require some smoothness on the solution of the variational problem (15), namely, we assume that $u_{H}$ is in $C^{1}\left([0, T] ; W_{H, 0}\right)$, that is, $u_{H}:[0, T] \rightarrow W_{H, 0}$ such that $\frac{d u_{H}}{d t}:[0, T] \rightarrow W_{H, 0}$ is continuous when we consider the norm $\|\cdot\|_{H}$ in $W_{H, 0}$.

The stability results, Theorems 1 and 2, are the two-dimensional versions of Theorems 1 and 2 of [6], consequently we will present only the main steps of their proofs. The upper bounds established in the next two stability results and in the results concerning the stability and convergence of the fully discrete approximation, depend on an exponential that can be unbounded in time. This means that these results hold only in bounded time intervals. For particular classes of integrodifferential problems, stability upper bounds with respect to the $L^{2}$-norm that hold for long times were established, for instance, in $[2,43]$.

Theorem 1. Let us suppose that $a_{H}(.,$.$) and b_{H}(s, t, .,$.$) satisfy (30) and (31), respectively. If the solution u_{H}$ of (15) is in $C^{1}\left([0, T] ; W_{H, 0}\right)$, then

$$
\begin{equation*}
\left\|u_{H}(t)\right\|_{H}^{2}+\int_{0}^{t}\left\|P_{H} u_{H}(s)\right\|_{1}^{2} d s \leqslant \frac{1}{\min \left\{1,2\left(a_{e}-\epsilon^{2}\right)\right\}} e^{C t}\left(\left\|u_{H}(0)\right\|_{H}^{2}+\frac{1}{2 \eta^{2}} \int_{0}^{t}\left\|f_{H}(s)\right\|_{H}^{2} d s\right) \tag{32}
\end{equation*}
$$

for $t \in[0, T]$, where

$$
\begin{equation*}
C=\frac{\max \left\{2\left(\lambda+\eta^{2}\right), \frac{b_{c}^{2} T}{2 \epsilon^{2}}\right\}}{\min \left\{1,2\left(a_{e}-\epsilon^{2}\right)\right\}} \tag{33}
\end{equation*}
$$

$\eta \neq 0$ is an arbitrary constant and $\epsilon \neq 0$ is such that

$$
\begin{equation*}
a_{e}-\epsilon^{2}>0 \tag{34}
\end{equation*}
$$

Proof. From (15) with $v_{H}=u_{H}(t)$ and considering the assumptions (30) and (31) we deduce

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\left\|u_{H}(t)\right\|_{H}^{2}+\left(a_{e}-\epsilon^{2}\right)\left\|P_{H} u_{H}(t)\right\|_{1}^{2} \leqslant & \frac{b_{c}^{2}}{4 \epsilon^{2}}\left(\int_{0}^{t}\left\|P_{H} u_{H}(s)\right\|_{1} d s\right)^{2} \\
& +\frac{1}{4 \eta^{2}}\left\|f_{H}(t)\right\|_{H}^{2}+\left(\eta^{2}+\lambda\right)\left\|u_{H}(t)\right\|_{H}^{2} \tag{35}
\end{align*}
$$

where $\epsilon$ and $\eta$ are non-zero constants.
From (35) we obtain

$$
\begin{align*}
\frac{d}{d t}\left\|u_{H}(t)\right\|_{H}^{2}+2\left(a_{e}-\epsilon^{2}\right)\left\|P_{H} u_{H}(t)\right\|_{1}^{2} \leqslant & \frac{b_{c}^{2} T}{2 \epsilon^{2}} \int_{0}^{t}\left\|P_{H} u_{H}(s)\right\|_{1}^{2} d s \\
& +\frac{1}{2 \eta^{2}}\left\|f_{H}(t)\right\|_{H}^{2}+2\left(\eta^{2}+\lambda\right)\left\|u_{H}(t)\right\|_{H}^{2} \tag{36}
\end{align*}
$$

which allow us to get

$$
\begin{align*}
\left\|u_{H}(t)\right\|_{H}^{2}+\int_{0}^{t}\left\|P_{H} u_{H}(s)\right\|_{1}^{2} d s \leqslant & C \int_{0}^{t}\left(\int_{0}^{s}\left\|P_{H} u_{H}(\mu)\right\|_{1}^{2} d \mu+\left\|u_{H}(s)\right\|_{H}^{2}\right) d s \\
& +\frac{1}{\min \left\{1,2\left(a_{e}-\epsilon^{2}\right)\right\}}\left(\left\|u_{H}(0)\right\|_{H}^{2}+\frac{1}{2 \eta^{2}} \int_{0}^{t}\left\|f_{H}(s)\right\|_{H}^{2} d s\right), \tag{37}
\end{align*}
$$

with $C$ defined by (33) and for $\epsilon$ satisfying (34). Finally applying Gronwall's lemma to (37) we obtain (32).
Theorem 2. Let us suppose that $a_{H}(.,$.$) satisfies (30) with \lambda=0, b_{H}(s, t, .,$.$) satisfies (31),$
$\exists b_{e}>0$ such that $b_{H}\left(t, t, v_{H}, v_{H}\right) \geqslant b_{e}\left\|P_{H} v_{H}\right\|_{1}^{2}$,
for all $v_{H} \in W_{H, 0}, t \in[0, T]$, and

$$
\begin{equation*}
\exists b_{d}>0 \quad \text { such that }\left|\frac{\partial b_{H}}{\partial t}\left(s, t, v_{H}, w_{H}\right)\right| \leqslant b_{d}\left\|P_{H} v_{H}\right\|_{1}\left\|P_{H} w_{H}\right\|_{1} \tag{39}
\end{equation*}
$$

for all $v_{H}, w_{H} \in W_{H, 0}, s, t \in[0, T]$.
If the solution $u_{H}$ of (15) is in $C^{1}\left([0, T] ; W_{H, 0}\right)$, then

$$
\begin{align*}
& \int_{0}^{t}\left\|\frac{d u_{H}}{d s}(s)\right\|_{H}^{2} d s+\left\|P_{H} u_{H}(t)\right\|_{1}^{2}+\int_{0}^{t}\left\|P_{H} u_{H}(s)\right\|_{1}^{2} d s \\
& \quad \leqslant \frac{1}{\min \left\{1, a_{e}-\eta^{2}, 2\left(b_{e}-\epsilon^{2}\right)\right\}} e^{C t}\left(a_{c}\left\|P_{H} u_{H}(0)\right\|_{1}^{2}+\int_{0}^{t}\left\|f_{H}(s)\right\|_{H}^{2} d s\right), \quad t \in[0, T] \tag{40}
\end{align*}
$$

where $\epsilon, \eta$ are such that

$$
\begin{equation*}
a_{e}-\eta^{2}>0, \quad b_{e}-\epsilon^{2}>0, \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
C=\frac{\max \left\{\frac{b_{c}^{2} T}{\eta^{2}}, \frac{b_{d}^{2} T}{\epsilon^{2}}\right\}}{\min \left\{1, a_{e}-\eta^{2}, 2\left(b_{e}-\epsilon^{2}\right)\right\}} . \tag{42}
\end{equation*}
$$

Proof. Equality (15) with $v_{H}=\frac{d u_{H}}{d t}(t)$ can be rewritten in the following equivalent form

$$
\begin{align*}
\left\|\frac{d u_{H}}{d t}(t)\right\|_{H}^{2}+\frac{1}{2} \frac{d}{d t} a_{H}\left(u_{H}(t), u_{H}(t)\right)= & \frac{d}{d t} \int_{0}^{t} b_{H}\left(s, t, u_{H}(s), u_{H}(t)\right) d s \\
& -\int_{0}^{t} \frac{\partial b_{H}}{\partial t}\left(s, t, u_{H}(s), u_{H}(t)\right) d s-b_{H}\left(t, t, u_{H}(t), u_{H}(t)\right) \\
& +\left(f_{H}(t), \frac{d u_{H}}{d t}(t)\right)_{H} . \tag{43}
\end{align*}
$$

Considering in (43) the assumptions (38), (39), it can be shown that

$$
\begin{align*}
& \frac{1}{2}\left\|\frac{d u_{H}}{d t}(t)\right\|_{H}^{2}+\left(b_{e}-\epsilon^{2}\right)\left\|P_{H} u_{H}(t)\right\|_{1}^{2}+\frac{1}{2} \frac{d}{d t} a_{H}\left(u_{H}(t), u_{H}(t)\right) \\
& \quad \leqslant \frac{d}{d t} \int_{0}^{t} b_{H}\left(s, t, u_{H}(s), u_{H}(t)\right) d s+\frac{b_{d}^{2} T}{4 \epsilon^{2}} \int_{0}^{t}\left\|P_{H} u_{H}(s)\right\|_{1}^{2} d s+\frac{1}{2}\left\|f_{H}(t)\right\|_{H}^{2} \tag{44}
\end{align*}
$$

holds for any $\epsilon \neq 0$.
Inequality (44) leads to

$$
\begin{align*}
& \int_{0}^{t}\left\|\frac{d u_{H}}{d s}(s)\right\|_{H}^{2} d s+2\left(b_{e}-\epsilon^{2}\right) \int_{0}^{t}\left\|P_{H} u_{H}(s)\right\|_{1}^{2} d s+a_{H}\left(u_{H}(t), u_{H}(t)\right) \\
& \leqslant \\
& \leqslant \int_{0}^{t} b_{H}\left(s, t, u_{H}(s), u_{H}(t)\right) d s+\frac{b_{d}^{2} T}{2 \epsilon^{2}} \int_{0}^{t}\left(\int_{0}^{s}\left\|P_{H} u_{H}(\mu)\right\|_{1}^{2} d \mu\right) d s  \tag{45}\\
& \quad+\int_{0}^{t}\left\|f_{H}(s)\right\|_{H}^{2} d s+a_{H}\left(u_{H}(0), u_{H}(0)\right) .
\end{align*}
$$

Using now, in (45), the assumptions (30) with $\lambda=0$ and (31), we obtain

$$
\begin{aligned}
& \int_{0}^{t}\left\|\frac{d u_{H}}{d s}(s)\right\|_{H}^{2} d s+2\left(b_{e}-\epsilon^{2}\right) \int_{0}^{t}\left\|P_{H} u_{H}(s)\right\|_{1}^{2} d s+\left(a_{e}-\eta^{2}\right)\left\|P_{H} u_{H}(t)\right\|_{1}^{2} \\
& \leqslant \\
& \quad \int_{0}^{t}\left(\frac{b_{d}^{2} T}{2 \epsilon^{2}} \int_{0}^{s}\left\|P_{H} u_{H}(\mu)\right\|_{1}^{2} d \mu+\frac{b_{c}^{2} T}{\eta^{2}}\left\|P_{H} u_{H}(s)\right\|_{1}^{2}\right) d s \\
& \quad+\int_{0}^{t}\left\|f_{H}(s)\right\|_{H}^{2} d s+a_{c}\left\|P_{H} u_{H}(0)\right\|_{1}^{2}
\end{aligned}
$$

where $\eta \neq 0$ is an arbitrary constant. Consequently, for $\eta$ and $\epsilon$ satisfying (41) and with $C$ defined by (42), we establish

$$
\begin{aligned}
& \int_{0}^{t}\left\|\frac{d u_{H}}{d s}(s)\right\|_{H}^{2} d s+\int_{0}^{t}\left\|P_{H} u_{H}(s)\right\|_{1}^{2} d s+\left\|P_{H} u_{H}(t)\right\|_{1}^{2} \\
& \leqslant \\
& \quad \int_{0}^{t}\left(\int_{0}^{s}\left\|P_{H} u_{H}(\mu)\right\|_{1}^{2} d \mu+\left\|P_{H} u_{H}(s)\right\|_{1}^{2}\right) d s \\
& \quad+\frac{1}{\min \left\{1, a_{e}-\eta^{2}, 2\left(b_{e}-\epsilon^{2}\right)\right\}}\left(\int_{0}^{t}\left\|f_{H}(s)\right\|_{H}^{2} d s+a_{c}\left\|P_{H} u_{H}(0)\right\|_{1}^{2}\right)
\end{aligned}
$$

An application of Grownwall's lemma leads to (40).

