
Abstract

We propose a model for describing and predicting the performance of practical paral-

lel engineering numerical software in a multi-cluster environment with different dis-

tributed memory architectures. The goal of the model is to allow reliable predictions

to be made as to the execution time of a given code on a large number of processors

of a given parallel system, by only benchmarking the code on small numbers of pro-

cessors. The model is tested using a a practical engineering multilevel code. Despite

its simplicity the model is shown to be accurate and robust with respect the cluster

architectures considered.

Keywords: parallel distributed algorithms, cluster computing, performance evalua-

tion and prediction, multilevel numerical software.

1 Introduction

As Grid computing becomes available as a practical and viable commodity for com-

putational engineering practitioners the need for reliable performance prediction be-

comes essential. In particular, when a variety of computational resources are available

to an engineering research team they need the ability to make informed decisions

about which resources to use, based upon issues such as the size of the problem they

wish to solve, the turn-around time for obtaining their solution and the financial charge

that this will incur. In order to be able to make such decisions in a reliable way, it is

necessary that they are able to predict the performance of their software on different

individual resources and across combinations of these resources.

In this paper we present results from our recent research into the modelling of

practical engineering application software [4] that exploits state-of-the-art multilevel

solvers [5]. The parallelization of this software is based upon standard geometric

1

Paper 4

Reliable Performance Prediction for
Parallel Scientific Software in a
Multi-Cluster Grid Environment

G. Romanazzi, P.K. Jimack and C.E. Goodyer
School of Computing
University of Leeds, United Kingdom

©Civil-Comp Press, 2008
Proceedings of the Sixth International Conference
on Engineering Computational Technology,
M. Papadrakakis and B.H.V. Topping, (Editors),
Civil-Comp Press, Stirlingshire, Scotland

domain decomposition techniques and is implemented using the portable communica-

tions library MPI. This ensures that the software may be executed in a multi-cluster en-

vironment involving both heterogeneous and multicore processor systems, each with

different levels of performance, availability and access charges.

The long-term goal of our research is to allow reliable predictions to be made as

to the execution time of any given parallel code on a large number of heterogeneous

and multicore processors, possibly distributed on different clusters, by benchmarking

the code on small numbers of processors. When extra memory and processors are

available, parallel multilevel implementations are able to solve problems numerically

on finer meshes, so as to achieve greater accuracy than would be otherwise possible.

We wish to be able to estimate the performance prior to actually running on these very

fine meshes with large numbers of processors.

We show the performance of our predictive model across a range of computational

resources: single and multicore, homogeneous and heterogeneous. Prior work has

shown this approach to be successful for a number of “model problems” based upon

state-of-the-art parallel multigrid solvers, see [10]. The work described in this pa-

per demonstrates the feasibility of our proposed approach when extended to practical

multilevel engineering software, rather than the more straightforward model problems

previously considered.

2 Related work

2.1 Performance modelling

This work builds upon a very substantial body of research into performance modelling

that varies from analytical models designed for a single application through to general

frameworks that can be applied to many applications on a large range of high perfor-

mance computing (HPC) systems. For example, in [7] detailed models of a particular

application are built for a range of target HPC systems, whereas in [3] and in [8] an

application trace is combined with some benchmarks of the HPC system used in order

to produce performance predictions. Both approaches have been demonstrated to be

able to provide accurate and robust predictions, although each has its potential draw-

backs: significant code specific knowledge being required for deriving the analytic

models, whereas the trace approach may require significant computational effort.

Our approach lies between these two extremes. We use relatively simple analytic

models (compared to [2] for example) that are applicable to a general class of algo-

rithms and then make use of a small number of simulations of the application on a

limited number of CPUs of the target architecture in order to obtain values for the pa-

rameters of these models. Predictions of the performance of the application on larger

numbers of processors may then be made. This idea has already been shown to work

well for simple multigrid codes running on different parallel architectures and in a

multi-cluster environment, see [10, 11].

2

2.2 Background to the physical problem

Elastohydrodynamic lubrication (EHL) plays an important role in many mechanical

devices such as journal bearings or gears where, under very heavy loads, the extreme

pressure in the lubricant causes elastic deformation of the contacting elements. This is

typically modelled via a thin-film approximation for the lubricant flow, coupled with

a film-thickness equation which captures the elastic deformation. With a suitable non-

dimensionalization (see [13] for further details) the following equations are obtained

on a two-dimensional domain (Xmin, Xmax) × (Ymin, Ymax):

∂

∂X

(
ρH3

ηλ

∂P

∂X

)
+

∂

∂Y

(
ρH3

ηλ

∂P

∂Y

)
− us

∂(ρH)

∂X
= 0 (1)

and

H(X,Y) = H00+
X2

2
+

Y 2

2
+

2

π

∫ Ymax

Ymin

∫ Xmax

Xmin

P (X ′, Y ′)√
(X − X ′)2 + (Y − Y ′)2

dX ′dY ′ .

(2)

Here P and H are the unknown pressure and film-thickness respectively, λ and us are

constants, H00 is an unknown offset value which can be determined indirectly through

a force balance constraint,

∫ Ymax

Ymin

∫ Xmax

Xmin

P (X,Y) dXdY =
2π

3
, (3)

and the density ρ and viscosity η are given by the following empirical relations:

ρ(P) =
0.59 × 109 + 1.34phP

0.59 × 109 + phP

η(P) = exp

{
αp0

zi

[
−1 +

(
1 +

phP

p0

)zi
]}

.

The coefficients ph, p0, α and zi are assumed to be known constants.

