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Abstract

Colorectal cancer is initiated in colonic crypts as a consequence of alterations leading to the disruption of the
normal colonic cellular process. We propose a model, which couples a convection-diffusion type equation with a level
set equation, for tracking the time evolution of an epithelial cell set, inside a colonic crypt, until it reaches the top of
the crypt. The convection-diffusion equation describes the evolution of the density of the cells in the epithelial cell
set. The parameters of this equation regulate the geometric and temporal cellular mechanism, and different parameter
choices lead to distinct cell behavior. The level set equation tracks the location and shape of the epithelial cell set,
inside the crypt, as well as its interface, separating the cell set from the others cells, which reside within the crypt. The
interfacial velocity of the epithelial cell set is obtained from the convection-diffusion type equation. Some in silico
experiments are described. They are performed in a relative small time, with respect to the real biological evolution.
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1. Introduction

Colorectal Cancer (CRC) is one of the most frequent malignant tumors in the world [1], it forms in the large
intestine (colon) or in the rectum (end of the colon). It is generally accepted that colorectal cancer is initiated in
the small pits, called colonic crypts, that line the colon. A colonic crypt is a cylindrical tube, closed at the bottom
and with a round opening in the top directed at the lumen’s colon, that contains different populations of cells [2, 3].
These cells are aligned along the crypt wall: stems cells are believed to reside in the bottom of the crypt, transit cells
along the middle part of the crypt axis and differentiated cells at the top of the crypt. In normal human colonic crypts
the cells renew completely each 3 − 6 days, through a programmed mechanism which includes the proliferation of
cells, their migration along the crypt wall towards the top and their apoptosis, as they reach the top and the cell cycle
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is finished. If this programmed mechanism changes, disease may appear leading to tumorigenesis. Nowadays it is
accepted that the accumulation of several genetic modifications are responsible for the development of CRC [3]. The
adenoma-carcinoma sequence is well established but there are no certainties about the molecular pathology of the
adenoma. Two different processes are suggested to explain this behavior: the top-down [4] and the bottom-up [5]
theories. The former is found on the fact that the mutant cells appear in the inter-cryptal zone between orifices. As
the clone expands, the cells migrate laterally and downwards to displace the normal epithelium of adjacent crypts. In
the bottom-up theory the migration kinetics is reversed, with the flux directed toward the top. Intensive research has
been done on cell proliferation inside crypts in order to model the tumor growth. In particular we refer to [3, 6] for a
literature review of colonic crypts, and cell-based models for colorectal cancer, and the references therein. Essentially
these models can be distinguished in two large groups: continuum and cell-level models. The former are based on
conservation and constitutive laws (such as Darcy or Stokes law), which simulate the cell growth and displacement.
The latter rely on the fact that each cell is considered as a discrete entity which interacts with other cells (this leads
in general to very expensive computational models); they describe the cell migration in small regions, using cell-cell
interaction or cell-deformation forces (see [7], for instance).

In this paper we propose a new mathematical (continuum) model for tracking the evolution of an epithelial cell set,
in a single colonic crypt. Our main goal is to improve the knowledge of the evolution of the early stages of colorectal
cancer, based on theoretical assumptions and medical observations about colorectal crypts. Since it is impossible
to conduct experiments in humans (and in general scarce clinical data are available), our model is meaningful for
giving useful insight into many and dissimilar behaviors that a set of epithelial cells might have in a single colonic
crypt. In fact, the model parameter manipulation permits to have different dynamical behaviors for the cell set, and the
model predictions (see Section 4) are in good agreement with the medical observations for both normal and abnormal
epithelial cells (for example, malignant cells are in part retained in the crypt whereas others are expelled out of the
crypt, as suggested in [8]).

The model introduced in this paper couples a convection-diffusion equation with a level set equation. In particular,
it simulates the evolution of the boundary (or equivalently, of the shape) of this epithelial cell set, in time, by means
of its single cell density. The level set equation permits to track efficiently the movement of the boundary of the cell
set by solving an equation only inside the epithelial cell set (see for instance [9, 10], where the level set technique is
also used to model the tumor’s boundary in time). And to the best of our knowledge this is also the first cell-based
model in colonic crypts which incorporates a level set method for tracking the cell movement inside the crypt.

