
Comput Visual Sci
DOI 10.1007/s00791-012-0170-3

A convection-diffusion-shape model for aberrant colonic crypt
morphogenesis

Isabel N. Figueiredo · Carlos Leal ·
Giuseppe Romanazzi · Bjorn Engquist ·
Pedro N. Figueiredo

Received: 29 November 2010 / Accepted: 29 July 2011
© Springer-Verlag 2012

Abstract It is generally accepted that colorectal cancer is
initiated in the small pits, called crypts, that line the colon.
Normal crypts exhibit a regular pit pattern, similar in two-
dimensions to a U-shape, but aberrant crypts display different
patterns, and in some cases show bifurcation. According to
several medical articles, there is an interest in correlating pit
patterns and the cellular kinetics, namely of proliferative and
apoptotic cells, in colonic crypts. This paper proposes and
implements a hybrid convection-diffusion-shape model for
simulating and predicting what has been validated medically,
with respect to some aberrant colonic crypt morphogenesis.
The model demonstrates crypt fission, in which a single crypt
starts dividing into two crypts, when there is an increase of
proliferative cells. The overall model couples the cell move-
ment and proliferation equations with the crypt geometry.
It relies on classical continuum transport/mass conservation
laws and the changes in the crypt shape are driven by the
pressure exerted by the cells on the crypt wall. This pressure
is related to the cell velocity by a Darcy-type law. Numerical
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1 Introduction and motivation

Colorectal carcinoma (CRC) occurs as a consequence of sev-
eral genetic mutations in normal colonic mucosa, determining
phenotypic modifications with biological and morphologic
consequences [12]. Those modifications lead to dysfunc-
tion of the cellular process and cause loss of homeostasis
in colonic crypts.

In this context it is relevant correlating pit patterns and cel-
lular kinetics in colonic crypts. This is precisely the primary
goal of this paper. We introduce here a hybrid convection-
diffusion-shape model for a single colonic crypt. It simulates
and predicts what has been validated medically (see [21,41]),
with respect to some aberrant colonic crypt morphogenesis.
The model demonstrates crypt fission, in which a single crypt
starts dividing into two crypts, when there is an increase of
proliferative cells.

The overall model couples, in a two-dimensional setting, a
convection-diffusion system, describing the cell movement
and proliferation process inside the single crypt (based on
classical continuum transport/mass conservation laws) with
the crypt geometry.

For setting up the convection-diffusion system, we can
assemble (in a simplest way, but without loss of general-
ity) the different populations of cells, that reside inside the
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colonic crypt, into two large classes: proliferative and apop-
totic cells, and consider a volume conservation relation for
these cells (which reduces to the sum of their densities being
equal to one, if the average volumes of proliferative and apop-
totic cells are both equal to 1). This means that these two
populations of cells are understood in a broad sense. The
class of proliferative cells include stem, transit and/or semi-
differentiated cells and the class of apoptotic cells include,
as well, fully differentiated cells (see for instance [19] for
a detailed description of the different cell sets). We also
suppose the convective velocities of both proliferative and
apoptotic cell densities are the same and furthermore this
velocity obeys to a Darcy-type law (supposing that the cells
flow trough the crypt, like fluid through a porous medium
see [15,38]). This means the convective velocity is related
to an unknown pressure. This is also in good agreement with
[27,8,23], where it is assumed that the essential mechanism,
responsible for the cell flux in the crypt, is the mitotic activ-
ity which causes pressure-driven passive movement. In addi-
tion, we can solve the convection-diffusion system only for
the proliferative cell density and the results for the apoptotic
cell density are subsequently inferred, because of the volume
conservation relation.

On the whole, the convection-diffusion system is a cou-
pling of a parabolic type equation, whose unknown is the
proliferative cell density, with an elliptic equation, whose
unknown is the pressure (related to the convective velocity of
the proliferative cells by Darcy’s law mentioned above). The
definitions for parameters involved in the convection-diffu-
sion system (i.e., rates of birth and death, and the diffusion
for the proliferative cell density), as well as, the boundary
and initial conditions are also explained in the paper and rely
on some qualitative information reported in the literature. In
particular, we suppose the rates of birth and death, are func-
tions of the crypt height, which means they depend on the
cell position. This is in good agreement with experimental
evidence, as reported in [22], where it is suggested “param-
eters controlling cellular process may depend on biochemi-
cal and bio-mechanical signals and, thus, on cell position”.
Then, the changes in the crypt geometry are essentially ruled
by the pressure exerted by the cells on the crypt wall. In
addition, some bio-mechanical assumptions, establishing a
relation between the movement of the different boundaries
of the crypt, are also imposed.