### 3.3. Convergence analysis

### 3.3.1. The classical approach

Let $e_{H}(t)=R_{H} u(t)-u_{H}(t)$ be the error induced by the introduced spatial discretization. We establish in what follows a supraconvergent-superconvergent upper bound for $e_{H}(t)$ using the approach introduced in [47] and largely followed in the literature. In order to simplify the presentation we assume that $\Omega$ is a rectangular domain and that $C$ is a positive constant, not depending on $u$ and $H$, and that is not necessarily the same in all expressions.

Following [6,47], an estimate for $e_{H}(t)$ is obtained estimating $\rho_{H}(t)=R_{H} u(t)-\tilde{u}_{H}(t)$ and $\theta_{H}(t)=\tilde{u}_{H}(t)-u_{H}(t)$ with $\tilde{u}_{H}(t)$ defined by

$$
a_{H}\left(\tilde{u}_{H}(t), w_{H}\right)=\left(g_{H}(t), w_{H}\right)_{H}, \quad w_{H} \in W_{H, 0}
$$

where

$$
g_{H}(t)=\int_{0}^{t}(B(s, t) u(s))_{H} d s+f_{H}(t)-\left(\frac{d u}{d t}(t)\right)_{H}
$$

being $(B(s, t) u(s))_{H}$ and $\left(\frac{d u}{d t}(t)\right)_{H}$ defined by (22) with $f$ replaced by $B(s, t) u(s)$ and $\frac{d u}{d t}(t)$ respectively.
An estimate for $\rho_{H}(t)$, depending on certain norm of $u(t)$, can be obtained considering the convergence analysis for finite difference scheme in the stationary case as for instance in [23]. In this particular case, assuming that $a_{H}(.,$.$) is elliptic$ which means that (30) holds with $\lambda=0$, we have, for $\mu \in\{1,2\}$,

$$
\begin{equation*}
\left\|\rho_{H}(t)\right\|_{H}^{2} \leqslant C\left\|P_{H} \rho_{H}(t)\right\|_{1}^{2} \leqslant C H_{\max }^{2 \mu}\left(\|u(t)\|_{\mu+1}^{2}+\int_{0}^{t}\|u(s)\|_{\mu+1}^{2} d s\right) \tag{46}
\end{equation*}
$$

provided that $u \in L^{\infty}\left(0, T ; H^{\mu+1}(\Omega)\right), \frac{d u}{d t} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$.
It can be shown that $\theta_{H}(t)$ satisfies the equality

$$
\begin{align*}
\left(\frac{d \theta_{H}}{d t}(t), v_{H}\right)_{H}+a_{H}\left(\theta_{H}(t), v_{H}\right)= & \int_{0}^{t} b_{H}\left(s, t, e_{H}(s), v_{H}\right) d s-\left(\frac{d \rho_{H}}{d t}(t), v_{H}\right)_{H} \\
& +\int_{0}^{t}\left(\left((B(s, t) u(s))_{H}, v_{H}\right)_{H}-b_{H}\left(s, t, R_{H} u(s), v_{H}\right)\right) d s \\
& +\left(R_{H}\left(\frac{d u}{d t}(t)\right)-\left(\frac{d u}{d t}(t)\right)_{H}, v_{H}\right)_{H}, \quad \text { for all } v_{H} \in W_{H, 0} \tag{47}
\end{align*}
$$

In order to obtain an estimate for $\left\|\theta_{H}(t)\right\|_{H}^{2}+\int_{0}^{t}\left\|P_{H} \theta_{H}(s)\right\|_{1}^{2} d s$ we introduce the following notations:

$$
\begin{equation*}
\tau_{d}\left(v_{H}\right)=\left(R_{H} \frac{d u}{d t}(t), v_{H}\right)_{H}-\left(\left(\frac{d u}{d t}(t)\right)_{H}, v_{H}\right)_{H}, \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{\text {int }}\left(v_{H}\right)=\int_{0}^{t}\left(\left((B(s, t) u(s))_{H}, v_{H}\right)_{H}-b_{H}\left(s, t, R_{H} u(s), v_{H}\right)\right) d s \tag{49}
\end{equation*}
$$

for $v_{H} \in W_{H, 0}$.

Estimates for $\tau_{d}\left(v_{H}\right)+\tau_{\text {int }}\left(v_{H}\right)$ are obtained using the results presented in [23] for elliptic operators. Considering Lemmas 5.1,5.2,5.4, 5.5 and 5.7 of [23] we state the following proposition.

Proposition 1. Let $\Omega$ be a rectangular domain and $\mu \in\{1,2\}$. If the coefficients of $B$ are in $W^{\mu, \infty}(\Omega)$ for $t, s \in[0, T]$, then, for $v_{H} \in W_{H, 0}, \tau\left(v_{H}\right)=\tau_{d}\left(v_{H}\right)+\tau_{\text {int }}\left(v_{H}\right)$ satisfies

$$
\left|\tau\left(v_{H}\right)\right| \leqslant \tau^{(\mu)}(u(t))\left\|P_{H} v_{H}\right\|_{1},
$$

where

$$
\begin{align*}
\tau^{(1)}(u(t)) & \leqslant C\left(\left(\sum_{\Delta \in \mathcal{T}_{H}}(\operatorname{diam} \Delta)^{4}\left\|\frac{d u}{d t}(t)\right\|_{H^{2}(\Delta)}^{2}\right)^{1 / 2}+\int_{0}^{t}\left(\sum_{\Delta \in \mathcal{T}_{H}}(\operatorname{diam} \Delta)^{2}\|u(s)\|_{H^{2}(\Delta)}^{2}\right)^{1 / 2} d s\right) \\
& \leqslant C H_{\max }\left(\left\|\frac{d u}{d t}(t)\right\|_{2}+\int_{0}^{t}\|u(s)\|_{2} d s\right) \tag{50}
\end{align*}
$$

provided that $u \in W^{1, \infty}\left(0, T ; H^{2}(\Omega)\right)$, and

$$
\begin{align*}
\tau^{(2)}(u(t)) & \leqslant C\left(\left(\sum_{\Delta \in \mathcal{T}_{H}}(\operatorname{diam} \Delta)^{4}\left\|\frac{d u}{d t}(t)\right\|_{H^{2}(\Delta)}^{2}\right)^{1 / 2}+\int_{0}^{t}\left(\sum_{\Delta \in \mathcal{T}_{H}}(\operatorname{diam} \Delta)^{4}\|u(s)\|_{H^{3}(\Delta)}^{2}\right)^{1 / 2} d s\right) \\
& \leqslant C H_{\max }^{2}\left(\left\|\frac{d u}{d t}(t)\right\|_{2}+\int_{0}^{t}\|u(s)\|_{3} d s\right), \tag{51}
\end{align*}
$$

provided that $u \in L^{\infty}\left(0, T ; H^{3}(\Omega)\right) \cap W^{1, \infty}\left(0, T ; H^{2}(\Omega)\right)$.
An estimate for $\left\|\theta_{H}(t)\right\|_{H}^{2}+\int_{0}^{t}\left\|P_{H} \theta_{H}(s)\right\|_{1}^{2} d s$ is obtained following the proof of Theorem 1. As $\theta_{H}(t)$ satisfies (47), it can be shown that

$$
\begin{align*}
& \left\|\theta_{H}(t)\right\|_{H}^{2}+\int_{0}^{t}\left\|P_{H} \theta_{H}(s)\right\|_{1}^{2} d s \\
& \quad \leqslant C\left(\int_{0}^{t} \int_{0}^{s}\left\|P_{H} e_{H}(\xi)\right\|_{1}^{2} d \xi d s+\left\|\theta_{H}(0)\right\|_{H}^{2}+\int_{0}^{t}\left(\left\|\frac{d \rho_{H}}{d s}(s)\right\|_{H}^{2}+\tau^{(\mu)}(u(s))^{2}\right) d s\right) \tag{52}
\end{align*}
$$

where $\tau^{(\mu)}(u(s))$ is defined in Proposition 1 .
As

$$
\left\|e_{H}(t)\right\|_{H}^{2}+\int_{0}^{t}\left\|P_{H} e_{H}(s)\right\|_{1}^{2} d s \leqslant 2\left(\left\|\theta_{H}(t)\right\|_{H}^{2}+\int_{0}^{t}\left\|P_{H} \theta_{H}(s)\right\|_{1}^{2} d s+\left\|\rho_{H}(t)\right\|_{H}^{2}+\int_{0}^{t}\left\|P_{H} \rho_{H}(s)\right\|_{1}^{2} d s\right)
$$

we obtain, using (52),

$$
\begin{align*}
\left\|e_{H}(t)\right\|_{H}^{2}+\int_{0}^{t}\left\|P_{H} e_{H}(s)\right\|_{1}^{2} d s \leqslant & C\left(\int_{0}^{t} \int_{0}^{s}\left\|P_{H} e_{H}(\xi)\right\|_{1}^{2} d \xi d s+\left\|\theta_{H}(0)\right\|_{H}^{2}+\int_{0}^{t}\left(\left\|\frac{d \rho_{H}}{d s}(s)\right\|_{H}^{2}+\tau^{(\mu)}(u(s))^{2}\right) d s\right. \\
& \left.+\left\|\rho_{H}(t)\right\|_{H}^{2}+\int_{0}^{t}\left\|P_{H} \rho_{H}(s)\right\|_{1}^{2} d s\right) . \tag{53}
\end{align*}
$$

Applying Gronwall's lemma in (53) we establish

$$
\begin{align*}
\left\|e_{H}(t)\right\|_{H}^{2}+\int_{0}^{t}\left\|P_{H} e_{H}(s)\right\|_{1}^{2} d s \leqslant & e^{C t} C\left(\left\|\theta_{H}(0)\right\|_{H}^{2}+\int_{0}^{t}\left(\left\|\frac{d \rho_{H}}{d s}(s)\right\|_{H}^{2}+\tau^{(\mu)}(u(s))^{2}\right) d s\right. \\
& \left.+\left\|\rho_{H}(t)\right\|_{H}^{2}+\int_{0}^{t}\left\|P_{H} \rho_{H}(s)\right\|_{1}^{2} d s\right) \tag{54}
\end{align*}
$$

