
Abstract

We propose a model for describing and predicting the parallel performance of multi-

grid numerical software on distributed memory architectures for which different data

partitioning and mapping strategies may be used. The goal of the model is to allow

reliable predictions to be made as to the execution time of a given code on a large num-

ber of processors of a given parallel system, by only benchmarking the code on small

numbers of processors. Despite its relative simplicity the model is shown to be accu-

rate and robust with respect to both the parallel architectures and the data partitioning

strategies that are used.

Keywords: performance evaluation and prediction, parallel distributed algorithms,

multigrid numerical software.

1 Introduction

Computational science and engineering research is of growing importance across a

large range of application sectors and frequently research teams have potential access

to a wide variety of computational resources. Consequently, when a computationally

demanding numerical simulation is to be undertaken there is frequently a choice to be

made as to the most appropriate resource on which to execute the task. The optimal

selection of resource will depend upon a number of factors such as availability, cost,

turn-around time, etc. In order to make informed decisions therefore it is desirable

that accurate predictions can be made in advance as to the execution time of a given

job on a given computer system. An important feature of this decision-making process

is that different parallelization strategies are generally possible for typical numerical

codes, and so it is also necessary to be able to predict the performance of a given

code on a given architecture for a selection of different partitions and mappings of
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the computational data. This is because, depending on the particular problem and

hardware combination different geometric partitionings of the computational work

can show better performance than others, see for example [5]. In order to make such

decisions in a reliable way therefore, it is necessary that computational researchers

are able to predict the performance of their software across different combinations of

these resources and parallelization strategies.

We propose a methodology for describing and predicting the performance of paral-

lel numerical software that can be implemented with different geometric partitionings

of the computational work within a distributed memory architecture. The method-

ology is tested for a particular class of numerical codes, based upon the multigrid

solution of discretized partial differential equations, [1]. Our goal is to allow reliable

predictions to be made as to the execution time of a given code on a large number of

processors of a given parallel system, by only benchmarking the code on small num-

bers of processors. We show that the prediction model is accurate and robust with

respect to both the parallel strategies, and the parallel architectures considered.

2 Background

There is a large body of related work into performance modelling [8] that varies from

analytical models designed for a single application through to general frameworks that

can be applied to many applications on a large range of high performance computing

(HPC) systems. For example, in [9] detailed models of a particular application are

built for a range of target HPC systems, whereas in [10] or [11] an application trace

is combined with some benchmarks of the HPC system that is being used in order to

produce performance predictions.

Both approaches have been demonstrated to be able to provide accurate and ro-

bust predictions, although each has its potential drawbacks: significant code-specific

knowledge being required for deriving the analytic models, whereas the trace approach

may require significant computational effort. Moreover, in the former approach, when

a different HPC system is used it would generally be necessary to change the model,

adding new parameters for example. Instead, in the latter, we need to add or to find

new benchmarks when a new code is used. Considering these limits, the choice be-

tween the two approaches can depend also on other factors. For example, when it

is more important to predict the run-time of a large-scale application on a given set

of systems, as opposed to comparing the performance of the systems in general, re-

searchers (like those in the LANL group [9]) prefer to study deeply their application

in order to obtain its own analytic model for the available set of HPC systems. On

the other hand, when it is more interesting to compare performances of different ma-

chines on some real-applications, the latter approach is preferable; in that case differ-

ent benchmark metrics can be used and convoluted with the application trace file.

Our approach lies between these two extremes. We use relatively simple analytic

models (compared to the LogP model [12] for example), that are applicable to a gen-
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eral class of multigrid algorithms and then make use of a small number of simulations

of the application on a limited number of CPUs of the target architecture in order to

obtain values for the parameters of these models. Predictions as to performance of the

application on larger numbers of processors may then be made.

3 Previous Research and Parallel Strategies

In our recent work [2, 3, 4], we use a prediction model that accurately describes the

performance of different multi-level parallel numerical codes within a multi-cluster

environment. The model is based on the assumption that a symmetric partition by rows

of the computational domain is used. In this case each processor can send and receive

MPI messages only to and from the neighbouring processors immediately above and

below it in the partition, see Figure 1.