In the paper we basically focus on two problems. In the
first, called the normal case, we derive values for the parame-
ters, boundary and initial conditions aiming at preserving the
normal geometry of the colonic crypt, as well as, at keeping a
stabilized distribution of the density of proliferative cells and
pressure values, with time, and along the crypt axis. In the
second, called the abnormal case, we first increase the rate
of birth of proliferative cells at the bottom of the crypt. Sec-
ondly, using the information on the pressure value, obtained

in the normal case, we change one boundary condition for
the pressure. This is done in an appropriate way and based
on bio-mechanical reasoning. The model then leads to an
aberrant crypt shape exhibiting fission.

We emphasize, that the model proposed in this paper, does
not provide any justification for the increase of the rate of
birth of proliferative cells. The main goal is just to infer what
is the deformation produced by this increase in the crypt
geometry.

In the literature, a reasonable collection of articles con-
cerning the mathematical modelling of cell populations in
individual colonic crypts can be found, as well as works deal-
ing with the mathematical modelling of colorectal cancer
and, more generally, of tumor growth. We refer, in particular,
to [3,6–8,13,19,23,31,44] for models concerning dynamics
of cell populations, to [5,9,16,23,24,28,36,47] for papers
reporting models related to colorectal cancer, to [1,2,15,26,
29,32,34,35,39] for the mathematical modelling of tumor
growth, and also [17,25], where the level set technique is
used to model the tumor’s boundary in time, and finally to
[11,14,18,33,37,40,42] for some medical papers related to
aberrant crypt foci and colorectal cancer. To the best of our
knowledge, there are no mathematical models in the litera-
ture reporting the connection between cellular kinetics and
colonic crypt patterns, as done here in this paper. The results
presented here follows our previous work [10], where we
used a convection-diffusion type equation coupled with a
level set equation, for tracking the time evolution of an epi-
thelial cell set, inside a colonic crypt, until it reaches the top
of the crypt. However, in [10], the modifications induced on
geometry of the crypt, by the cells, were not considered.

After this introduction, this paper is organized in the fol-
lowing way. In Sect. 2 preliminaries of the mathematical
model are defined together with some explanations, based
on known medical and biological information, which support
the model definition. Afterwards, Sects. 3 and 4 describe the
normal and abnormal cases, respectively, and include the cor-
responding model discretizations, and numerical algorithms
for their approximate solutions. The simulations and com-
parisons with the medical results are shown in Sects. 3.2.1
and 4.2.1. Finally in the last section there are some comments
and outlook work.

2 Mathematical model: preliminaries

The epithelium of the colon is perforated by millions of small
crypts, which play a crucial role in colon physiology. In
effect, the colon epithelium undergoes a complete renewal,
by means of a programmed mechanism driven by the cellular
kinetics inside the crypts [19,23]. Each crypt has a cylindri-
cal tube shape, that is closed at the bottom and with a round
opening in the top, directed at the lumen’s colon. Different
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Fig. 1 a Medical images (from [41], with permission of Springer):
scanning electron microscope image of an isolated crypt (in the left)
and corresponding normal histopathologically vertical cut section (in
the right). b Schematic vertical cut of a normal colonic crypt �c and
corresponding three boundaries

types of cells fill the crypt. These are aligned along the crypt
wall: stems cells are believed to reside in the bottom of the
crypt, transit cells along the middle part of the crypt axis
and differentiated cells at the top of the crypt. In normal
human colonic crypts, the cells renew completely each 3–6
days, through an harmonious and ordered procedure which
includes the proliferation of cells, their migration along the
crypt wall towards the top and their apoptosis, as they reach
the orifice of the crypt and the cell cycle is finished.

For defining the mathematical model proposed in this
paper, we use a two-dimensional (2D) version of a colonic
crypt. A vertical cut (i.e. along the crypt axis) of a normal
crypt shows a thin and long U-shape (see the medical Fig.
1a right). In Fig. 1b it is depicted a schematic U-shape of
this vertical cut: (O, X, Y ) represents a Cartesian system,
with origin O , �c stands for the 2D-geometry of the crypt,
and the rectangle � subset of IR2 represents the portion of
the colon where the crypt is located. The boundaries of �c

are also represented: �1 is the upper boundary (directed to
the lumen of the colon), �2 and �3 are respectively, the outer
and inner boundaries. It is worth mentioning that for humans,
the average dimensions of a normal crypt are: 73µm for the
perimeter, 433µm for the height (where 1µm = 10−6m) and
the thickness of the inner epithelium is about the size of a
single cell. The relation between the height and the diameter
has been preserved in the definition of the 2D-domain �c