The term $\tau^{(\mu)}(u(t))$ was estimated in Proposition 1. As for $\left\|\rho_{H}(t)\right\|_{H}^{2}$, for $\left\|\frac{d \rho_{H}}{d t}(t)\right\|_{H}^{2}$ holds the following

$$
\begin{equation*}
\left\|\frac{d \rho_{H}}{d t}(t)\right\|_{H}^{2} \leqslant C\left\|P_{H} \frac{d \rho_{H}}{d t}(t)\right\|_{0}^{2} \leqslant C H_{\max }^{2 \mu}\left(\left\|\frac{d u}{d t}(t)\right\|_{\mu+1}^{2}+\int_{0}^{t}\left\|\frac{d u}{d t}(s)\right\|_{\mu+1}^{2} d s\right) \tag{55}
\end{equation*}
$$

provided that $\frac{d u}{d t} \in L^{\infty}\left(0, T ; H^{\mu+1}(\Omega)\right)$ and $\frac{d^{2} u}{d t^{2}} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$.
Considering in (54) the estimates (46), (50), (51) and (55), we obtain the following estimate for $e_{H}(t)$

$$
\left\|e_{H}(t)\right\|_{H}^{2}+\int_{0}^{t}\left\|P_{H} e_{H}(s)\right\|_{1}^{2} d s \leqslant C H_{\max }^{\mu+1}, \quad \mu \in\{1,2\}
$$

provided that $u \in W^{1, \infty}\left(0, T ; H^{\mu+1}(\Omega)\right), \frac{d^{2} u}{d t^{2}} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$ and $\left\|\theta_{H}(0)\right\|_{H}^{2} \leqslant C H_{\max }^{\mu+1}$ and $C$ depending on $u$.

### 3.3.2. A new approach

We introduce in what follows a new approach that permit us to reduce the smoothness required for $u(t)$ with respect to that used before. We start by noting that $e_{H}(t)$ satisfies the equality

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left\|e_{H}(t)\right\|_{H}^{2}=\left(R_{H} \frac{d u}{d t}(t), e_{H}(t)\right)_{H}+a_{H}\left(u_{H}(t), e_{H}(t)\right)-\int_{0}^{t} b_{H}\left(s, t, u_{H}(s), e_{H}(t)\right) d s-\left(f_{H}(t), e_{H}(t)\right)_{H} \tag{56}
\end{equation*}
$$

As

$$
\begin{equation*}
\left(f_{H}(t), e_{H}(t)\right)_{H}=\left(\left(\frac{d u}{d t}(t)\right)_{H}, e_{H}(t)\right)_{H}+\left(\left(A u(t)-\int_{0}^{t} B(s, t) u(s) d s\right)_{H}, e_{H}(t)\right)_{H} \tag{57}
\end{equation*}
$$

where $\left(\frac{d u}{d t}(t)\right)_{H},\left(A u(t)-\int_{0}^{t} B(s, t) u(s) d s\right)_{H}$ are defined by (22) with $f(t)$ replaced by $\frac{d u}{d t}(t)$ and $A u(t)-\int_{0}^{t} B(s, t) u(s) d s$, respectively, from (56) we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left\|e_{H}(t)\right\|_{H}^{2}+a_{H}\left(e_{H}(t), e_{H}(t)\right)=\int_{0}^{t} b_{H}\left(s, t, e_{H}(s), e_{H}(t)\right) d s+\tau\left(e_{H}(t)\right) \tag{58}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau\left(e_{H}(t)\right)=\tau_{d}\left(e_{H}(t)\right)+\tau_{A}\left(e_{H}(t)\right)+\tau_{\text {int }}\left(e_{H}(t)\right) \tag{59}
\end{equation*}
$$

with $\tau_{d}\left(e_{H}(t)\right)$ and $\tau_{\text {int }}\left(e_{H}(t)\right)$ defined by (48) and (49), respectively, with $v_{H}$ replaced by $e_{H}(t)$, and

$$
\begin{equation*}
\tau_{A}\left(e_{H}(t)\right)=a_{H}\left(R_{H} u(t), e_{H}(t)\right)-\left((A u(t))_{H}, e_{H}(t)\right)_{H} \tag{60}
\end{equation*}
$$

An estimate for $\tau_{d}\left(e_{H}(t)\right)+\tau_{i n t}\left(e_{H}(t)\right)$, when $\Omega$ is a rectangle, is obtained from Proposition 1 . The following Proposition 2 leads to an estimate for $\tau\left(e_{H}(t)\right)$ defined by (59). As Proposition 1, Proposition 2 is established considering Lemmas 5.1, 5.2, 5.4, 5.5 and 5.7 of [23]. Let $\tau\left(v_{H}\right)$ be defined by (59) with $e_{H}(t)$ replaced by $v_{H} \in W_{H, 0}$. By $\Omega_{H}^{o b l}$ we denote the following set $\Omega_{H}^{o b l}=\bigcup\left\{\Delta \mid \Delta \in \mathcal{T}_{H}^{o b l}\right\}$.

Proposition 2. Let the grids $\bar{\Omega}_{H}$, with $H \in \Lambda$, satisfy the condition (Geom) and consider $\mu \in\{1,2\}$. If the coefficients of $A$ and $B(s, t)$ are in $W^{\mu, \infty}(\Omega)$ for $t, s \in[0, T]$, then, for $v_{H} \in W_{H, 0}, \tau\left(v_{H}\right)$ satisfies

$$
\left|\tau\left(v_{H}\right)\right| \leqslant \tau^{(\mu)}(u(t))\left\|P_{H} v_{H}\right\|_{1}
$$

where

$$
\begin{align*}
\tau^{(1)}(u(t)) \leqslant & C\left(\left(\sum_{\Delta \in \mathcal{T}_{H}}(\operatorname{diam} \Delta)^{2}\|u(t)\|_{H^{2}(\Delta)}^{2}\right)^{1 / 2}+\left(\sum_{\Delta \in \mathcal{T}_{H}}(\operatorname{diam} \Delta)^{4}\left\|\frac{d u}{d t}(t)\right\|_{H^{2}(\Delta)}^{2}\right)^{1 / 2}\right. \\
& \left.+\int_{0}^{t}\left(\sum_{\Delta \in \mathcal{T}_{H}}(\operatorname{diam} \Delta)^{2}\|u(s)\|_{H^{2}(\Delta)}^{2}\right)^{1 / 2} d s\right) \\
\leqslant & C H_{\max }\left(\|u(t)\|_{2}+\left\|\frac{d u}{d t}(t)\right\|_{2}+\int_{0}^{t}\|u(s)\|_{2} d s\right) \tag{61}
\end{align*}
$$

provided that $u \in W^{1, \infty}\left(0, T ; H^{2}(\Omega)\right)$, and

$$
\begin{align*}
\tau^{(2)}(u(t)) \leqslant & C\left(\left(\sum_{\Delta \in \mathcal{T}_{H}}(\operatorname{diam} \Delta)^{4}\|u(t)\|_{H^{3}(\Delta)}^{2}\right)^{1 / 2}+\left(\sum_{\Delta \in \mathcal{T}_{H}}(\operatorname{diam} \Delta)^{4}\left\|\frac{d u}{d t}(t)\right\|_{H^{2}(\Delta)}^{2}\right)^{1 / 2}\right. \\
& \left.+\int_{0}^{t}\left(\sum_{\Delta \in \mathcal{T}_{H}}(\operatorname{diam} \Delta)^{4}\|u(s)\|_{H^{3}(\Delta)}^{2}\right)^{1 / 2} d s\right) \\
& +\sigma_{\operatorname{mix}}\left(\left(\sum_{\Delta \in \mathcal{T}_{H}^{o b l}}(\operatorname{diam} \Delta)^{4(1-1 / p)}|u(t)|_{W^{2, p}(\Delta)}^{2}\right)^{1 / 2}\right. \\
& \left.+\int_{0}^{t}\left(\sum_{\Delta \in \mathcal{T}_{H}^{o b l}}(\operatorname{diam} \Delta)^{4(1-1 / p)}|u(s)|_{W^{2, p}(\Delta)}^{2}\right)^{1 / 2} d s\right) \\
\leqslant & C H_{\max }^{2}\left(\|u(t)\|_{3}+\left\|\frac{d u}{d t}(t)\right\|_{2}+\int_{0}^{t}\|u(s)\|_{3} d s\right) \\
& +C \sigma_{\operatorname{mix}} H_{\max }^{3 / 2-1 / p}\left(|u(t)|_{W^{2, p}\left(\Omega_{H}^{o b l}\right)}+\int_{0}^{t}|u(s)|_{W^{2, p}\left(\Omega_{H}^{o b l}\right)} d s\right) \tag{62}
\end{align*}
$$

provided that $u \in L^{\infty}\left(0, T ; H^{3}(\Omega)\right) \cap W^{1, \infty}\left(0, T ; H^{2}(\Omega)\right)$ and $p \in[2, \infty)$.
If $\Omega$ has an oblique side and $a_{m} \neq 0$ or $b_{m} \neq 0$, then, in (62), $\sigma_{m i x}=1$. Otherwise, if $\Omega$ is a rectangle or $a_{m}=b_{m}=0$, then, in (62), $\sigma_{\text {mix }}=0$.

We state now one of the main results of this paper.
Theorem 3. Let the grids $\bar{\Omega}_{H}$, with $H \in \Lambda$, satisfy the condition (Geom) and consider $\mu \in\{1,2\}$. If the coefficients of $A$ and $B(s, t)$ are in $W^{\mu, \infty}(\Omega)$ for $t, s \in[0, T]$, and $a_{H}(\ldots,$.$) and b_{H}(s, t, \ldots)$ satisfy respectively (30) and (31), then

$$
\begin{align*}
& \left\|e_{H}(t)\right\|_{H}^{2}+\int_{0}^{t}\left\|P_{H} e_{H}(s)\right\|_{1}^{2} d s \\
& \leqslant \frac{1}{\min \left\{1,2\left(a_{e}-\epsilon^{2}-\eta^{2}\right)\right\}} e^{\tilde{c} t}\left(\left\|e_{H}(0)\right\|_{H}^{2}+\frac{1}{2 \eta^{2}} \int_{0}^{t} g^{(\mu)}(\varsigma)^{2} d \zeta\right), \tag{63}
\end{align*}
$$

where $\epsilon$ and $\eta$ are non-zero constants such that

$$
\begin{equation*}
a_{e}-\epsilon^{2}-\eta^{2}>0, \tag{64}
\end{equation*}
$$

and

$$
\begin{align*}
& \tilde{C}=\frac{\max \left\{2 \lambda, \frac{T b_{c}^{2}}{2 \epsilon^{2}}\right\}}{\min \left\{1,2\left(a_{e}-\epsilon^{2}-\eta^{2}\right)\right\}},  \tag{65}\\
& g^{(1)}(t)^{2}=C\left(\sum_{\Delta \in \mathcal{T}_{H}}(\operatorname{diam} \Delta)^{2}\left(\|u\|_{L^{\infty}\left(0, T ; H^{2}(\Delta)\right)}^{2}+\left\|\frac{d u}{d t}\right\|_{L^{\infty}\left(0, T ; H^{2}(\Delta)\right)}^{2}+\|u\|_{L^{2}\left(0, t ; H^{2}(\Delta)\right)}^{2}\right)\right) \\
& \quad \leqslant C H_{\max }^{2}\left(\|u\|_{L^{\infty}\left(0, T ; H^{2}(\Omega)\right)}^{2}+\left\|\frac{d u}{d t}\right\|_{L^{\infty}\left(0, T ; H^{2}(\Omega)\right)}^{2}+\|u\|_{L^{2}\left(0, T ; H^{2}(\Omega)\right)}^{2}\right), \tag{66}
\end{align*}
$$