To set up the model we use biological and medical information, and assume the evolution of the epithelial cell
set is due to three main effects. The first describes the movement (mainly upwards) of the cells belonging to the set
itself. The second is the the convective motion of the epithelial cell set generated by the others cells surrounding it,
which, as a consequence of their normal behavior, tend to push the epithelial cell set out of the crypt. Finally, the third
effect, is associated to the cell proliferation rate inside the epithelial cell set. All these effects are incorporated in the
parameters and coefficients of the mathematical model here considered. Their values are based on the description of
the phenomena reported in the literature (see for instance [2, 3, 5, 4, 11]). Basically, these parameters tend to capture
both a normal and abnormal behavior of the epithelial cell set, with emphasis on the convection, diffusion and on the
inner proliferative effect of the epithelial cell set itself.

Two numerical simulations are reported : with and without the proliferative effect. The results seem to reveal
somewhat what is observed in reality, in normal crypts, with an extra information concerning the shape of the epithelial
cell set and the distribution of the cell density.

We finish this introduction with a brief outline of the paper. It includes a short description of the coupled model,
in Section 2, with details concerning the crypt geometry and the definition adopted for the flux of the cells belonging
to the epithelial cell set. The numerical procedure proposed for the solution of the mathematical model is outlined in
Section 3 (with a proof related to a fixed point argument). The corresponding numerical simulations are reported in
Section 4. Finally some conclusions and future work are discussed in the last section.

2. Definition of the model

2.1. Geometry of a colonic crypt
To start with we define the geometrical domain of a colonic crypt. A crypt is a three-dimensional object (see

Figure 1, middle), that we represent in an equivalent two-dimensional domain. If the colon is cut, open, and rolled out
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Figure 1: Colon in two dimensions (left), a colonic crypt in three and two dimensions (middle and right).

we obtain a two dimensional rectangular domain (see Figure 1, left), perforated by circles, periodically distributed.
Each circumference (see Figure 1, left) represents the orthogonal projection of a crypt in the plan. In each crypt (see
Figure 1, right) the concentric circumferences stand for different heights along the crypt’s axis.

A colonic crypt of height R is then identified, in a (O, x, y) two-dimensional Cartesian reference system, with the
closure of the open ball BR := {(x, y) ∈ R2 :

√
x2 + y2 < R}, with center O = (0, 0) and radius R. In addition, we can

also rewrite the crypt as BR = (0,R)× (0, 2π) in the polar coordinate system, (O, r, θ), where O is the pole that matches
the origin O of the Cartesian system and, r and θ stand for, respectively, the radial and angular component (this latter
is also known as the polar angle). Moreover, we note that the point r = 0 is the origin O, and represents the bottom of
the crypt, while r = R is the top of the crypt, that is the crypt orifice linked with the lumen of the colon.

2.2. Definition of the cell flux

Let [0,T ] be a given time interval, the goal of the model is to track the evolution of an epithelial cell set since a
starting time t = 0 and until a final time t = T . For each t ∈ [0,T ], and in each point (r, θ) of the crypt, the density of
the cells, inside the set, is denoted by c(r, θ, t). Moreover, we denote by D(t) this epithelial cell set, at time t. For each
fixed polar angle θ, intersecting D(t), the numbers r1(θ, t) = min{r : (r, θ) ∈ D(t)} and r2(θ, t) = max{r : (r, θ) ∈ D(t)}
represent, respectively, the minimum and the maximum distance from the bottom of the crypt to D(t), measured along
the polar angle θ. Likewise, for each fixed radial component r, intersecting D(t), θ1(r, t) = min{θ : (r, θ) ∈ D(t)}
and θ2(r, t) = max{θ : (r, θ) ∈ D(t)} are the minimum and maximum angle in D(t), respectively, measured along the
circumference of radius r.