(see Sect. 3.2.1).
We would like to mention that a three-dimensional (3D)

model naturally would be more realistic. It is, however, com-
putationally of much higher complexity and outside the scope
of this investigation. We decided on a reduction to a 2D model
because it still contains the main physical features and also
the main mathematical challenges. Furthermore, in the histo-
logical medical exams, sections of the colon are cut, starting
from the mucosa surface until the bottom of the crypts, so
what is observed is a domain like the 2D domain we have

considered here in the paper (see Fig. 1a right, where a ver-
tical cut section of a crypt is exhibited).

We use a transport/mass conservation model to describe
the dynamics of different types of cells inside a colonic the
crypt (see for instance [38,46], for similar models describ-
ing the space-time evolution of different types of cells).
Furthermore, we adopt a two phase model, where only pro-
liferative and apoptotic cells are considered. The transit cells
are then included in the proliferative cell group. In addition,
we suppose the proliferative cells move in a convective and
diffusive manner (the apoptotic cells do not have random
motion). Thus denoting by N1 and N2, the densities of pro-
liferative and apoptotic cells, respectively, these equations
are in �c × (0, T )

{
∂ N1
∂t + ∇ · (v1 N1) = ∇ · (D∇N1) + αN1 − βN1

∂ N2
∂t + ∇ · (v2 N2) = βN1

(1)

where D is the diffusion coefficient (it can be a scalar or a
function), v1 and v2 are the convective velocities of N1 and
N2, respectively, α and β the rates of birth and death of the
proliferative cells N1. It is usual to assume v1 = v2 = v

(see [38]). We also suppose the overall density of cells verify
N1 + N2 = 1. So, summing the two equations in (1), we get

∇ · v = ∇ · (D∇N1) + αN1. (2)

Furthermore, we assume that the interior of the colonic crypt
is “fluid-like” and the cells flow through the fixed extracel-
lular matrix like flow through a porous media, obeying to
Darcy’s law [15,36,46]. Therefore, the convective velocity
is defined by

v = −∇ p, (3)

where p is an (unknown) internal pressure. Consequently, by
introducing (3) in (2) and gathering the result with (1) yields
the system
⎧⎨
⎩

∂ N1
∂t − ∇ · (∇ pN1) = ∇ · (D∇N1) + αN1 − βN1

∂ N2
∂t + ∇ · (∇ pN2) = βN1

−�p = ∇ · (D∇N1) + αN1

(4)

Remark 1 We remark that if, instead of the condition N1 +
N2 = 1, the volume conservation relation, V1 N1+V2 N2 = 1,
is used (where V1 and V2 are, respectively, the averages vol-
umes of the live and dead cells [46]), then, the third equation
in (4) would be

−�p = ∇ · (
D∇(V1 N1)

) + (αV1 − βV1 + βV2)N1

which is essentially of the same type.

Since the constraint N1+N2 = 1 is not explicitly enforced
in (4), we solve this system only for N1, hereafter denoted
by N , and infer the solution for the apoptotic cell density N2,

123



I. N. Figueiredo et al.

by using the relation N2 = 1 − N1. Thus, finally the system
(4) becomes{

∂ N
∂t − ∇ · (∇ pN ) = ∇ · (D∇N ) + αN − βN
−�p = ∇ · (D∇N ) + αN .

(5)

We remark this is a coupled model, involving a parabolic-
type equation for N , the proliferative cell density, and an
elliptic-type equation for the pressure p, where p depends
implicity on the time variable t , through N . This model will
be completed by giving initial (time) boundary conditions for
N , boundary conditions for both unknowns N and p, and by
assigning values to the parameters D, α and β.

The choice for these boundary conditions and parameters
relies on the descriptions that have been reported in the liter-
ature (see for instance [19,23,24]). We consider two cases.
In the first case, that we hereafter call the “normal case” the
goal is to have the shape of the crypt �c preserved and a nor-
mal distribution of cells along the crypt wall, as recurrently
described in the literature. In the second case, hereafter called
the “abnormal case”, the aim is to recover aberrant colonic
crypt shapes (this is also the primary goal of the paper), by
using the coupled model (5) and with the presupposition (also
often reported in the literature and medically validated exper-
imentally), that an abnormal behavior of the cell dynamics
will induce a modification in the shape of the colonic crypt.