provided that $u \in W^{1, \infty}\left(0, T ; H^{2}(\Omega)\right)$,

$$
\begin{align*}
g^{(2)}(t)^{2}= & C\left(\sum_{\Delta \in \mathcal{T}_{H}}(\operatorname{diam} \Delta)^{4}\left(\|u\|_{L^{\infty}\left(0, T ; H^{3}(\Delta)\right)}^{2}+\left\|\frac{d u}{d t}\right\|_{L^{\infty}\left(0, T ; H^{2}(\Delta)\right)}^{2}+\|u\|_{L^{2}\left(0, t ; H^{3}(\Delta)\right)}^{2}\right)\right. \\
& \left.+\sigma_{\operatorname{mix}} \sum_{\Delta \in \mathcal{T}_{H}^{o b l}}(\operatorname{diam} \Delta)^{4(1-1 / p)}\left(\|u\|_{L^{\infty}\left(0, T ; W^{2, p}(\Delta)\right)}^{2}+\|u\|_{L^{2}\left(0, t ; W^{2, p}(\Delta)\right)}^{2}\right)\right) \\
\leqslant & C H_{\max }^{4}\left(\|u\|_{L^{\infty}\left(0, T ; H^{3}(\Omega)\right)}^{2}+\left\|\frac{d u}{d t}\right\|_{L^{\infty}\left(0, T ; H^{2}(\Omega)\right)}^{2}+\|u\|_{L^{2}\left(0, t ; H^{3}(\Omega)\right)}^{2}\right) \\
& +C \sigma_{\operatorname{mix}} H_{\max }^{3-2 / p}\left(\|u\|_{L^{\infty}\left(0, T ; W^{2, p}\left(\Omega_{H}^{o b l}\right)\right)}^{2}+\|u\|_{L^{2}\left(0, t ; W^{2, p}\left(\Omega_{H}^{o b l}\right)\right)}^{2}\right), \tag{67}
\end{align*}
$$

provided that $u \in L^{\infty}\left(0, T ; H^{3}(\Omega)\right) \cap W^{1, \infty}\left(0, T ; H^{2}(\Omega)\right)$ and $p \in[2, \infty)$.
If $\Omega$ has an oblique side and $a_{m} \neq 0$ or $b_{m} \neq 0$, then, in (67), $\sigma_{m i x}=1$. Otherwise, if $\Omega$ is a rectangle or $a_{m}=b_{m}=0$, then, in (67), $\sigma_{\text {mix }}=0$.

Proof. Considering in (58) the assumptions (30) and (31) for $a_{H}(.,$.$) and b_{H}(s, t, \ldots)$, respectively, we deduce

$$
\frac{d}{d t}\left\|e_{H}(t)\right\|_{H}^{2}+2\left(a_{e}-\epsilon^{2}-\eta^{2}\right)\left\|P_{H} e_{H}(t)\right\|_{1}^{2} \leqslant \frac{T b_{c}^{2}}{2 \epsilon^{2}} \int_{0}^{t}\left\|P_{H} e_{H}(s)\right\|_{1}^{2} d s+2 \lambda\left\|e_{H}(t)\right\|_{H}^{2}+\frac{1}{2 \eta^{2}} \tau^{(\mu)}(u(t))^{2}
$$

and consequently

$$
\begin{align*}
\left\|e_{H}(t)\right\|_{H}^{2}+\int_{0}^{t}\left\|P_{H} e_{H}(s)\right\|_{1}^{2} d s \leqslant & \tilde{C} \int_{0}^{t}\left(\int_{0}^{s}\left\|P_{H} e_{H}(v)\right\|_{1}^{2} d v+\left\|e_{H}(s)\right\|_{H}^{2}\right) d s \\
& +\frac{1}{\min \left\{1,2\left(a_{e}-\epsilon^{2}-\eta^{2}\right)\right\}}\left(\frac{1}{2 \eta^{2}} \int_{0}^{t} g^{(\mu)}(s)^{2} d s+\left\|e_{H}(0)\right\|_{H}^{2}\right), \tag{68}
\end{align*}
$$

for $\epsilon$ and $\eta$ satisfying (64) and with $\tilde{C}$ defined by (65). Applying Gronwall's lemma to inequality (68) we conclude (63).
Remark 1. Considering Corollary 6.2 of [23], under the assumptions of Theorem 3, if $u \in L^{\infty}\left(0, T ; C^{2}\left(\bar{\Omega} \cup \Omega_{0}\right)\right)$, where $\Omega_{0}$ is a neighborhood of the oblique part of $\partial \Omega$, we can state the following estimate for $g^{(2)}(t)$

$$
\begin{align*}
g^{(2)}(t)^{2} \leqslant & C\left(\sum_{\Delta \in \mathcal{T}_{H}}(\operatorname{diam} \Delta)^{4}\left(\|u(t)\|_{H^{3}(\Delta)}^{2}+\left\|\frac{d u}{d t}(t)\right\|_{H^{2}(\Delta)}^{2}+\int_{0}^{t}\|u(s)\|_{H^{3}(\Delta)}^{2} d s\right)\right. \\
& \left.+\sigma_{\operatorname{mix}} \sum_{\Delta \in \mathcal{T}_{H}^{o b l}}(\operatorname{diam} \Delta)^{4}\left(\|u(t)\|_{C^{2}(\bar{\Delta})}^{2}+\int_{0}^{t}\|u(s)\|_{C^{2}(\bar{\Delta})}^{2} d s\right)\right) \\
\leqslant & C H_{\max }^{4}\left(\|u(t)\|_{3}^{2}+\left\|\frac{d u}{d t}(t)\right\|_{2}^{2}+\int_{0}^{t}\|u(s)\|_{3}^{2} d s\right) \\
& +C \sigma_{\operatorname{mix}} H_{\max }^{3}\left(\|u(t)\|_{C^{2}\left(\Omega_{H}^{o b l}\right)}^{2}+\int_{0}^{t}\|u(s)\|_{C^{2}\left(\Omega_{H}^{o b l}\right)}^{2} d s\right) \\
\leqslant & C H_{\max }^{4}\left(\|u\|_{L^{\infty}\left(0, T ; H^{3}(\Omega)\right)}^{2}+\left\|\frac{d u}{d t}\right\|_{L^{\infty}\left(0, T ; H^{2}(\Omega)\right.}^{2}+\|u\|_{L^{2}\left(0, t ; H^{3}(\Omega)\right)}^{2}\right) \\
& +C \sigma_{\operatorname{mix}} H_{\max }^{3}\left(\|u\|_{L^{\infty}\left(0, T ; C^{2}\left(\Omega_{H}^{o b l}\right)\right)}^{2}+\|u\|_{L^{2}\left(0, T ; C^{2}\left(\Omega_{H}^{o b l}\right)\right)}^{2}\right) \tag{69}
\end{align*}
$$

where it was assume that $\sum_{\Delta \in \mathcal{T}_{H}^{\text {obl }}} \operatorname{diam} \Delta \leqslant C$.

## 4. A fully discrete approximation

### 4.1. The fully discrete variational problem

We introduce in $[0, T]$ a uniform grid $\left\{t_{n}, n=0, \ldots, N\right\}$ with $t_{0}=0, t_{N}=T$ and $t_{n}-t_{n-1}=\Delta t$. By $D_{-t}$ we denote the backward finite difference operator with respect to time variable. Let $u_{H}^{n}$ be the fully discrete approximation in $W_{H}$ such that $u_{H}^{n}=R_{H} \psi\left(t_{n}\right)$ on $\partial \Omega_{H}$ and

$$
\left\{\begin{array}{l}
\left(D_{-t} u_{H}^{n+1}, v_{H}\right)_{H}+a_{H}\left(u_{H}^{n+1}, v_{H}\right)=\Delta t \sum_{\ell=0}^{n} b_{H}\left(t_{\ell}, t_{n+1}, u_{H}^{\ell}, v_{H}\right)+\left(f_{H}^{n+1}, v_{H}\right)_{H},  \tag{70}\\
\quad n=0, \ldots, N-1, \forall v_{H} \in W_{H, 0} \\
u_{H}^{0}=u_{0, H}
\end{array}\right.
$$

We remark that $u_{H}^{n} \in W_{H}$ satisfying (70) is also a solution of the fully discrete finite difference problem

$$
\begin{cases}D_{-t} u_{H}^{n+1}+A_{H} u_{H}^{n+1}=\Delta t \sum_{\ell=0}^{n} B_{H}\left(t_{\ell}, t_{n+1}\right) u_{H}^{\ell}+f_{H}^{n+1} & \text { in } \Omega_{H}, n=0, \ldots, N-1,  \tag{71}\\ u_{H}^{n}=R_{H} \psi\left(t_{n}\right) & \text { on } \partial \Omega_{H}, n=1, \ldots, N \\ u_{H}^{0}=u_{0, H}, & \end{cases}
$$

which defines an implicit-explicit scheme to solve numerically (1), (2), (3). In fact (71) can be established combining the spatial discretization introduced in the previous sections with the left rectangular rule to discretize the time integral.

In certain cases, the method (71) can be rewritten as a three-time-level method. In fact, for $n \geqslant 1$, we have

$$
D_{-t} u_{H}^{n+1}+A_{H} u_{H}^{n+1}-f_{H}^{n+1}=\Delta t B_{H}\left(t_{n}, t_{n+1}\right) u_{H}^{n}+\Delta t \sum_{\ell=0}^{n-1} B_{H}\left(t_{\ell}, t_{n+1}\right) u_{H}^{\ell}
$$

and

$$
D_{-t} u_{H}^{n}+A_{H} u_{H}^{n}-f_{H}^{n}=\Delta t \sum_{\ell=0}^{n-1} B_{H}\left(t_{\ell}, t_{n}\right) u_{H}^{\ell}
$$

Moreover if

$$
\begin{equation*}
B_{H}\left(t_{\ell}, t_{n+1}\right) u_{H}^{\ell}=g(\Delta t) B_{H}\left(t_{\ell}, t_{n}\right) u_{H}^{\ell} \tag{72}
\end{equation*}
$$

then

$$
D_{-t} u_{H}^{n+1}+A_{H} u_{H}^{n+1}-f_{H}^{n+1}=\Delta t B_{H}\left(t_{n}, t_{n+1}\right) u_{H}^{n}+g(\Delta t)\left(D_{-t} u_{H}^{n}+A_{H} u_{H}^{n}-f_{H}^{n}\right)
$$

which has the form of a three-time-level method. This approach allow a drastic reduction of the computational cost when compared with method (71). Note that the condition (72) is satisfied, for instance, when $B(s, t) u(t)=K(t-s) B u(t)$ and $K(a+b)=K(a) K(b)$.