Figure 1: Parallel distribution of the grid nodes in a strip partitioning strategy. Each

processor sends and receives messages of length N and has a computational load that

is proportional to N × Ñ

The model used in this earlier work is based on the relation

Tparallel = Tcomp + Tcomm,

where Tcomp is the computational time on the slowest processor and Tcomm is the total

parallel overhead, primarily due to inter-processor communications. The calculation

of Tcomp is relatively straightforward since it simply requires the execution of a prop-

erly scaled problem on a single processor: the precise dimensions of the problem

solved on each processor in the parallel implementation are maintained for the se-

quential solve in order to obtain an accurate value for Tcomp. This provides the same

memory access and contention patterns, relating to cache and multicore effects for

example, as those experienced in the parallel runs.
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The calculation of Tcomm is rather more complex than that for Tcomp however. The

methodology proposed in [2, 3] is based on a limited sequence of parallel runs across

a limited number of parallel resources. The overhead measured on these parallel runs

is used to extrapolate information for the overhead expected when a larger number

of processor are used. The comparison of the parallel times measured with respect

to those predicted shows a high accuracy (an error below 10%) for each combination

of parallel architecture and numerical code used. In our recent work [4], we have

exploited this methodology for predicting the performance of a parallel engineering

multi-level numerical code. Also in this situation an extrapolation of the parallel over-

head based upon a few runs of the code on a small number of processors has shown

its reliability.

This reliability has been confirmed for a number of different codes based upon

the multilevel solution of discretized partial differential equations (PDEs) [2, 3, 4],

with each code involving slightly different parallel implementations. In each case

however, the partitioning strategy used is based upon grouping together consecutive

rows as illustrated in Figure 1. The differences in the parallel implementations tend

to come about at the interface between subdomains where there may be additional

“ghost” rows in order to reduce the frequency of communication but at the expense

of some additional computational work per processor. In this work we have focused

exclusively on a single software implementation in the first instance (the code m1 in

[2]) which also allows the partition of the computational mesh into blocks as well as

strips. This is illustrated in Figure 2 for a partition into 12 subdomains. The figure also

seeks to illustrate the use of ghost rows within the code m1, where each subdomain

is augmented by a ghost column and a ghost row for each of its left-right and above-

below neighbours respectively.

Note that the use of ghost rows means that slightly different quantities of compu-

tational work are assigned to each processor depending upon the partitioning strategy

that is used. For example, as shown in Figures 2 and 3, even when the block sizes

are the same, having different numbers of neighbours can mean a different amount

of computational work per processor and a different maximum amount of work per

processor in particular.

The model described in our previous work, for both Tcomp and Tcomm is no longer

sufficient for predicting the performance of these more general numerical codes for

which different partitioning strategies, such as block partitioning, are implemented

in order to improve the performance of the parallel run. However, starting from our

previous work it is possible to obtain a model that can accurately describe the commu-

nication patterns for different parallel block partitioning strategies, as demonstrated in

the following sections.
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npa=3

npb=4

npa=1

npb=1

nprocs=12

nprocs=1

Figure 2: Parallel distribution of the grid nodes in a block partitioning strategy. Each

computational node lies at the vertices of the grid however the dashed lines represent

additional ghost rows or columns added for efficient parallel implementation. Each

internal block in the partition has two ghost rows and two ghost columns in addition

to its internal unknowns, see the two diagrams at the top (case nprocs = 12, npa = 4,

npb = 3). The diagram at the bottom represents the computational grid when the code

is implemented on a single processor (nprocs = 1) for which no ghost lines are used.

4 The Predictive Model

We describe a model for predicting the performance of parallel runs of multigrid codes

when used to solve a large “target” problem across np processors. This target prob-

lem is defined on a rectangular computational mesh of dimension Na × Nb, together

with a given homogeneous “block” distribution of the computational domain across

the available processors. In particular, we consider the mesh to be mapped onto np
processors as a bi-dimensional grid npa × npb, with

np = npa · npb,
Na

npa

=
Nb

npb

,

see Figures 2 and 3. As in these figures, in the following we use the notation (npa, npb)
to indicate the case where a grid of npa × npb processors is used to partition the com-
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npb=2

npa=6

nprocs=12

Figure 3: Parallel distribution of the computational work across a grid 6 × 2 of 12
processors. Note that the partitioning strategy has changed from that of Figure 2 even

though the number of processors is unchanged.

putational mesh.