3 Normal case

Boundary conditions for N The initial (time) condition for
the proliferative cell density we set N (0, x, y) := N 0(x, y),
where

N 0(x, y) := 1

2

(
1 + 2

π
arctan

(
2h
3 − y

ε

))
(6)

where h is the height of the crypt (measured along the crypt
axis

−→
OY , see Fig. 1b, and ε is a very small positive scalar

(see Sect. 3.2.1, for the exact values of h and ε). This defi-
nition is in good agreement with experiments and literature
(see for instance [8]), where it is claimed, the proliferative
cell activity occurs in the lower two-third part of the crypt.
In effect N 0 is then approximatively 1 and zero at the bottom
and top of the crypt, respectively.

In addition we set

N (t, x, y) := 0 in �1 × (0, T ),
∂ N
∂n (t, x, y) := 0 in

(
�2 ∪ �3

) × (0, T ).
(7)

These two boundary conditions are also reasonable, since, it
is well known, that inside a crypt, the cell flux (mainly driven
by mitotic-activity, i.e. cell division) is directed towards the
top, to the crypt orifice. Once the cells reach the top of the
crypt they undergo apoptosis. The first condition in (7) sim-
ply states that at the top of the crypt there are not proliferative

cells and it allows for the shedding of cells into the lumen.
The second condition imposes that there is no flux of cells
across the lateral boundaries �2 and �3, which is also verified
in normal crypts.

Boundary conditions for p (pressure) We set

p(t, x, y) := 1 in �1 × (0, T ),
∂p
∂n (t, x, y) := 0 in

(
�2 ∪ �3

) × (0, T ).
(8)

The first condition (Dirichlet condition) simply states that
the pressure is always constant at the crypt orifice, where
the apoptotic cells are shed into the lumen. The second con-
dition states that, in normal crypts, the cell flux is directed
upwards and not laterally. This means that the normal veloc-
ity of the cells on �2 and �3 verifies v · n = 0, where n is the
unit outward normal vector to the boundary of �c. Thus, and
because of (3) (which states v = −∇ p), we have 0 = ∂p

∂n in
�2 and �3.

Choice of the parameters D, α and β We emphasize that
the values for these parameters are not known. However there
is some qualitative informative about them, that we use in the
sequel for their definition.

As mentioned before, the proliferative cells are essentially
located in the lower two-thirds of the crypt, with a strong
activity at the bottom of the crypt, while the fully differenti-
ated and apoptotic cells are located in the upper third part of
the crypt. Accordingly, we choose for α a decreasing function
of the height of the crypt (quadratic at the crypt bottom), that
must be zero in the upper third top part (see also [45], where
the rate of birth α is a linear function of the crypt height). For
defining β, the rate of death of the proliferative cell density
N , we just adopt the reverse definition of α. Thus,

α(y) :=
{

(y − 2
3 h)2 τ1 y ∈ [0, 2

3 h]
0 y ∈ [ 2

3 h, h] , (9)

β(y) :=
{

0 y ∈ [0, 2
3 h]

(y − 2
3 h)2 τ2 y ∈ [ 2

3 h, h] (10)

where τ1 and τ2 are two positive small weighting parameters
(see Sect. 3.2.1, for their values).

The diffusion coefficient D is usually considered a con-
stant. So we hereafter set D := 1. Other definitions might be
also possible, as for instance, a function of the height of the
crypt, like α and β, or a function of the unknown cell density
N (see [4,38]).

3.1 Mathematical model: normal case

By gathering all these previous definitions and equations, we
can now formulate the mathematical model for the normal
cell dynamics inside the colonic crypt. Find N (the prolifera-
tive cell density) and p (the pressure related to the convective
velocity v, by the equation v = −∇ p), such that
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ N
∂t − ∇ · (∇ pN ) = ∇ · (D∇N ) + (α − β)N ,

−�p = ∇ · (D∇N ) + αN ,

p = 1 in �1 × (0, T ),
∂p
∂n = 0 in

(
�2 ∪ �3

) × (0, T ),

N = 0 in �1 × (0, T ),
∂ N
∂n = 0 in

(
�2 ∪ �3

) × (0, T ),

N (0, .) = N 0(.) in �c

(11)

with D = 1, α, β defined in (9), and N 0 in (6).
The problem (11) is a coupled problem. In order to solve

it we basically decouple N and p. We first solve the ellip-
tic-type equation for p, with a given N , and afterwards the
parabolic-type equation for N , with the previous computed
p, and this procedure is iterated on time. In the appendix we
also comment on the existence and regularity of the solutions
to these two decoupled problems.