### 4.2. Stability and convergence analysis

We study in what follows the qualitative behavior of the solution of (71) (or (70)). An essential tool is the following lemma.

Lemma 1. (Discrete Gronwall inequality (Lemma 4.3 of [11]).) Let $\left\{\eta_{n}\right\}$ be a sequence of nonnegative real numbers satisfying

$$
\eta_{n} \leqslant \sum_{j=0}^{n-1} \omega_{j} \eta_{j}+\beta_{n} \quad \text { for } n \geqslant 1,
$$

where $\omega_{j} \geqslant 0$ and $\left\{\beta_{n}\right\}$ is a nondecreasing sequence of nonnegative numbers. Then

$$
\begin{equation*}
\eta_{n} \leqslant \beta_{n} \exp \left(\sum_{j=0}^{n-1} \omega_{j}\right) \text { for } n \geqslant 1 \tag{73}
\end{equation*}
$$

Theorem 4. Under the assumptions of Theorem 1, the solution of (70) satisfies

$$
\begin{equation*}
\left\|u_{H}^{n}\right\|_{H}^{2}+\Delta t \sum_{m=0}^{n}\left\|P_{H} u_{H}^{m}\right\|_{1}^{2} \leqslant \tilde{C}\left(\left\|u_{H}^{0}\right\|_{H}^{2}+2\left(a_{e}-\epsilon^{2}\right) \Delta t\left\|P_{H} u_{H}^{0}\right\|_{1}^{2}+\frac{\Delta t}{2 \eta^{2}} \sum_{m=1}^{n}\left\|f_{H}^{m}\right\|_{H}^{2}\right) \tag{74}
\end{equation*}
$$

where $\eta \neq 0, \epsilon \neq 0, \epsilon$ is such that

$$
\begin{equation*}
a_{e}-\epsilon^{2}>0 \tag{75}
\end{equation*}
$$

the time step size $\Delta t$ satisfies

$$
\begin{equation*}
1-2\left(\lambda+\eta^{2}\right) \Delta t>0 \tag{76}
\end{equation*}
$$

and

$$
\tilde{C}=\frac{\exp \left(\frac{T \max \left\{2\left(\lambda+\eta^{2}\right), \frac{b_{c}^{2} T}{2 \epsilon^{2}}\right\}}{\min \left\{1-2\left(\eta^{2}+\lambda\right) \Delta t, 2\left(a_{e}-\epsilon^{2}\right)\right\}}\right)}{\min \left\{1-2\left(\lambda+\eta^{2}\right) \Delta t, 2\left(a_{e}-\epsilon^{2}\right)\right\}}
$$

Proof. Using $n=m, v_{H}=u_{H}^{m+1}$, in (70), the coercivity (30) of $a_{H}(.,$.$) and the uniform continuity (31) of b_{H}(s, t, .,$.$) , we$ establish

$$
\begin{equation*}
\left(D_{-t} u_{H}^{m+1}, u_{H}^{m+1}\right)_{H}+a_{e}\left\|P_{H} u_{H}^{m+1}\right\|_{1}^{2}-\lambda\left\|u_{H}^{m+1}\right\|_{H}^{2} \leqslant b_{c} \Delta t \sum_{j=0}^{m}\left\|P_{H} u_{H}^{j}\right\|_{1}\left\|P_{H} u_{H}^{m+1}\right\|_{1}+\left(f_{H}^{m+1}, u_{H}^{m+1}\right)_{H} \tag{77}
\end{equation*}
$$

As we have

$$
b_{c} \Delta t \sum_{j=0}^{m}\left\|P_{H} u_{H}^{j}\right\|_{1}\left\|P_{H} u_{H}^{m+1}\right\|_{1} \leqslant \frac{b_{c}^{2} T \Delta t}{4 \epsilon^{2}} \sum_{j=0}^{m}\left\|P_{H} u_{H}^{j}\right\|_{1}^{2}+\epsilon^{2}\left\|P_{H} u_{H}^{m+1}\right\|_{1}^{2},
$$

and

$$
\left(f_{H}^{m+1}, u_{H}^{m+1}\right)_{H} \leqslant \frac{1}{4 \eta^{2}}\left\|f_{H}^{m+1}\right\|_{H}^{2}+\eta^{2}\left\|u_{H}^{m+1}\right\|_{H}^{2}
$$

for all $\epsilon \neq 0, \eta \neq 0$, from (77) we deduce

$$
\begin{align*}
& \left\|u_{H}^{m+1}\right\|_{H}^{2}-\left\|u_{H}^{m}\right\|_{H}^{2}+2 \Delta t\left(a_{e}-\epsilon^{2}\right)\left\|P_{H} u_{H}^{m+1}\right\|_{1}^{2} \\
& \quad \leqslant \frac{b_{c}^{2} T \Delta t^{2}}{2 \epsilon^{2}} \sum_{j=0}^{m}\left\|P_{H} u_{H}^{j}\right\|_{1}^{2}+\Delta t \frac{1}{2 \eta^{2}}\left\|f_{H}^{m+1}\right\|_{H}^{2}+2\left(\lambda+\eta^{2}\right) \Delta t\left\|u_{H}^{m+1}\right\|_{H}^{2} . \tag{78}
\end{align*}
$$

Summing (78) over $m=0, \ldots, n-1$, we get

$$
\begin{aligned}
& \left\|u_{H}^{n}\right\|_{H}^{2}-\left\|u_{H}^{0}\right\|_{H}^{2}+2 \Delta t\left(a_{e}-\epsilon^{2}\right) \sum_{m=0}^{n-1}\left\|P_{H} u_{H}^{m+1}\right\|_{1}^{2} \\
& \quad \leqslant \frac{b_{c}^{2} T \Delta t^{2}}{2 \epsilon^{2}} \sum_{m=0}^{n-1} \sum_{j=0}^{m}\left\|P_{H} u_{H}^{j}\right\|_{1}^{2}+\frac{\Delta t}{2 \eta^{2}} \sum_{m=0}^{n-1}\left\|f_{H}^{m+1}\right\|_{H}^{2}+2\left(\lambda+\eta^{2}\right) \Delta t \sum_{m=0}^{n-1}\left\|u_{H}^{m+1}\right\|_{H}^{2},
\end{aligned}
$$

and consequently

$$
\begin{align*}
& \left(1-2\left(\lambda+\eta^{2}\right) \Delta t\right)\left\|u_{H}^{n}\right\|_{H}^{2}+2 \Delta t\left(a_{e}-\epsilon^{2}\right) \sum_{m=0}^{n}\left\|P_{H} u_{H}^{m}\right\|_{1}^{2} \\
& \leqslant \\
& \quad\left\|u_{H}^{0}\right\|_{H}^{2}+2 \Delta t\left(a_{e}-\epsilon^{2}\right)\left\|P_{H} u_{H}^{0}\right\|_{1}^{2}+\frac{\Delta t}{2 \eta^{2}} \sum_{m=1}^{n}\left\|f_{H}^{m}\right\|_{H}^{2}  \tag{79}\\
& \quad+\sum_{m=0}^{n-1} \frac{b_{c}^{2} T \Delta t}{2 \epsilon^{2}} \Delta t \sum_{j=0}^{m}\left\|P_{H} u_{H}^{j}\right\|_{1}^{2}+2\left(\lambda+\eta^{2}\right) \Delta t \sum_{m=1}^{n-1}\left\|u_{H}^{m}\right\|_{H}^{2}
\end{align*}
$$

Choosing in (79) $\Delta t, \epsilon$ and $\eta$ satisfying (75) and (76) we obtain

$$
\begin{align*}
& \left\|u_{H}^{n}\right\|_{H}^{2}+\Delta t \sum_{m=0}^{n}\left\|P_{H} u_{H}^{m}\right\|_{1}^{2} \\
& \leqslant \sum_{m=0}^{n-1} C\left(\left\|u_{H}^{m}\right\|_{H}^{2}+\Delta t \sum_{j=0}^{m}\left\|P_{H} u_{H}^{j}\right\|_{1}^{2}\right) \\
& \quad+\frac{1}{\min \left\{1-2\left(\lambda+\eta^{2}\right) \Delta t, 2\left(a_{e}-\epsilon^{2}\right)\right\}}\left(\left\|u_{H}^{0}\right\|_{H}^{2}+2 \Delta t\left(a_{e}-\epsilon^{2}\right)\left\|P_{H} u_{H}^{0}\right\|_{1}^{2}+\frac{\Delta t}{2 \eta^{2}} \sum_{m=1}^{n}\left\|f_{H}^{m}\right\|_{H}^{2}\right) \tag{80}
\end{align*}
$$

with

$$
C=\frac{\Delta t \max \left\{2\left(\lambda+\eta^{2}\right), \frac{b_{c}^{2} T}{2 \epsilon^{2}}\right\}}{\min \left\{1-2\left(\lambda+\eta^{2}\right) \Delta t, 2\left(a_{e}-\epsilon^{2}\right)\right\}}
$$

Finally an application of the discrete Gronwall's lemma leads to (74).
The stability of (71) is now established.
Theorem 5. Under the assumptions of Theorem 1 , for the solution $u_{H}^{n}$ of (71), with $f_{H}^{n+1}=0$, holds the following inequality

$$
\begin{equation*}
\left\|u_{H}^{n}\right\|_{H}^{2}+\Delta t \sum_{m=0}^{n}\left\|P_{H} u_{H}^{m}\right\|_{1}^{2} \leqslant \tilde{C}\left(\left\|u_{H}^{0}\right\|_{H}^{2}+2\left(a_{e}-\epsilon^{2}\right) \Delta t\left\|P_{H} u_{H}^{0}\right\|_{1}^{2}\right) \tag{81}
\end{equation*}
$$

with

$$
\tilde{C}=\frac{\exp \left(\frac{T \max \left\{2 \lambda, \frac{b_{c}^{2} T^{2}}{2 \epsilon^{2}}\right\}}{\min \left\{1-2 \lambda \Delta t_{0}, 2\left(a_{e}-\epsilon^{2}\right)\right\}}\right)}{\min \left\{1-2 \lambda \Delta t_{0}, 2\left(a_{e}-\epsilon^{2}\right)\right\}},
$$

for $\epsilon \neq 0$ satisfying (75) and $\Delta t \in\left(0, \Delta t_{0}\right)$, where $\Delta t_{0}$ is such that

$$
\begin{equation*}
1-2 \lambda \Delta t_{0}>0 \tag{82}
\end{equation*}
$$

Since for $\lambda$ nonpositive we conclude the stability of (71) without any condition on the time step size $\Delta t$, that is the method is unconditionally stable. Otherwise, it is conditionally stable.

Let $e_{H}^{n}=R_{H} u\left(t_{n}\right)-u_{H}^{n}$ be the error for the solution $u_{H}^{n}$ defined by (71). An estimation for this error is established in the next result.