We describe now the flux F(r, θ, t), of the cell population within the domain D(t) (outside the region D(t) we
implicitly suppose this flux is zero; see the second equation of (3), where this assumption is enforced explicitly).
By definition, this flux F(r, θ, t) controls the rate of loss or increase of c(r, θ, t) through the boundary of D(t). The
formula for the flux is based on several assumptions, which rely on biological and medical information, regarding the
mechanism of epithelial cells in colonic crypts. More precisely we split the flux into the sum of its radial and angular
components. Then, F(r, θ, t) := g(r, θ, t) r̂+h(r, θ, t) θ̂, where r̂ and θ̂ are the unit vectors of the polar coordinate system
and g and h are defined by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g(r, θ, t) := −α(r)
∫ r

r1(θ,t)
ct(s, θ, t) ds + γ(r)

∫ r2(θ,t)

r
ct(s, θ, t) ds + v0(r) c(r, θ, t)

h(r, θ, t) := −β(r)
∫ θ
θ1(r,t)

rct(r, ϕ, t) dϕ + β(r)
∫ θ2(r,t)

θ
rct(r, ϕ, t) dϕ.

(1)

In the following part of this section we describe the definitions for g(r, θ, t) and h(r, θ, t) used in (1). In this model, the
flux F(r, θ, t), in the point (r, θ) within D(t), represents the number of cells crossing a unit of area placed in (r, θ) in
unit of time. We assume that this flux depends on the cell density variation (with respect to time) ct(r, θ, t). Thus, the
four integrals in (1) represent the diffusion flux contribution in two different directions (in the radial direction, along
the crypt height, outwards and inwards the crypt, and in the angular direction, towards the sides). The remaining fifth
term stands for the convective flux contribution to the cell transport. More precisely:

i) The term −α(r)
∫ r

r1(θ,t)
ct(s, θ, t) ds represents the pressure exerted by the cells laying in D(t), along the radial direction

(for θ fixed) that are behind the point (r, θ). The function α is a decreasing weight function of r. In the numerical
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tests we use α(r) = 1
4

(
1 − r

R

)
. This choice relies on the medical observation that at the bottom of the crypt (where

there are many semi-differentiated cells) the cells move rapidly towards the crypt orifice, due to their high rate of
differentiation, and, when they are ascending to the top, they become fully-differentiated cells and start then to move
slowly to the top of the crypt (see [3]).

ii) The term γ(r)
∫ r2(θ,t)

r
ct(s, θ, t) ds describes the pressure exerted in the radial direction by the cells laying in D(t)

ahead the point (r, θ). It accounts for the fact that when the cells approach the top of the crypt, many of them try to
go outside simultaneously, thus that the exit from the crypt is penalized. This term is proportional to the number of
cells, within D(t), that lay along the radial direction (with θ fixed), but that are near the crypt orifice, at the top. In our
numerical simulations we use γ(r) = r

8R .

iii) The remaining two integrals in (1) define the angular flux component. They describe the pressure exerted by the
cells, which are inside D(t), and lay in the circumference with radius r, between the minimum and maximum polar
angles θ1(r, t) and θ2(r, t). We use β(r) = r

16R .

iv) Finally, the term v0(r) c(r, θ, t) represents the transport of the cells with the unknown cell density c(r, θ, t) by the flow
v0(r). This flow is due to the normal renewal cell mechanism inside the colonic crypt (that includes the proliferation,
of the semi-differentiated and fully-differentiated cells, and also their apoptosis, see for instance [2, 3]). In this model
we set v0(r) = 0.8 r

R (based on [3], p.261: “cells produced at the bottom of the crypt move upwards with increasing
velocity, reaching a rate of 0.7-1 positions per hour at the top of the crypt”).

We note that due to i)-iii) the flux components g and h are pressure differences, along the radial and angular
directions, respectively. Therefore, as for the Darcy Law, the flux F depends on the pressure in both the radial and
angular directions. This accounts for the diffusive motion of the cells in the model.