3.2 Numerical approximation: normal case

In order to actually compute the finite-dimensional approx-
imation to the solution of (11), we need to define the
discretization employed. We applied finite elements, for dis-
cretizing the space variable (x, y), and finite differences for
the time variable t . Thus, by first applying the finite element
method, we have the following semidiscrete Galerkin formu-
lation (discrete in space and continuous on time), of (11) in
(0, T )⎧⎨
⎩

M ∂ N̄
∂t (t) + C(p)N̄ (t) = −K N̄ (t) + Mα−β N (t),

K p̄ = −K N̄ (t) + Mα N̄ (t),
N̄ (0) = N̄ 0.

(12)

Here, M and K are the usual mass and stiffness finite ele-
ment matrices, Mα and Mα−β are modified mass matrices
(resulting directly from the generation of matrices by the
finite element procedure) and C( p̄) is also a finite element
matrice, depending on the pressure p, that comes from the
pressure equation. We denote by p̄ and N̄ (t) the finite ele-
ment approximations of p(.) and N (t, .), respectively. This
means that now p̄ and N̄ (t) are vectors of unknowns at the
finite element nodes. In addition N̄ 0 is also the finite element
vector corresponding to the function defined in (6). We rep-
resent by ∂ N̄

∂t (t) the derivative of the vector N̄ (t) with respect
to the time variable. Let us now proceed and subdivide the
time interval [0, T ] into n − 1 subintervals

[0, T ] =
n−1⋃
i=0

[ti , ti+1],

0 = t1 < t2 < · · · < ti < · · · < tn = T

We assume, for simplicity, the time step size dt = ti −ti−1 =
T

n−1 is constant over the time interval. In addition, we approx-

imate the time derivatives ∂ N̄
∂t (ti+1) by the forward time dif-

ference scheme

∂ N̄

∂t
(ti+1) ≈ N̄ (ti+1) − N̄ (ti )

dt
= N̄ i+1 − N̄ i

dt
(13)

where the notations are self-explanatory. Consequently, we
fully discretize the equations (12), by the following system
of equations{

M N̄i+1−N̄ i

dt + C( p̄i )N̄ i+1 = −K N̄ i+1 + Mα−β N̄ i+1,

K p̄i = −K N̄ i + Mα N̄ i ,
(14)

for all i = 0, . . . , n −1. This scheme corresponds to implicit
(or backward) Euler time discretization method, for the equa-
tion with unknown N̄ . The coupled system (14) can equiva-
lently be rewritten as{(

M
dt + C( p̄i ) + K − Mα−β

)
N̄ i+1 = M

dt N̄ i ,

K p̄i = (−K + Mα)N̄ i ,
(15)

for all i = 0, . . . , n − 1.
The methodology we apply to solving the discrete prob-

lem (15) consists in computing, for each time step, first the
pressure and then the cell density (the procedure stops, when
the final time T is reached).

3.2.1 Experiments: normal case

For all the experiments we take dimensionless values, and
the following have been used, unless otherwise mentioned.
The final time is T = 10. The size of the 2D crypt �c ⊂ IR2

(see Fig. 1b) is based on average dimensions reported on the
literature for human colonic crypts, as described before in
Sect. 2. We consider the rectangle � = [−10, 10]×[−5, 55]
and for the boundary of �c (see again Fig. 1b), denoted by
∂�c = �1 ∪ �2 ∪ �3,

�1 := {(x, y) : (−4 ≤ x ≤ −3 ∨ 3 ≤ x ≤ 4) ∧ y = 48},
�2 := {(x, y) : (x = −4 ∨ x = 4) ∧ 4 < y < 48}

∪ {(x, y) : y = 4 − √
16 − x2},

�3 := {(x, y) : (x = −3 ∨ x = 3) ∧ 4 < y < 48}
∪ {(x, y)y = 4 − √

9 − x2}.

(16)

The parameters ε, τ1, τ2 and h, in the definition of N 0, α

and β (see (6) and (9)), are equal to 4.8, 10−5 , 10−3 and 48,
respectively.

The spatial domains � and �c are discretized with trian-
gular finite element meshes and linear shape functions. The
implementation is done in MATLAB� [43].

The Fig. 2 displays the result of the numerical simulations
for final time T = 10. In particular, the Fig. 2b shows that
the function N respects the distribution of proliferative cells,
along the crypt height, in a normal colonic crypt.