Theorem 6. Under the assumptions of Theorem 1, if $\frac{\partial b_{H}}{\partial s}(s, t, .,$.$) is uniformly continuous$

$$
\begin{equation*}
\left|\frac{\partial b_{H}}{\partial s}\left(s, t, u_{H}, v_{H}\right)\right| \leqslant b_{d}\left\|P_{H} u_{H}\right\|_{1}\left\|P_{H} v_{H}\right\|_{1}, \quad \forall u_{H}, v_{H} \in W_{H, 0}, s, t \in[0, T] \tag{83}
\end{equation*}
$$

then there exists a positive constant $C$ which does not depend on $H, \Delta t$ and $u$, such that the error $e_{H}^{n}=R_{H} u\left(t_{n}\right)-u_{H}^{n}$, with $u_{H}^{n}$ defined by (71) (or (70)), satisfies the following

$$
\begin{align*}
& \left\|e_{H}^{n}\right\|_{H}^{2}+\Delta t \sum_{m=0}^{n}\left\|P_{H} e_{H}^{m}\right\|_{1}^{2} \\
& \leqslant \\
& \quad \tilde{C}\left(2 \Delta t\left(a_{e}-\epsilon^{2}-\gamma_{2}^{2}-\gamma_{3}^{2}\right)\left\|P_{H} e_{H}^{0}\right\|_{1}^{2}+\left\|e_{H}^{0}\right\|_{H}^{2}+\Delta t \sum_{m=1}^{n} \frac{1}{2 \gamma_{3}^{2}} g^{(\mu)}\left(t_{m}\right)^{2}\right.  \tag{84}\\
& \left.\quad+C \Delta t^{2}\left(\frac{1}{2 \gamma_{1}^{2}}\left\|R_{H} u\right\|_{H^{2}\left(0, T ; W_{H}\right)}^{2}+\frac{b_{f}^{2} T}{2 \gamma_{2}^{2}}\left\|P_{H} R_{H} u\right\|_{H^{1}\left(0, T ; H^{1}(\Omega)\right)}^{2}\right)\right),
\end{align*}
$$

where

$$
\tilde{C}=\frac{\exp \left(\frac{T \max \left\{2\left(\lambda+\gamma_{1}^{2}, \frac{b_{f}^{2} T}{2 \epsilon^{2}}\right\}\right.}{\min \left\{1-2 \Delta t_{0}\left(\lambda+\gamma_{1}^{2}\right), 2\left(a_{e}-\epsilon^{2}-\gamma_{2}^{2}-\gamma_{3}^{2}\right)\right\}}\right)}{\min \left\{1-2\left(\lambda+\gamma_{1}^{2}\right) \Delta t_{0}, 2\left(a_{e}-\epsilon^{2}-\gamma_{2}^{2}-\gamma_{3}^{2}\right)\right\}},
$$

$b_{f}=\max \left\{b_{c}, b_{d}\right\}, \epsilon, \gamma_{i} \neq 0, i=1,2,3$, are such that

$$
a_{e}-\epsilon^{2}-\gamma_{2}^{2}-\gamma_{3}^{2}>0
$$

and $\Delta t \in\left(0, \Delta t_{0}\right)$, with $\Delta t_{0}$ fixed by

$$
\begin{equation*}
1-2\left(\lambda+\gamma_{1}^{2}\right) \Delta t_{0}>0 \tag{85}
\end{equation*}
$$

In (84), $g^{(\mu)}\left(t_{m}\right)$ for $\mu \in\{1,2\}$, is defined by (66) and (67), respectively, for $\mu=1$ and $\mu=2$ with $t=t_{m}$.
Proof. It is easy to show that

$$
\begin{align*}
\left(D_{-t} e_{H}^{m+1}, e_{H}^{m+1}\right)_{H}= & \left(D_{-t} R_{H} u\left(t_{m+1}\right), e_{H}^{m+1}\right)_{H}+a_{H}\left(u_{H}^{m+1}, e_{H}^{m+1}\right) \\
& -\Delta t \sum_{j=0}^{m} b_{H}\left(t_{j}, t_{m+1}, u_{H}^{j}, e_{H}^{m+1}\right)-\left(f_{H}^{m+1}, e_{H}^{m+1}\right)_{H} \tag{86}
\end{align*}
$$

Considering that (57) holds with $t=t_{m+1}$, from (86), we deduce

$$
\begin{equation*}
\left(D_{-t} e_{H}^{m+1}, e_{H}^{m+1}\right)_{H}+a_{H}\left(e_{H}^{m+1}, e_{H}^{m+1}\right)=\Delta t \sum_{j=0}^{m} b_{H}\left(t_{j}, t_{m+1}, e_{H}^{j}, e_{H}^{m+1}\right)+\tau_{c d}\left(e_{H}^{m+1}\right) \tag{87}
\end{equation*}
$$

with

$$
\tau_{c d}\left(e_{H}^{m+1}\right)=\tau\left(e_{H}^{m+1}\right)+\tau_{n}\left(e_{H}^{m+1}\right)
$$

where $\tau\left(e_{H}^{m+1}\right)$ is defined by (59) with $e_{H}(t)$ replaced by $e_{H}^{m+1}$,

$$
\tau_{n}\left(e_{H}^{m+1}\right)=\tau_{n, 1}\left(e_{H}^{m+1}\right)+\tau_{n, 2}\left(e_{H}^{m+1}\right)
$$

and

$$
\begin{align*}
& \tau_{n, 1}\left(e_{H}^{m+1}\right)=\left(D_{-t} R_{H} u\left(t_{m+1}\right)-R_{H} \frac{d u}{d t}\left(t_{m+1}\right), e_{H}^{m+1}\right)_{H} \\
& \tau_{n, 2}\left(e_{H}^{m+1}\right)=\int_{0}^{t_{m+1}} b_{H}\left(s, t_{m+1}, R_{H} u(s), e_{H}^{m+1}\right) d s-\Delta t \sum_{j=0}^{m} b_{H}\left(t_{j}, t_{m+1}, R_{H} u\left(t_{j}\right), e_{H}^{m+1}\right) . \tag{88}
\end{align*}
$$

We remark that an estimate for $\tau\left(e_{H}^{m+1}\right)$ is obtained considering Proposition 2. For $\tau_{n, 1}\left(e_{H}^{m+1}\right)$ we have

$$
\begin{equation*}
\left|\tau_{n, 1}\left(e_{H}^{m+1}\right)\right| \leqslant C \int_{t_{m}}^{t_{m+1}}\left\|R_{H} \frac{d^{2} u}{d t^{2}}(s)\right\|_{H} d s\left\|e_{H}^{m+1}\right\|_{H} \leqslant C \Delta t \frac{1}{4 \gamma_{1}^{2}}\left\|R_{H} u\right\|_{H^{2}\left(t_{m}, t_{m+1} ; W_{H}\right)}^{2}+\gamma_{1}^{2}\left\|e_{H}^{m+1}\right\|_{H}^{2}, \tag{89}
\end{equation*}
$$

where $\gamma_{1} \neq 0$ is an arbitrary constant.
The estimate for $\tau_{n, 2}\left(e_{H}^{m+1}\right)$

$$
\begin{equation*}
\left|\tau_{n, 2}\left(e_{H}^{m+1}\right)\right| \leqslant C \Delta t \sum_{j=0}^{m} \int_{t_{j}}^{t_{j+1}}\left(\left|\frac{\partial b_{H}}{\partial s}\left(s, t_{m+1}, R_{H} u(s), e_{H}^{m+1}\right)\right|+\left|b_{H}\left(s, t_{m+1}, R_{H} \frac{d u}{d t}(s), e_{H}^{m+1}\right)\right|\right) d s \tag{90}
\end{equation*}
$$

is obtained using the Bramble-Hilbert Lemma. As $b_{H}(s, t, .,$.$) and \frac{\partial b_{H}}{\partial s}(s, t, .,$.$) are uniformly continuous, from (90), we ob-$ tain

$$
\begin{align*}
\left|\tau_{n, 2}\left(e_{H}^{m+1}\right)\right| & \leqslant C \Delta t b_{f} \sum_{j=0}^{m} \int_{t_{j}}^{t_{j+1}}\left(\left\|P_{H} R_{H} u(s)\right\|_{1}+\left\|P_{H} R_{H} \frac{d u}{d t}(s)\right\|_{1}\right) d s\left\|P_{H} e_{H}^{m+1}\right\|_{1} \\
& \leqslant \frac{1}{4 \gamma_{2}^{2}} C \Delta t^{2} b_{f}^{2}\left\|P_{H} R_{H} u\right\|_{H^{1}\left(0, T ; H^{1}(\Omega)\right)}^{2}+\gamma_{2}^{2}\left\|P_{H} e_{H}^{m+1}\right\|_{1}^{2}, \tag{91}
\end{align*}
$$

where $\gamma_{2} \neq 0$ is an arbitrary constant.

Combining the estimations (89), (91) with the estimates for $\tau\left(e_{H}^{m+1}\right)$ obtained considering Proposition 2, we get

$$
\begin{align*}
\tau_{c d}\left(e_{H}^{m+1}\right) \leqslant & \frac{1}{4 \gamma_{3}^{2}} g^{(\mu)}\left(t_{m+1}\right)^{2}+\left(\gamma_{3}^{2}+\gamma_{2}^{2}\right)\left\|P_{H} e_{H}^{m+1}\right\|_{1}^{2}+\gamma_{1}^{2}\left\|e_{H}^{m+1}\right\|_{H}^{2} \\
& +C\left(\frac{1}{4 \gamma_{1}^{2}} \Delta t\left\|R_{H} u\right\|_{H^{2}\left(t_{m}, t_{m+1} ; W_{H}\right)}^{2}+\frac{1}{4 \gamma_{2}^{2}} b_{f}^{2} \Delta t^{2}\left\|P_{H} R_{H} u\right\|_{H^{1}\left(0, T ; H^{1}(\Omega)\right)}^{2}\right) \tag{92}
\end{align*}
$$

where $\mu \in\{1,2\}, g^{(1)}\left(t_{m+1}\right)^{2}$ and $g^{(2)}\left(t_{m+1}\right)^{2}$ are given by (66) and (67), respectively, with $t=t_{m+1}$.
From (87) and (92), it can be deduced, following the proof of Theorem 4, that the errors $e_{H}^{j}, j=0, \ldots, m+1$, satisfy

$$
\begin{align*}
& \left\|e_{H}^{m+1}\right\|_{H}^{2}-\left\|e_{H}^{m}\right\|_{H}^{2}+2 \Delta t\left(a_{e}-\epsilon^{2}-\gamma_{2}^{2}-\gamma_{3}^{2}\right)\left\|P_{H} e_{H}^{m+1}\right\|_{1}^{2} \\
& \leqslant \\
& \leqslant t^{2} \frac{b_{f}^{2} T}{2 \epsilon^{2}} \sum_{j=0}^{m}\left\|P_{H} e_{H}^{j}\right\|_{1}^{2}+2 \Delta t\left(\lambda+\gamma_{1}^{2}\right)\left\|e_{H}^{m+1}\right\|_{H}^{2}+\Delta t \frac{1}{2 \gamma_{3}^{2}} g^{(\mu)}\left(t_{m+1}\right)^{2}  \tag{93}\\
& \quad+C \Delta t\left(\frac{1}{2 \gamma_{1}^{2}} \Delta t\left\|R_{H} u\right\|_{H^{2}\left(t_{m}, t_{m+1} ; W_{H}\right)}^{2}+\frac{b_{f}^{2}}{2 \gamma_{2}^{2}} \Delta t^{2}\left\|P_{H} R_{H} u\right\|_{H^{1}\left(0, T ; H^{1}(\Omega)\right)}^{2}\right)
\end{align*}
$$

which leads, following again the proof of Theorem 4, to (84).