By definition the divergence of F is divF = gr +
g
r +

hθ
r , where here, and always hereafter in the text, the lower

subscripts “r” and “θ” mean partial derivative with respect to the variables r and θ, respectively. Using the definitions
of g and h, then

divF(r, θ, t) = −
(
α(r) + γ(r) + 2β(r)

)
ct(r, θ, t) − E(r, θ, t)

−A(r)
∫ r

r1(θ,t)
ct(s, θ, t) ds − B(r)

∫ r2(θ,t)

r
ct(s, θ, t) ds,

(2)

where, with the definitions of the parameters v0, α and γ, A =
(
αr +

α
r

)
= R−2r

4Rr , B = −
(
γr +

γ
r

)
= − 1

4R , and E =

−cr v0 − c
(
v0

r +
v0

r

)
= −cr r 0.8

R − c 1.6
R .

2.3. The coupled convection-diffusion level set model
The model has two unknowns: the cell density c(r, θ, t) and the domain D(t) (i.e., the location and geometry of the

epithelial cell set at time t, inside the crypt). We use a convection-diffusion type equation for determining c(r, θ, t),
coupled with a level set function φ(r, θ, t) (see [12, 13]) for representing D(t), its boundary Γ(t) and time evolution.
More exactly, the coupled model can be summarized by the following system of partial differential equations: find
c(r, θ, t) and φ(r, θ, t), such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φt(r, θ, t) + v(r, θ, t) · ∇φ(r, θ, t) = 0 in BR × (0,T ),

ct(r, θ, t) + div
(
F(r, θ, t) H(φ(r, θ, t))

)
= G(r, θ, t) in BR × (0,T ),

φ(r, θ, 0) = φ0(r, θ) in BR,

c(r, θ, 0) = c0(r, θ) in BR,

(3)

where c0 � 0 in D(0), c0 = 0 in BR \ D(0), and with

D(t) :=
{
(r, θ) ∈ BR : φ(r, θ, t) ≤ 0

}
and Γ(t) :=

{
(r, θ) ∈ BR : φ(r, θ, t) = 0

}
, (4)

for each time t ∈ [0,T ]. In (3), F is the flux defined by (1), H(.) is the Heaviside function (H(z) = 1, if z ≥ 0, and
H(z) = 0 if z < 0), v is the velocity of the boundary Γ(t) of D(t) and the function G(r, θ, t) is a cell proliferation rate.
The velocity v depends on the flux and cell density. It is defined in D(t) by

v(r, θ, t) =
F(r, θ, t)
c(r, θ, t)

, (5)
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and by a continuous extension of (5) in a neighbourhood of Γ(t), and zero elsewhere in BR. We consider two possible
proliferation rates G(r, θ, t) (see Section 4): either G = 0, which means there is no growth of cells within the region
D(t), and so there is conservation of the total number of cells in D(t), or

G(r, θ, t) := H(φ(r, θ, t))
Nt(t)
|D(t)| , with

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Nt = λN − k N2

1+mN , in (0,T )

N(0) =
∫

BR
c0(r, θ) r dr dθ.

(6)

Here |D(t)| is the area of D(t), and N is the number of cells generated in D(t). The latter is obtained by solving the
ordinary differential equation in (6) with λ = 0.9, and k = m = 0.01 (see [2]). From the convection-diffusion type
equation (second equation in (3)) we get

∫

BR

c(x, y, t) dx dy = N(t) −
∫ t

0

(∫

∂BR

F(x, y, t) H(φ(x, y, t) · n dx dy

)
, (7)

where n is the outward unit normal vector to the boundary ∂BR of BR. In (7), the left hand side represents the total
number of cells belonging to D(t) at time t, that is then equal to the number of cells N(t), generated inside D(t) at the
time interval [0, t], minus the total number of epithelial cells of D(t) that are shed into the colon’s lumen in the same
time interval. The definition of N is based on [2]: the ordinary differential equation used in (6) represents a feedback
model, with a saturating feedback. It expresses that the rate at which the epithelial cell density increases is not only
linear (the term λN), but there is also a maximum per-capita rate of cell density (the term −k N2