We observe that we assigned values to the parameters ε

and τ2, but the choice τ1 = 10−5, related to the rate of prolif-
eration, was made differently. We executed the algorithm for
the normal case, for a finite set S of τ1 values, and computed
the value τ ∗

1 leading to
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Fig. 2 Normal crypt simulations for final time T = 10. a Finite ele-
ment mesh. b Proliferative cell density N . c Pressure p

min
τ1∈S

‖N̄ nmax − N̄ 0‖, (17)

where nmax is the last iteration in the algorithm, correspond-
ing to the final time T . The result was τ ∗

1 = 10−5, and conse-
quently in (9), τ1 = τ ∗

1 = 10−5. The corresponding pressure,
denoted hereafter by p∗, will be used in the abnormal case
problem: this p∗ will be henceforth considered the “normal
pressure” in a normal colonic crypt.

4 Abnormal case

The primary goal of this paper is to recover aberrant crypt
shapes, by using the dynamics of proliferative cells inside the
crypt. In the previous “normal case”, the focus was on the cell
dynamics, yielding a stabilized crypt shape. As opposed to
this “normal case”, now we perturb this normal cell mecha-
nism, inside the crypt, check whether it disrupts the U-shape
geometry of the normal crypt, and recover abnormal crypt
shapes (as in [21,41]). It is in effect widely reported in the lit-
erature, and also validated experimentally, that an abnormal
shape of the colonic crypt could be associated to a modifica-
tion of the rate of birth α, of the proliferative cell density N .
An increase of α should change the pressure as well as the
velocity v (3) of the flux of cells, on the lateral boundaries
�2 and �3. On the whole this would promote a change in the
geometry of the colonic crypt.

4.1 Mathematical model: abnormal case

The mathematical model for the abnormal case has a structure
somewhat similar to (11), with respect to the cell dynam-
ics. The main difference is that it is now formulated in a
time dependent crypt domain with moving boundaries. It is
composed of three parts: the coupled parabolic and elliptic

equations, involving the unknowns N and p, and the equation
describing the evolution the spatial domain �c.

Abnormal cell dynamics—N equations in �c(t)× (0, T )

⎧⎪⎪⎨
⎪⎪⎩

∂ N
∂t − ∇ · (∇ pN ) = ∇ · (D∇N ) + αN − βN ,

N = 0 in �1(t) × (0, T ),
∂ N
∂n = 0 in

(
�2(t) ∪ �3(t)

) × (0, T ),

N (0, .) = N 0(.) in �c(0) = �c.

(18)

Abnormal cell dynamics—p equations
⎧⎪⎪⎨
⎪⎪⎩

−�p = ∇ · (D∇N ) + αN ,

p = 1 in �1(t) × (0, T ),
∂p
∂n = 0 in �2(t) × (0, T ),
∂p
∂n = −γ (p − p∗) in �3(t) × (0, T ).

(19)

Time dependent crypt domain and moving boundaries
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�c(0) := �c,

�c(t) := crypt domain at time t ∈ (0, T ],
∂�c(t) := �1(t) ∪ �2(t) ∪ �3(t),
�1(t) := �1,∀t ∈ [0, T ],
�2(t) and �3(t) are defined in (24) and (23).

(20)

Here D = 1, β is defined in (9), N 0 in (6); p∗ is the normal
pressure obtained by solving the elliptic equation in (11), in
the time dependent domain �c(t), i.e.
⎧⎨
⎩

−�p = ∇ · (D∇N ) + αN ,
∂p
∂n = 0, in �2(t) ∪ �3(t) × (0, T )

p = 1, in �1(t) × (0, T ),

(21)

and the rate of birth α is now defined, with a higher value at
the bottom of the crypt (compare with (9))

α(x, y) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(y − 2h
3 )2τ1 + 1√

x2 + (y−0.5)2

900 + 1

|x | < 0.5
y ∈ [0, 2

3 h] ,

(y − 2h
3 )2τ1

|x | ≥ 0.5
y ∈ [0, 2

3 h] ,

0 y ∈ [ 2
3 h, h].