Remark 2. Assumption (83) holds, for instance, for $B(s, t) u(t)=K(t-s) B u(t)$ where the kernel is such that $\left|K^{\prime}(t-s)\right| \leqslant C$, $t, s \in[0, T]$ and $B$ is a second order differential operator such that $b(.,$.$) is continuous.$

Corollary 1. Under the assumptions of Theorem 1 and taking $u_{0, H}=R_{H} u_{0}$, there exists a positive constant $C$ which does not depend on $H$ and $\Delta t$ and $u$, such that, for $\Delta t \in\left(0, \Delta t_{0}\right)$, with $\Delta t_{0}$ verifying (85), the error $e_{H}^{n}=R_{H} u\left(t_{n}\right)-u_{H}^{n}$, with $u_{H}^{n}$ defined by (71), satisfies the following

$$
\begin{align*}
\left\|e_{H}^{n}\right\|_{H}^{2}+\Delta t \sum_{m=1}^{n}\left\|P_{H} e_{H}^{m}\right\|_{1}^{2} \leqslant & C\left(H_{\max }^{2}\left(\|u\|_{W^{1, \infty}\left(0, T ; H^{2}(\Omega)\right)}^{2}+\|u\|_{L^{2}\left(0, T ; H^{2}(\Omega)\right)}^{2}\right)\right. \\
& \left.+\Delta t^{2}\left(\left\|R_{H} u\right\|_{H^{2}\left(0, T ; W_{H}\right)}^{2}+\left\|P_{H} R_{H} u\right\|_{H^{1}\left(0, T ; H^{1}(\Omega)\right)}^{2}\right)\right), \tag{94}
\end{align*}
$$

provided that $u \in W^{1, \infty}\left(0, T ; H^{2}(\Omega)\right) \cap H^{2}(0, T ; C(\Omega))$, and

$$
\begin{align*}
\left\|e_{H}^{n}\right\|_{H}^{2}+\Delta t \sum_{m=1}^{n}\left\|P_{H} e_{H}^{m}\right\|_{1}^{2} \leqslant & C\left(H_{\max }^{4}\left(\|u\|_{W^{1, \infty}\left(0, T ; H^{2}(\Omega)\right)}^{2}+\|u\|_{L^{\infty}\left(0, T ; H^{3}(\Omega)\right)}^{2}+\|u\|_{L^{2}\left(0, T ; H^{3}(\Omega)\right)}^{2}\right)\right. \\
& +\sigma_{\operatorname{mix}} H_{\max }^{3-2 / p}\left(\|u\|_{L^{\infty}\left(0, T ; W^{1, p}\left(\Omega_{H}^{o b l}\right)\right)}^{2}+\|u\|_{L^{2}\left(0, T ; W^{1, p}\left(\Omega_{H}^{o b l}\right)\right)}^{2}\right) \\
& \left.+\Delta t^{2}\left(\left\|R_{H} u\right\|_{H^{2}\left(0, T ; W_{H}\right)}^{2}+\left\|P_{H} R_{H} u\right\|_{H^{1}\left(0, T ; H^{1}(\Omega)\right)}^{2}\right)\right), \tag{95}
\end{align*}
$$

provided that $u \in W^{1, \infty}\left(0, T ; H^{3}(\Omega)\right) \cap H^{2}(0, T ; C(\Omega))$ and $p \in[2, \infty)$.
If $\Omega$ has an oblique side and $a_{m} \neq 0$ or $b_{m} \neq 0$, then, in (95), $\sigma_{\text {mix }}=1$. Otherwise, if $\Omega$ is a rectangle or $a_{m}=b_{m}=0$, then, in (95), $\sigma_{\text {mix }}=0$.

Remark 3. Considering Corollary 6.2 of [23], under the assumptions of Corollary 1, if the coefficients functions are in $W^{2, \infty}(\Omega), u \in L^{\infty}\left(0, T ; C^{2}\left(\bar{\Omega} \cup \Omega_{0}\right)\right)$, where $\Omega_{0}$ is a neighborhood of the oblique part of $\partial \Omega$, then we can state the following estimate

$$
\begin{align*}
\left\|e_{H}^{n}\right\|_{H}^{2}+\Delta t \sum_{m=1}^{n}\left\|P_{H} e_{H}^{m}\right\|_{1}^{2} \leqslant & C\left(H_{\max }^{4}\left(\|u\|_{W^{1, \infty}\left(0, T ; H^{2}(\Omega)\right)}^{2}+\|u\|_{L^{\infty}\left(0, T ; H^{3}(\Omega)\right)}^{2}+\|u\|_{L^{2}\left(0, T ; H^{3}(\Omega)\right)}^{2}\right)\right. \\
& +\sigma_{\operatorname{mix}} H_{\max }^{3}\left(\|u\|_{L^{\infty}\left(0, T ; C^{2}\left(\Omega_{H}^{o b l}\right)\right)}^{2}+\|u\|_{L^{2}\left(0, T ; C^{2}\left(\Omega_{H}^{o b l}\right)\right)}^{2}\right) \\
& \left.+\Delta t^{2}\left(\left\|R_{H} u\right\|_{H^{2}\left(0, T ; W_{H}\right)}^{2}+\left\|P_{H} R_{H} u\right\|_{H^{1}\left(0, T ; H^{1}(\Omega)\right)}^{2}\right)\right) . \tag{96}
\end{align*}
$$

Table 1
Convergence rates.

| $H_{\max }$ | $N_{x}$ | $N_{y}$ | $E_{H}^{N}$ | $R_{H 1, H 2}$ |
| :--- | ---: | :---: | :--- | :--- |
| $1.500 \times 10^{-1}$ | 10 | 11 | $9.437 \times 10^{-4}$ | 1.860 |
| $7.500 \times 10^{-2}$ | 20 | 22 | $2.600 \times 10^{-4}$ | 1.944 |
| $3.750 \times 10^{-2}$ | 40 | 44 | $6.759 \times 10^{-5}$ | 1.980 |
| $1.875 \times 10^{-2}$ | 80 | 88 | $1.713 \times 10^{-5}$ | 1.992 |
| $9.375 \times 10^{-3}$ | 160 | 176 | $4.305 \times 10^{-6}$ | 2.000 |
| $4.688 \times 10^{-3}$ | 320 | 352 | $1.076 \times 10^{-6}$ | 2.000 |
| $2.344 \times 10^{-3}$ | 640 | 704 | $2.691 \times 10^{-7}$ | - |

## 5. Numerical simulation

In this section we illustrate the theoretical results obtained for the integro-differential IBVP (1)-(3).
Example 1. Let $\Omega$ be defined by $\Omega=(0,1) \times(0,1)$. We consider the IBVP (1)-(3) with

$$
\begin{aligned}
& \mathcal{A}(x, y)=\left[\begin{array}{cc}
1 & x y \\
x y & 1
\end{array}\right], \quad \mathcal{A}_{0}(x, y)=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad a_{0}(x, y)=-1 \\
& \mathcal{B}(s, t, x, y)=e^{-(t-s)}\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right], \quad \mathcal{B}_{0}(s, t, x, y)=0, \quad b_{0}(s, t, x, y)=0
\end{aligned}
$$

The boundary conditions, the initial condition and the term $f$ are such that this problem has the solution

$$
\begin{equation*}
u(x, y, t)=e^{t} x y(x-1)(y-1), \quad(x, y) \in \bar{\Omega}, t \in[0,0.1] \tag{97}
\end{equation*}
$$

The numerical solutions are obtained using the method (70) with a uniform time grid in $[0,0.1]$ with step size $\Delta t=10^{-6}$. In the spatial domain, we consider an initial random partition with $H_{\max }=0.15$ and $N_{x}=10, N_{y}=11$ points in $x$ and $y$ axis, respectively. We use grids in the consecutive computations that are defined by introducing the midpoint in each interval $\left[x_{i}, x_{i+1}\right]$ and $\left[y_{j}, y_{j+1}\right]$ of the previous grid. We measure in the simulations the error

$$
E_{H}^{M}=\left(\left\|e_{H}^{M}\right\|_{H}^{2}+\Delta t \sum_{j=1}^{M}\left\|P_{H} e_{H}^{j}\right\|_{1}^{2}\right)^{1 / 2}
$$

where the errors $e_{H}^{j}, j=0, \ldots, M$, are computed considering the numerical solution and the known solution (97).
The error $E_{H}^{M}$ as well as $H_{\max }$, for each partition $\bar{\Omega}_{H}$, the number of points $N_{x}$ and $N_{y}$, and the rate $R_{H_{1}, H_{2}}$

$$
R_{H_{1}, H_{2}}=\frac{\ln \left(\frac{E_{H_{1, \max }}^{M}}{E_{H_{2, \max }}^{M}}\right)}{\ln \left(\frac{H_{1, \max }}{H_{2, \max }}\right)}
$$

are presented in Table 1.
The results presented in Table 1 show that the error $E_{H}^{M}$ is of second order in $H_{\max }$. This fact illustrates the estimate (96).
Example 2. Let $\Omega$ be the polygonal domain presented in Fig. 2. We consider the IBVP (1)-(3), with

$$
\begin{aligned}
& \mathcal{A}(x, y)=\left[\begin{array}{cc}
1 & x y \\
x y & 1
\end{array}\right], \quad \mathcal{A}_{0}(x, y)=0, \quad a_{0}(x, y)=0, \\
& \mathcal{B}(s, t, x, y)=e^{-(t-s)}\left[\begin{array}{cc}
0 & -x y \\
-x y & 0
\end{array}\right], \quad \mathcal{B}_{0}(s, t, x, y)=0, \quad b_{0}(s, t, x, y)=0
\end{aligned}
$$

The boundary conditions, the initial condition and the term $f$ are such that this problem has the following solution

$$
u(x, y, t)=e^{t} x y(x-1)(y-1)\left(-x+\frac{7}{5}-y\right), \quad(x, y) \in \bar{\Omega}, t \in[0,0.1]
$$

In the time interval $[0,0.1]$ we consider a grid with step size $\Delta t=10^{-6}$. We introduce in $\bar{\Omega}$ an initial nonuniform grid $\bar{\Omega}_{H}$ satisfying the condition (Geom). The grids used in the numerical experiments are defined using the procedure introduced in Example 1. The error $E_{H}^{M}$, the rate $R_{H_{1}, H_{2}}$ as well as $H_{\max }$, for each partition $\bar{\Omega}_{H}$, the number of points $N_{x}$ and $N_{y}$, are presented in Table 2 (the notations used were introduced in Example 1).

The results presented in Table 2 illustrate the error estimate (96).


Fig. 2. Polygonal domain.