1+mN ) taken into account.
Finally, we emphasize that the convection-diffusion type equation can be written, in D(t), as ct = Lct, where the

operator L is defined by

Lct(r, θ, t) =
4
3

(
A(r)

∫ r

r1(θ,t)
ct(s, θ, t) ds + B(r)

∫ r2(θ,t)

r
ct(s, θ, t) ds + E(r, θ, t)

)
+G(r, θ, t). (8)

3. Numerical procedure

In this section we describe the numerical procedure used for solving the coupled model (3). It involves a finite
difference discretisation, for both the convection-diffusion and the level set equations. In addition, we are able to
resolve the convection-diffusion type equation with a fixed-point algorithm, since the associated operator L (see (8))
becomes a contraction, as shown in step 3 below. This is due to the chosen discretization scheme.

In order to start with the numerical procedure, we first define a mesh in the spatial domain BR = (0,R) × (0, 2π),
using the radial and angular step sizes, dr and dθ, respectively. The step size of the time interval [t0,T ] is denoted by
dt. In the numerical simulations we set t0 = 0.

The following steps characterize the algorithm used for the numerical simulations of D(t) and the cell density
c(r, θ, t).

Step 1 Set the initial conditions at time t = t0: D(t0), Γ(t0) and c(r, θ, t0) = c0(r, θ), where c0 is non null only in D(t0).

Step 2 Measure the area |D(t0)| of the epithelial cell set and the total number of cells inside D(t0), at time t0, using
respectively

∫
BR

H(φ(r, θ, t0) rdr dθ and
∫

BR
c(r, θ, t0) r dr dθ.

Step 3 Determine ct in D(t0), at time t = t0, using a fixed point iteration method for the modified operator L, also
denoted by L. This means use the iterative algorithm ck+1

t = Lck
t , for k = 1, 2, . . .. In effect, since the time t = t0

is fixed, in the definition (8) of L, the terms E(r, θ, t) and G(r, θ, t) are considered as data, because they do not
involve the unknown ct, only the given cell density c(r, θ, t0). Thus, from (8), for any scalar functions v and w

|Lv − Lw| ≤
∣∣∣∣∣
R − 2r

3Rr

∣∣∣∣∣

∣∣∣∣∣∣

∫ r

r1(θ,t)
(v − w)(s, θ, t) ds

∣∣∣∣∣∣ +
1

3R

∣∣∣∣∣∣

∫ r2(θ,t)

r
(v − w)(s, θ, t) ds

∣∣∣∣∣∣

≤
(∣∣∣∣∣

R − 2r
3Rr

∣∣∣∣∣ r +
1

3R
(R − r)

)
max
(r,θ)
|v − w| .

(9)
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But

|R − 2r| + R − r
3R

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2R−3r
3R , if 0 ≤ r ≤ R

2

r
3R , if R

2 ≤ r ≤ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
≤ 2

3
< 1.

Therefore the modified operator L is a contraction and then it exists a unique fixed point, which is the solution
ct, for fixed time t = t0, of the equation ct = Lct.

Step 4 Compute F, using (1), and also Fε(r, θ, t0) = F(r, θ, t0) Hε(φ(r, θ, t0)) in all BR. Here Hε(z) = 1− 1
2

(
1 + 2

z arctan z
ε

)

is a smooth regularization of the Heaviside function H(z) (defined before in (3)), for a small ε (when ε goes to
zero Hε(z) converges to H(z), see [14]). Fε is now a regularized extension of F, defined in BR. Then, compute
the regularized velocity vε as in (5), using Fε instead of F.

Step 5 Solve the level set equation, using the velocity vε of step 4, to determine φ(t0 + dt) and afterwards Γ(t0 + dt)
and D(t0 + dt). We use an integration forward in time to approximate the level set equation, with CFL (Courant,
Friedrichs and Lewy) constrained time-steps and a first order forward Euler scheme, with upwind.