Following our previous work, [2, 3, 4], the first assumption that we make is that the

parallel solution time (on np processors) may be represented as

T = Tcomp + Tcomm. (1)

In (1), Tcomp represents the computational time for a problem of size Ña × Ñb on

a single processor (where Ña = Na

npa
and Ñb = Nb

npb

), and Tcomm represents all of

the parallel overheads (primarily due to inter-processor communications). The exact

shape of the computational domain per processor may vary, as described in the pre-

vious section, with respect to the partitioning strategy used. The MPI parallel code

m1 (see [2] for details) has a computational work on each internal processor (i.e.

each processor which has an interior subdomain mapped to it) that is proportional to

(Ña + 2) × (Ñb + 2), as shown in Figure 2. However, when only a single proces-

sor is used the equivalent computational mesh is of dimension Ña × Ñb. The task of

estimating Tcomp reliably is complicated somewhat by this observation (compared to

[2, 3] for example) and so a more general approach is considered.

The computational time is now assumed to be equal to that associated with a so-

lution on a (2, 2) processor grid, where the size of the problem is scaled in such way

that each processor in the (2, 2) grid solves on a computational mesh of dimension

Ña × Ñb. In this way we consider each combination of one ghost row with one ghost

column as arises in a general parallel partition, see Figure 4. Our approach is not to

seek to measure Tcomp explicitly, but instead to determine it implicitly as an expression

involving the measured parallel time (T(2,2)), across the (2, 2) partition, through the

6



~
  Na

~
  Nb

(2,2) grid

  Na

Nb

(npa,npb) grid

Figure 4: Example of a computational grid for a target problem with a (npa, npb)
partition and an equivalent sized problem for the (2, 2) processor grid, as used in the

predictive methodology. Note that each of the processors in both problems have the

same work except for the variation in the number of ghost rows and columns.
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relation

T(2,2) = Tcomp + Tcomm(2,2)

(see below for further details).

The communication phase consists of a sequence of sends and receives between

neighbouring processors through the use of the MPI library. When non-blocking com-

munications are used exclusively, a theoretical full overlapping of the communications

between processors of the same row and of the same column is expected. Tcomm is

then equal to the largest overhead time measured between processors in the same row

and those in the same column. We assess that these overheads depend upon the num-

ber of processors in the same row and in the same column, respectively. This is a

reasonable assessment due to the fact that, as described in our previous work [3], the

overhead in a strip partition, where the processors are in a single column (or row),

depends upon to the number of processors used. Let Tcomm(npa,1), and Tcomm(1,npb),

be the overhead times measured on the strip of processors (npa, 1), and in the column

(1, npb), respectively. Then, based upon the previous argument we would have

Tcomm = max(Tcomm(npa,1), Tcomm(1,npb)). (2)

We remark however that equation (2) is not valid for real codes, because there

is some asynchrony in the communication: both the complexity of the code and the

access of memory induces an asynchronous term for the elapsed overhead time. The

expression that represents this additional term, which we denote as TEXTRA, depends

upon the particular code being used. The next assumption that we make however is

that this term is equal to that measured for the (2, 2) grid of processors, where each

processor solves on an Ña × Ñb computational mesh. We then have that

T(2,2) = Tcomp + TEXTRA + max(Tcomm(2,1), Tcomm(1,2)),

hence the resulting expression for TEXTRA is

TEXTRA = T(2,2) − Tcomp − max(Tcomm(2,1), Tcomm(1,2)). (3)

Now, for the target problem on the (npa, npb) grid of processors, we have

Tcomm = TEXTRA + max(Tcomm(npa,1), Tcomm(1,npb)) (4)

Hence using (1), (4) and (3)