(22)

Moreover, we assume, that for each time t , the bound-
ary condition for the pressure in the inner lateral boundary
�3(t) of the crypt should be proportional to the difference
between the current pressure p(t) and the normal pressure
p∗. That is, ∂p(t)

∂n = −γ (p(t) − p∗), where γ is a positive
scalar (its value is defined in Sect. 4.2.1). Therefore, since
the velocity of the proliferative cell density N verifies (3), the
normal velocity at each point of this inner lateral boundary
is vn(t) = γ

(
p(t)− p∗). In particular, it points outwards the

crypt if p(t) > p∗. Thus, motivated by this latter property,
we redefine the shape of the inner lateral boundary, at time
t + dt , where dt is a very small positive time increment,
by using the following first-order Taylor formula: any point
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(x, y)(t + dt) belonging to �3(t + dt) is derived from the
corresponding point (x, y)(t) in �3(t), by

(x, y)(t + dt) := (x, y)(t) + dt vn(t) n(t), (23)

where vn(t) is the the normal velocity at point (x, y)(t) (given
by vn(t) = γ

(
p(t) − p∗)), and n(t) is the unit outward nor-

mal vector to the boundary �3(t), at the point (x, y)(t).
In addition, since in a normal 2D-crypt, the inner region is

a thin layer, whose thickness corresponds to the size of only
one cell, we assume the deformation undergone by �2(t) fol-
lows �3(t). This means, we suppose that a single cell deforms
like an entire body. Consequently, any point p�2(t) of �2(t),
lying on the straight-line defined by the unit outward normal
vector to a point p�3(t) of �3(t), verifies

vn(p�2(t)) := −vn(p�3(t)). (24)

In this way, the thickness of the region inside the crypt dom-
ain, �c(t), is always the same and fixed, for any time t .

Remark 2 We first remark that if α is defined by (9), then in
model (18)–(20), we have p = p∗, and the crypt walls remain
the same, because the velocity vn(t) = 0. Thus model (18)–
(20) coincides with model (11), for α defined by (9). Let αε

be the linear perturbation of α defined by (22) with the second
term multiplied by a small parameter ε. We have done numer-
ical experiments that confirms the model (18)–(20), with this
αε , converges to the model (11), with α defined by (9). In
fact, this can also be somewhat inferred from the discrete
equations (15). The linear perturbation αε will induce first
a linear perturbation on the mass matrices Mαε and Mαε−β .
Then, the elliptic equation for p (second equation in (15)),
which has now a small perturbation on the source term (its
right hand side), will give a perturbed pressure pε , close to
p∗, if ε is very small. Consequently, also the matrix C(pε)

will be a small perturbation of C(p) (remark that C(p) is
linear on p), and consequently the cell density N ε will be
close to N . Morever, the velocity vn(t) will be close to zero.
Therefore, the solution of model (18)–(20) tends to the solu-
tion of model (11), for α defined by (22), when the second
term in (22) is multiplied with a small parameter ε.

4.2 Numerical approximation: abnormal case

Likewise the normal case we use finite elements for discret-
izing the space variable (x, y) and finite differences for the
variable t . The procedure for solving the abnormal case is
summarized in the following algorithm.

Algorithm: abnormal case

Step 1: Initialize at time t = 0, with �0
c = �c, �0

1 = �1,
�0

2 = �2, �0
3 = �3, N̄ 0 defined in (6), and p̄∗0 the solution

of (21). Determine the pressure p̄0 by solving (21).
Step 2: For i ≥ 0:

Fig. 3 Shape of the colonic crypt for different times: a t = 0, b t = 1,
c t = 2, d t = 5, e t = 10

1. Determine N̄ i+1, the solution of (18) in the current
domain �i

c, using the previous computed p̄i .
2. Define the new domain �i+1

c , by determining the new
boundaries �i+1

3 , �i+1
2 as indicated in (23)–(24), and

with �i+1
1 = �1, for all n ≥ 1.

3. Define a new finite element mesh in the new domain
�n+1

c .
4. Define the extension N̄ i+1 to the new domain �i+1

c ,
such that

N̄ i+1(xi+1, yi+1) = N̄ i (xi , yi )

where the points (xi+1, yi+1)∈ �i+1
c and (xi , yi )∈ �i

c
are related by (23).

5. With N̄ i+1 determine p̄∗i+1 and afterwards p̄i+1 in the
new domain �i+1

c (using (21) and (19), respectively).

Step 3: Go to Step 2 and repeat with i replaced by i + 1.

Step 4: Stop when the final time T is reached.

4.2.1 Experiments: abnormal case

Here we use the same values described before, in Sect. 3.2.1,
for the rectangle, �, the crypt domain at time t = 0, i.e.
�c(0) = �c, and the parameters ε, τ1, and τ2. The new
parameter γ is equal to 10. Again, the spatial domains �

and �c are discretized with triangular finite element meshes
and linear shape functions. The implementation is done in
MATLAB� [43].