Step 6 Update ct in BR \ D(t) at time t0, using the new level set function φ(t0 + dt), obtained in the previous step
5. That is, ct(r, θ, t0) = −div(Fε(r, θ, t0 + dt)) + G(r, θ, t0), with G(t0) defined by (6), and Fε(r, θ, t0 + dt) =
F(r, θ, t0 + dt) Hε(φ(r, θ, t0 + dt)).

Step 7 Update the cell density c in all BR, at time t0 + dt, using c(t0 + dt) = c(t0)+ ct(t0) dt, with ct(t0) defined in steps
3 and 6.

Step 8 Set t0 := t0 + dt and repeat the steps 2 − 7.

Step 9 The method proceeds until we get φ(T ), D(T ), and c(r, θ,T ) at the final time T .

4. Numerical simulations

In the human colon epithelium there are millions of crypts (approximately 10 millions according to [15]). In each
crypt, the cells are aligned along the crypt wall and the average number in humans is about: 120 cells in height (from
the bottom to the top of the crypt) and 60 cells in perimeter. The cell size is about 6 − 10 microns, thus the size of a
crypt is approximately 900 microns, from the closed bottom to the orifice, and 150 microns in perimeter.

We recall that the main goal in this paper is to track the evolution of an epithelial cell set D(t), at any time t,
starting with a given initial set D(0) and until a final prescribed time T . This is done tracking the zero level set of the
function φ(r, θ, t), which solves, with the unknown cell density c(r, θ, t), the system (3).

We show the results of two numerical simulations: the first corresponding to a null cell proliferation rate, G = 0,
and the second with G defined in (6). In both cases we take R = 20, which means we consider 20 levels of height in the
colonic crypt (thus one level is associated to 6 levels of the human colonic crypt). We also set T = 20, symbolizing 20
hours of simulation. Moreover, we consider at the initial time t = 0 an epithelial cell set D(0) equal to a circle of radius
4, and for the corresponding cell density, we take c0(r, θ) = 1, if (r, θ) ∈ D(0) and c0(r, θ) = 0, if (r, θ) ∈ BR \D(0) (see
the first picture in the left, in Figures 2 and 3).

The numerical procedure described in Section 3 has been implemented using the software MATLAB� [16] and
the level set toolbox [17]. The simulations were obtained in a computer with an Intel Q9550 CPU (quad-core at
2.83GHz).

For the first simulation, whose results are shown in Figure 2, G is zero, and the cell density is depicted with a
color proportional to its intensity: light color for a lower cell density and dark color for a higher density (the color bar
ranges from white, corresponding to c = 0, to the darkest color, for which c = 2). As expected the cell density in D(t)
decreases as time t increases. In fact, the cells start to spread rapidly, due to the diffusion and convection, and at time
t = 10, we can observe they concentrate more at the top of D(10), because there is a higher cell density (c = 1.7). This
behavior is in good agreement with the natural renewal of the cells that move rapidly to the top of the crypt and when
they are close to it they decrease their velocity and so they concentrate themselves in the higher parts of the epithelial
cell set, before being released out of the crypt. We note that at time t = 20 the cells of D(20) have reached the top of
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Figure 2: Simulation of the evolution of an epithelial cell set and its cell density, when no extra cell proliferation rate is added. The three pictures
show, from left to right, the simulations obtained at time t = 0, 10, 20 respectively. The computer simulation time is 4719 secs.

the crypt, and some of them have been already shed into the colon lumen. In effect, we obtain, numerically, that the
total number of cells (given by

∫
BR

c(r, θ, t) r dr dθ) is 50.52 for times t = 0, t = 10 (i.e. when the set D(t) is still inside
the crypt there is conservation of the total number of cells of D(t)) and 34.33 for time 20.