T = Tcomp + TEXTRA + max(Tcomm(npa,1), Tcomm(1,npb))
= T(2,2) + max(Tcomm(npa,1), Tcomm(1,npb)) − max(Tcomm(2,1), Tcomm(1,2))
≈ T(2,2) + max(Tcomm(npa,1) − Tcomm(2,1), Tcomm(1,npb) − Tcomm(1,2))
= T(2,2) + max(T(npa,1) − T(2,1), T(1,npb) − T(1,2))

Finally we have

T ≈ T(2,2) + max(Ta, Tb), (5)
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where Ta = T(npa,1) − T(2,1) and Tb = T(1,npb) − T(1,2).

Based upon the evidence of [4] both overheads Ta and Tb are assumed to satisfy a

relation of the following type:

Ta = α(npa) + γ(npa) · work; (6)

Tb = α(npb) + γ(npb) · work. (7)

In (6), (7) the term work is used to represent the problem size on each processor at

the finest level which can be expressed in MBytes of the memory required since the

computational work is proportional to the mesh size for a multigrid implementation.

Also note that the length of the messages (that is Nb for the grid (npa, 1) or Na for the

grid (1, npb)) does not appear in this formula since it is assumed that for a given size

of target problem (e.g. a mesh of dimension Na × Nb and a partition of dimension

npa × npb) the size of the messages is known a priori.

Furthermore, following [4], we assume that the following relations are valid:

α(np) ≈ c + d log2(np) + e log2(np)2, (8)

γ(np) ≈ constant. (9)

This assumption is discussed in detail in [4], where only partitions by strips are consid-

ered. In practice, in order to evaluate the parameters c,d,e and γ, we use measurements

taken for np = 4, 8, 16 and pose: γ = γ(16); whilst c, d and e are obtained using a

simple linear fit through the three data points (2, α(4)), (3, α(8)) and (4, α(16)).

A summary of the overall predictive methodology is provided by the following

steps. We define as Na × Nb and (npa, npb) the target problem size and target grid of

processors respectively (i.e. we wish to predict a code’s performance for these values).

Also, let Ña = Na/npa and Ñb = Nb/npb, and define Ña × Ñb to be the size of

problem (not considering the ghost rows) on each processor in the target configuration.

1. Run the code on a (2, 2) grid with a fine grid of dimension (2Ña) × (2Ñb) and

collect the parallel time T(2,2).

2. Run the code on the grids (np, 1) with np = 2, 4, 8, 16 processors, with a fine

grid of dimension (np ∗
fNa

l
) × Ñb for l = 1, 2, 4. Define as work the memory

allocated in each processor. In each case collect the parallel time T(np,1) and

then compute T(np∗,1) − T(2,1) with np∗ = 4, 8, 16. Similar steps are computed

to collect T(1,np∗) − T(1,2), with np∗ = 4, 8, 16.

3. Fit a straight line (using a least squares fit), as in Eq. (6) or (7) (for each choice

of np = np∗), through the data collected in step 2 in order to estimate α(np∗)
and γ(np∗) for both Ta and Tb.

4. Fit a straight line, as in Eq. (8), through the points (2, α(4)), (3, α(8)) and

4, α(16)) to estimate c, d and e based upon Eq. (8): now compute α(np) for

the required choice of np.
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5. Use the model in Eq. (6) to estimate the values of Ta (and use the model in

Eq. (7) to estimate Tb) for the required choice of np (using the values γ(np) =
γ(16) and α(np) determined in steps 3 and 4 respectively).

6. Determine max(Ta, Tb) from step 5 and combine with T(2,2) (determined in step

1) to estimate T as in Eq. (5).

5 Numerical Results

The model described in the previous section is now used to predict the performance

of the multigrid numerical code m1 [2], running on two different clusters of the White

Rose Grid [13] environment.

• Cluster A is a cluster of 128 dual processor nodes, each based around 2.2 or

2.4GHz Intel Xeon processors with 2GBytes of memory and 512 KB of L2

cache. Myrinet switching is used in the tests to connect the nodes.