For each domain �c(t) the time step size verifies dt <
c
b min(dx, dy), where c is a constant less than 1, b is the max-
imum of the normal velocity vn euclidean norm, in �3(t), i.e.
b = max |vn|�3(t)|, and dx and dy are the spatial step sizes
in the O X and OY directions, respectively.

In Fig. 3 we can see the beginning and the evolution of
the bifurcation process in a colonic crypt. By increasing the
proliferative rate, at the bottom of the crypt, the pressure
becomes larger there, and leads to a deformation of the outer
and inner boundaries �2(t) and �3(t).
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Fig. 4 Comparison of a medical image with the numerical simula-
tions (obtained with model (18)–(20) at final time T = 40). a Medical
image exhibiting a bifurcated colonic crypt (from [21], with permis-
sion of Springer). b Finite element mesh. c Proliferative cell density N .
d Pressure p

The Fig. 4 displays the shape of the crypt at final time
T = 40, and illustrates the similarity with the bifurcation
observed in a medical image (Fig. 4a). The Fig. 4c and d
show the proliferative cell density and the pressure, respec-
tively.

5 Conclusions and outlook

The main purpose of this paper has been to simulate colonic
crypt bifurcation, by means of partial differential equations,
more exactly, by using a convection-diffusion-shape model.
This model couples the dynamics of live and dead cells, resid-
ing inside a single crypt, with the shape of the crypt. It was set
up based on the cellular mechanism, that occurs in colonic
crypts, and which is reported in several biological and med-
ical articles.

On the whole, the numerical simulations, produced with
the proposed model, reveal a good agreement with medi-
cal images exhibiting normal and bifurcated colonic crypts,
obtained with scanning electron microscopy (see [21]). In

addition, the simulations also demonstrate that a single crypt
changes its geometric pattern and starts bifurcating at the
bottom, where an abnormal increase of proliferative cells is
taking place.

However, there is a need for further research, mainly with
respect to the parameters involved in the model. In effect,
these parameters rule the outcome of the numerical simu-
lations. Yet, there is lack of information about their values,
and they are very unlikely (or impossible) to be determined or
tested experimentally. In the future we intend to address this
issue. We will try to figure out these parameter values, based
on the available qualitative information, and using again a
mathematical approach.

Acknowledgments This work was partially supported by the research
project Aberrant Crypt Foci and Human Colorectal Polyps: mathemat-
ical modelling and endoscopic image processing (Contract UTAus-
tin/MAT/0009/2008) from the UT Austin | Portugal Program (http://
www.utaustinportugal.org/).

Appendix

Given N (., t) it is well known that the elliptic problem,

⎧⎨
⎩

−�p = ∇ · (D∇N (., t)) + αN (., t) in �c,

p = 1 in �1,
∂p
∂n = 0 in

(
�2 ∪ �3

)
,

(25)

has a solution and that its regularity depends on the regularity
of N (., t). However, the mixed Dirichlet-Neumann bound-
ary conditions lead to a lack of regularity of p in the corner
points connecting Dirichlet and Neumann boundary condi-
tions. For ensuring the regularity of p in all the domain, the
crypt �c can be redefined in a natural way, by removing
the corners (see Fig. 5, which displays one upper branch
of the redefined 2D-crypt) and modifying the boundary
conditions in (25) (see [20] for a similar procedure). This

Fig. 5 Modified crypt boundary
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means, ∂�c = �1 ∪ �2 ∪ �3 ∪ �4, and the solution of (25)
becomes p = 1 + p̄, where p̄ is the solution of{−�p = ∇ · (D∇N (., t)) + αN (., t) in �c,

γ
∂p
∂n + ηp = 0 in ∂�c,

(26)

where γ and η are non negative enough smooth functions in
∂�c, such that γ +η = 1, η = 1 in �1, η = 0 in �2. Assum-
ing, furthermore that N (., t) ∈ C∞(�c), then the solution
of (26) is in C∞(�c). As a consequence, we can guarantee
(see for instance [30]), that for a fixed p = 1 + p̄ (with p̄
solution of (26)) the solution N of the parabolic-type equa-
tion with the two boundary conditions, with respect to N ,
replaced by γ ∂ N

∂n + ηN = 0, is in C∞(�c×]0, T ]). More-
over if the initial condition N 0 ∈ C∞(�c) is positive, then
N ∈ C∞(�c×]0, T ]) is also positive.
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