Still in Figure 2, the curve, surrounding the epithelial cell set D(t), represents the approximation of the boundary
Γ(t) :=

{
(r, θ) ∈ BR : φ(r, θ, t) = 0

}
. We note that almost all the “colored cells”, represented by the light color, are

contained inside the approximated Γ(t), except a few that are left at the bottom of D(t) (see in Figure 2, the left part of
D(t) for the cases t = 10, 20). The coupling of the convection-diffusion and level-set equations permits to determine,
almost accurately, the evolution of the region D(t) and its boundary Γ(t) in its forwarding move up to the top of the
crypt. The approximation is however not fully accurate because some cells with a very small density that lay at the
bottom of the D(t) are not caught inside the simulated D(t). This problem can be improved by refining the finite
difference mesh. Actually, for the pictures displayed in Figure 2 we have considered a 60 × 60 grid for the spatial
domain [0, 20] × [−π/4, π/4]. This is a rather coarse grid for detecting all the cells at the bottom of D(t), but is quite
satisfactory to catch the large number of cells (which are well marked by the dark color in the figures) that are at the
top of the epithelial cell set D(t).

In the second simulation, see Figure 3, we use the same initial conditions, for time t = 0, as in the previous case,
but now we suppose there is a non zero cell proliferation rate G. The Figure 3 shows the evolution of the epithelial
cell set D(t), for time t = 0, t = 10, and t = 20. The color-bar in this Figure 3 goes from 0 (marked by the white

Figure 3: Simulation of the evolution of an epithelial cell set and its cell density, when an extra cell proliferation rate is added. The three pictures
show, from left to right, the simulations obtained at time t = 0, 10, 20 respectively. The computer simulation time is 9915 secs.
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color) to 20 (marked by the dark color). We remark that at time t = 10 the cell density increases significantly. In
fact, at this time, the total number of cells (given by

∫
BR

c(r, θ, t) r dr dθ) is equal to 467.5, which might disrupt the
normal balance of cells in the crypt. As in the previous simulation (without source term), the cells tend to accumulate
at the top (rightest part of D(t)). Moreover we observe that the epithelial cell set D(t) reaches the top of the crypt
before t = 20 with a slightly less growth in the angular and radial directions, with respect the previous no-source case.
This can be explained because the cells are now more equally distributed and more compacted with respect the first
numerical simulation. Biological evidence suggests that mutant cells are more viscous and then they are more retained
in the bottom of the crypt [8, 6], our model is able to catch this retention of the set when a positive proliferation rate is
considered. Finally, we note that in the two cases examined we are able to simulate 20 hours of a biological evolution
in less than 2 and 3 hours of computing simulation, respectively, in the first and in the second simulation considered.

5. Conclusion and future work

In this paper we have proposed a new coupled model to represent the time evolution of an epithelial cell set in a
colonic crypt. The numerical results shown are quite satisfactory for tracking the contour of the epithelial cell set, as
well as, the evolution of its cell density. This model is able to reproduce some particular aspects of the behavior of cells
in colonic crypts, and to reveal processes/mechanisms that would be impossible to reach with real-life experiments.

One drawback of the model, observed in the numerical simulations, is that for a rather coarse mesh, it is not
possible to detect a small number of cells that are always located at the bottom of the epithelial cell set. We think that
this problem could be solved using very fine and adaptive spatial grids. However this will involve a larger computer
simulation time. As future work we intend to improve the efficiency and speed of our numerical codes in order to
better approximate the epithelial cell set using a smaller computing simulation time. In addition, we also plan to
generalise this single crypt model to multiple colonic crypts (see Figure 1, left). Moreover, another mathematical
model, such as a pure diffusive-convective model, is under study in order to better track the evolution of the epithelial
cell set.

Extensions of the present work, interesting for medical doctors, focus on numerical simulations able to predicting
the appearance of aberrant crypt foci (see [18]) and a posteriori colorectal polyps. This amounts to introducing
appropriate changes in the definition and values used for the parameters involved in the coupled model. In particular
we intend to apply multiscale methods to account for the several events that can occur in colonic crypts, at the very
different cellular and tissue levels.
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