## Table 2

Convergence rates.

| $H_{\max }$ | $N_{x}$ | $N_{y}$ | $E_{H}^{M}$ | $R_{H_{1}, H_{2}}$ |
| :--- | ---: | ---: | :--- | :--- |
| $1.347 \times 10^{-1}$ | 9 | 8 | $2.988 \times 10^{-4}$ | 1.554 |
| $6.733 \times 10^{-2}$ | 18 | 16 | $1.018 \times 10^{-4}$ | 1.560 |
| $3.367 \times 10^{-2}$ | 36 | 32 | $3.451 \times 10^{-5}$ | 1.539 |
| $1.683 \times 10^{-2}$ | 72 | 64 | $1.188 \times 10^{-5}$ | 1.522 |
| $8.416 \times 10^{-3}$ | 144 | 128 | $4.136 \times 10^{-6}$ | 1.511 |
| $4.208 \times 10^{-3}$ | 288 | 256 | $1.451 \times 10^{-6}$ | 1.506 |
| $2.104 \times 10^{-3}$ | 576 | 512 | $5.108 \times 10^{-7}$ | - |

## 6. Conclusions

In this paper numerical methods for the IBVP (1)-(3) were proposed. The methods were defined using MOL approach, that is, they were defined combining a spatial discretization, which converts the integro-differential problem in an ordinary differential problem, with a time integration method of the implicit-explicit type. The semi-discrete solution was studied and a supraconvergence result was established. The stability and the convergence of the fully discrete method were also studied. In the convergence analysis we introduced a different approach from the one that is usually followed in the literature (see for instance $[42,44,47,48]$ ). Such new approach enable us to assume lower smoothness of the solution of the IBVP (1)-(3), than those that we need to assume if the approach introduced in [47] was followed.

The methods studied can be seen into different class of methods: the class of Galerkin methods and the class of finite difference methods. In fact, with respect to the spatial discretization, the methods were constructed considering the variational formulation of the differential problem and replacing the space $H_{0}^{1}(\Omega)$ by the space of the piecewise linear functions and using convenient quadrature rules.

We point out that the analysis presented here can be followed if we use in the time integration methods of higher order such as Crank-Nicolson method. This remark holds if we replace the rectangular rule, considered in the approximation of the time integral, by higher approximation methods.

## Acknowledgements

The authors gratefully acknowledge the support of this work by Centro de Matemática da Universidade de Coimbra and Fundação para a Ciência e a Tecnologia, through European program COMPETE/FEDER and by the project UTAustin/MAT/ 0066/2008.

## References

[1] A. Araújo, J.R. Branco, J.A. Ferreira, On the stability of a class of splitting methods for integro-differential equations, Appl. Numer. Math. 59 (2009) 436-453.
[2] A.Y. Bakev, S. Larsson, V. Thomée, Long time behavior of backward difference type methods for parabolic equations with memory, East-West J. Numer. Math. 6 (1998) 185-206.
[3] S.A. Barbeiro, J.A. Ferreira, R.D. Grigorieff, Supraconvergence of a finite difference scheme for solutions in $H^{s}(0, L)$, IMA J. Numer. Anal. 25 (2005) 797-811.
[4] S. Barbeiro, J.A. Ferreira, Integro-differential models for percutaneous drug absorption, Int. J. Comput. Math. 84 (2007) 451-467.
[5] S. Barbeiro, J.A. Ferreira, Coupled vehicle-skin models for drug release, Comput. Methods Appl. Mech. Engrg. 198 (2009) $2078-2086$.
[6] S. Barbeiro, J.A. Ferreira, L. Pinto, $H^{1}$-second order convergent estimates for non-Fickian models, Appl. Numer. Math. 61 (2011) $201-215$.
[7] N. Bauermeister, S. Shaw, Finite-element approximation of non-Fickian polymer diffusion, IMA J. Numer. Anal. 30 (2010) 702-730.
[8] J.R. Branco, J.A. Ferreira, P. de Oliveira, Numerical methods for the generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation, Appl. Numer. Math. 57 (2007) 89-102.
[9] J.R. Branco, J.A. Ferreira, A singular perturbation of the heat equation with memory, J. Comput. Appl. Math. 218 (2008) $376-394$.
[10] H.-T. Chen, K.-C. Liu, Analysis of non-Fickian diffusion problems in a composite medium, Comput. Phys. Comm. 150 (2003) 31-42.
[11] C. Chuanmiao, S. Tsimin, Finite Element Methods for Integrodifferential Equations, World Scientific Publishers, 1998.
[12] D.S. Cohen, A.B. White Jr., Sharp fronts due to diffusion and stress at the glass transition in polymers, J. Polym. Sci Part B: Polym. Phys. 27 (1989) 1731-1747.
[13] D.S. Cohen, A.B. White Jr., Sharp fronts due to diffusion and viscoelastic relaxation in polymers, SIAM J. Appl. Math. 51 (1991) $472-483$.
[14] D.S. Cohen, A.B. White Jr., T.P. Witelski, Shock formation in a multidimensional viscoelastic diffusive system, SIAM J. Appl. Math. 55 (1995) $348-368$.
[15] E. Emmrich, Supraconvergence and supercloseness of a discretization for elliptic third kind boundary value problems on polygonal domains, Comput. Methods Appl. Math. 7 (2007) 153-162.
[16] E. Emmrich, R.D. Grigorieff, Supraconvergence of a finite difference scheme for elliptic boundary value problems of the third kind in fractional order Sobolev spaces, Comput. Methods Appl. Math. 6 (2006) 154-177.
[17] R.E. Ewing, R.D. Lazarov, Y. Lin, Finite volume element approximations of nonlocal in time one-dimensional flows in porous media, Computing 64 (2000) 157-182.
[18] R.E. Ewing, R.D. Lazarov, Y. Lin, Finite volume element approximations of nonlocal reactive flows in porous media, Numer. Methods Partial Differential Equations 16 (2000) 258-311.
[19] R.E. Ewing, Y. Lin, T. Sun, J. Wang, S. Zhang, Sharp $L^{2}$-error estimates and superconvergence of mixed finite element methods for non-Fickian flows in porous media, SIAM J. Numer. Anal. 40 (2002) 1538-1560.
[20] J.A. Ferreira, P. de Oliveira, Memory effects and random walks in reaction-transport systems, Appl. Anal. 86 (2007) 99-118.
[21] J.A. Ferreira, P. de Oliveira, Qualitative analysis of a delayed non-Fickian model, Appl. Anal. 87 (2008) 873-886.
[22] J.A. Ferreira, R.D. Grigorieff, On the supraconvergence of elliptic finite difference schemes, Appl. Numer. Math. 28 (1998) $275-292$.
[23] J.A. Ferreira, R.D. Grigorieff, Supraconvergence and supercloseness of a scheme for elliptic equations on nonuniform grids, Numer. Funct. Anal. Optim. 27 (2006) 539-564.
[24] P.A. Forsyth, P.H. Samon, Quadratic convergence for cell-centered grids, Appl. Numer. Math. 4 (1988) 377-394.
[25] M. Grassi, G. Grassi, Mathematical modeling and controlled drug delivery: matrix systems, Curr. Drug Delivery 2 (2005) 97-116.
[26] R.D. Grigorieff, Some stability inequalities for compact finite difference operators, Math. Nachr. 135 (1986) 93-101.
[27] S.M. Hassahizadeh, On the transient non-Fickian dispersion theory, Transp. Porous Media 23 (1996) 107-124.
[28] F. de Hoog, D. Jackett, On the rate of convergence of finite difference schemes on nonuniform grids, J. Aust. Math. Soc. B 26 (1985) $247-256$.
[29] D.D. Joseph, L. Preziosi, Heat waves, Rev. Modern Phys. 61 (1989) 41-73.
[30] B.S. Jovanović, L.D. Ivanović, E.E. Sülli, Convergence of finite difference schemes for elliptic equationswith variable coefficients, IMA J. Numer. Anal. 7 (1987) 301-305.
[31] H.O. Kreiss, T.A. Manteuffel, B. Swartz, B. Wendroff, A.B. White, Supraconvergent schemes on irregular grids, Math. Comp. 45 (1986) $105-116$.
[32] Y. Lin, Semi-discrete finite element approximations for linear parabolic integro-differential equations with integrable kernels, J. Integral Equations Appl. 10 (1998) 51-83.
[33] Y. Lin, V. Thomée, L.B. Wahlbin, Ritz-Volterra projections to finite-element spaces and applications to integrodifferential and related equations, SIAM J. Numer. Anal. 28 (1991) 1047-1070.
[34] C. Maas, A hyperbolic dispersion equation to model the bounds of a contaminated groundwater body, J. Hydrol. 226 (1999) $234-241$.
[35] T.A. Manteuffel, A.B. White Jr., The numerical solutions of second order boundary value problems, Math. Comp. 47 (1986) 511-535.
[36] S.P. Neuman, D.M. Tartakovski, Perspectives on theories of non-Fickian transport in heterogeneous medias, Adv. Water Resour. 32 (2009) 678-680.
[37] A.K. Pani, T.E. Peterson, Finite element methods with numerical quadrature for parabolic integro-differential equations, SIAM J. Numer. Anal. 33 (1996) 1084-1105.
[38] B. Rivière, S. Shaw, Discontinuous Galerkin finite element approximation of nonlinear non-Fickian diffusion in viscoelastic polymers, SIAM J. Numer. Anal. 44 (2006) 2245-2698.
[39] S. Shaw, J. Whiteman, Some partial differential Volterra equation problems arising in viscoelasticity, in: R. Agarwal, F. Neuman, J. Vosmanský (Eds.), Proceedings of Equadiff 9, Conference on Differential Equations and Their Applications, Survey Papers [Part 1], Brno, August 25-29, 1997, Masaryk University, Brno, 1998, pp. 183-200.
[40] R.K. Sinha, R.E. Ewing, R.D. Lazarov, Some new error estimates of a semidiscrete finite volume method for a parabolic integro-differential equation with nonsmooth initial data, SIAM J. Numer. Anal. 43 (2006) 2320-2344.
[41] R. Sinha, R. Ewing, R. Lazarov, Mixed finite element method approximations of parabolic integro-differential equations with nonsmooth initial data, SIAM J. Numer. Anal. 47 (2009) 3269-3292.
[42] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer, Berlin, 1997.
[43] V. Thomée, L.B. Wahlbin, Long-time numerical solutions of parabolic equations with Memory, Math. Comp. 206 (1994) 477-496.
[44] V. Thomée, N.-Y. Zhang, Error estimates for semidiscrete finite element methods for parabolic integro-differential equations, Math. Comp. 53 (1989) 121-139.
[45] L.B. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Math., vol. 1605, Springer, Berlin, 1995.
[46] J. Wloka, Partial Differential Equations, Cambridge University Press, 1987.
[47] M.F. Wheeler, A priori $L^{2}$ error estimates for Galerkin approximation to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973) $723-$ 759.
[48] N.-Y. Zhang, On fully discrete Galerkin approximation for partial integro-differential equations of parabolic type, Math. Comp. 60 (1993) 133-166.


[^0]:    * Corresponding author.

    E-mail addresses: ferreira@mat.uc.pt (J.A. Ferreira), luisp@mat.uc.pt (L. Pinto), roman@mat.uc.pt (G. Romanazzi).