• Cluster B is a cluster of 87 Sun microsystem dual processor AMD nodes, each

formed by two dual core 2.0GHz processors. Each of the 87× 4 = 348 batched

processors has L2 cache memory of size 512KB and access to 8GBytes of phys-

ical memory. Again, Myrinet switching is used.

A selection of typical test results, using Clusters A and B, are shown in Tables 1

and 2, respectively. The first three columns of both tables describe the target prob-

lem: the total number of processors, the grid of processors/partition geometry, and the

overall problem size Na×Nb. The fourth column shows the memory required by each

processor associated with each target problem: we use 2GB for cluster A and 1GB

for Cluster B. Using the methodology described in the previous section, we predict

the code’s performance for each of these target configurations. The actual measured

times once the target problems are run, the predicted times and the resulting errors are

then listed in the last three columns of each table.

These results show a very accurate and robust prediction with respect to each of:

the target problem size, the target number of processors, the target partition and the

parallel architecture used. In fact the methodology can detect the performance of the

multigrid code with an error below 10% for all the numerical tests considered. This

level of accuracy is certainly sufficient to be able to guide decisions as to the schedul-

ing of parallel jobs on available resources, although it may not always be sufficient to

allow the optimal decomposition to be predicted. Specifically, when there is little to

choose between the efficiency of different partitions, an error of up to 10% could lead

to slightly a sub-optimal partition being selected. Highly inappropriate partitions will

always come out worse in the computational model however.
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np (npa, npb) size mem. per proc. meas. predict. ‖error‖
64 (8, 8) 65536 × 32768 1GB 378.36 358.89 5.1%

64 (4, 16) 32768 × 65536 1GB 370.16 353.57 4.5%

64 (2, 32) 16384 × 131072 1GB 315.82 320.05 1.3%

32 (8, 4) 65536 × 16384 1GB 372.94 358.89 3.7%

32 (4, 8) 16384 × 65536 1GB 373.11 353.57 5.2%

Table 1: Measurements and predictions for Cluster A (both quoted in seconds)

np (npa, npb) size mem. per proc. meas. predict. ‖error‖
128 (16, 8) 131072 × 65536 2GB 522.83 519.81 0.58%

128 (8, 16) 65536 × 131072 2GB 493.71 506.43 2.6%

128 (32, 4) 262144 × 32768 2GB 533.86 504.85 7.9%

128 (4, 32) 32768 × 262144 2GB 512.18 507.28 0.96%

64 (8, 8) 65536 × 65536 2GB 510.59 506.43 0.81%

64 (16, 4) 131072 × 32768 2GB 478.07 519.81 8.7%

64 (4, 16) 32768 × 131072 2GB 507.28 474.76 6.4%

64 (32, 2) 262144 × 16384 2GB 564.54 533.86 5.4%

64 (2, 32) 16384 × 262144 2GB 534.80 496.75 7.1%

32 (8, 4) 65536 × 32768 2GB 481.36 506.43 5.2%

32 (4, 8) 32768 × 65536 2GB 507.28 495.66 2.3%

Table 2: Measurements and predictions for Cluster B (both quoted in seconds)

6 Discussion

In this paper we have proposed a simple methodology for predicting the performance

of parallel multigrid codes across different parallel architectures based upon distributed

memory. The philosophy upon which our methodology is based is to produce a general

empirical model that involves a minimal number of parameters, and then to determine

appropriate values for these parameters for any given combination of code, partition

and hardware resources. These parameter values are determined based upon the char-

acteristics of the code when it is executed on much smaller numbers of processors

than are ultimately required. This allows resources that are not currently available

to be reserved for future execution based upon the predicted need. Results presented

in the previous section demonstrate that the methodology is both robust and accurate

across the two parallel architectures considered, as well as coping satisfactorily with

different partitioning strategies and different problem sizes, at least for the multigrid

code so far considered.

Although the results presented in this work are encouraging, it is clear that when

the elapsed times for different partitioning strategies are very close the methodology

is unable to predict these differences reliably. The immediate future work that we pro-

pose is to test the methodology on a broader selection of codes to assess the generality

of our approach to wider classes of partitioning strategy and parallel software.
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