The numerical method, that has been implemented in parallel, for solving the above

model is described in detail in [4]. The code, which we refer to as mEHL, is based

upon a finite difference approximation to (1) and a simple quadrature scheme for (2).

The efficient solution of the resulting discrete system depends critically upon the use

of multilevel methods:

• Parallel nonlinear multigrid (the so-called FAS scheme [1, 12], whose parallel

implementation is described in [4, 6]) is used for the solution of the discrete

form of (1);

• Parallel multilevel multi-integration (MLMI), see [4, 13]is used to evaluate the

discrete form of (2).

3

The latter scheme is especially important since it allows the cost of evaluating the

film thickness over the entire domain, approximated on a finest mesh of size N f ×
N f , to be reduced from O((N f)4) to O((N f)2(log N f)2). Note however that the

parallel implementation of the MLMI requires each process to work with the entire

computational domain at the coarsest mesh level. This is fundamentally different from

the case with the parallel multigrid solver, which allows the meshes at each level to be

partitioned across the processes. This difference has an important impact on the way

in which the parallel performance of the software should be predicted, compared to a

pure multigrid solver such as in [10, 11].

Precise models for the computational complexity of the code, as well as the parallel

computational and memory complexities, are provided in [4]. These are not required

for the purposes of this work however, which seeks to base the performance predic-

tion on much simpler empirical models. Indeed, the following section summarizes in

equations (5)-(7) all of the a priori knowledge that is required about the complexity

of the mEHL software. Consequently, no further details are provided here.

3 The Predictive Model

The ultimate goal of our model is to allow reliable predictions to be made as to the

execution time of any given code running on parallel clusters within a Grid environ-

ment. Initially however we focus on the important, and growing class of software that

uses parallel multigrid methods on large numbers of heterogeneous and/or multicore

processors. Our philosophy is to benchmark the code on small numbers of processors

in order to aim to predict its performance on larger numbers. When sufficient num-

bers of processor are available it is possible to solve problems numerically on finer

grids, so as to achieve greater accuracy than would be otherwise possible. We would

like to be able to estimate the performance prior to actually running on these very fine

meshes, so as to predict the resource implications of so doing.

In our model we represent the parallel execution time as consisting of two compo-

nents:

Tparallel = Tcomp + Tcomm, (4)

where Tcomp is the computational time and Tcomm is the parallel overhead, primarily

due to inter-processor communications. Our method is applied to parallel codes that

equally distribute their (two-dimensional) domain across np processors using a par-

tition by rows, as in [10]. Let N f
x × N f

y be the size of the finest grid used in the

problem then the size of the problem associated to each processors is N f
x × Ñ f

y where

Ñ f
y = N f

y /np, see Figure 1.

4

3.1 Predicting the computational time Tcomp

In full multigrid codes, since the computational time scales linearly with the size of

the problem, Tcomp can be easily determined through runs of the code on a single pro-

cessor, see [9]. It should be noted however that, in order to obtain accurate predictions

of Tcomp, care needs to be taken to ensure that the geometric shape of the subdomains

for the parallel runs are respected. This permits the model to describe accurately the

caching, and other memory access patterns, see [10]. In this work we represent Tcomp

as a sum of two components

Tcomp = Tmgrid + Tnmgrid,

where Tmgrid is the computational time associated with the multigrid operations and

Tnmgrid is the rest of the computational cost of the code. Consequently, assuming the

parallel multigrid is run on np processors with a partition by rows, Tmgrid can be mea-

sured through a run on a single processor of the code with size of the problem equal to

N f
x × Ñ f

y . The strategy for predicting Tnmgrid depends however on the particular code

considered. Information known about the computational code behaviour can help to

obtain a predictive strategy for Tnmgrid. This constitutes the fundamental contribution

of this work as a generalization of the multigrid methodology described in [10, 11],

which only considers the case Tnmgrid ≈ 0.

3.1.1 A computational analysis of mEHL

The multilevel multi-integration (MLMI) software for EHL, described in [4], has two

fundamental computational parts: a set of multigrid V-cycles that controls the general

convergence of the code and a series of MLMI cycles associated with the stages of

(pre- and post-)smoothing of the multigrid V-cycle. The computational time spent in

a V-cycle is therefore the sum of two terms: the multigrid cost Tmgrid, that is propor-

tional to the (finest) size N f
x × Ñ f

y of the problem assigned to each processor and the

remaining computational cost Tnmgrid associated to the multilevel multi-integration.

We remark that we define as N c
x ×N c

y , N f
x ×N f

y , and np the coarsest mesh, the finest

mesh of the target problem size, and the target number of processors, respectively (i.e.

we wish to predict the code’s performance for these values).

As described in [4], the cost Tnmgrid (associated to each processor) has a multi-

summation term that is quadratic with respect to the size of the overall coarsest mesh,

N c
x × N c

y , to leading order in powers of the dimensions of the problem Nx and Ny.

5

Therefore we have

Tnmgrid ∝
(N c

xN
c
y)

2

np
, (5)

Tmgrid ∝

f∑

k=c+1

Nk
xNk

y

np
, (6)

Tcomp ∝ γ1

(N c
xN

c
y)

2

np
+ γ2

f∑

k=c+1

Nk
xNk

y

np
, (7)

where c and f are the coarse and fine grid levels respectively in the multilevel hierar-

chy. See Figure 1 for an illustration of this notation.

Figure 1: Coarse and fine mesh of a partitioning across four processors. The picture

shown at the bottom represents the size problem used in the serial runs for determining

Tmgrid.

A parallel run of mEHL with nV C V-cycles performs the multi-summation over

the coarsest mesh on each processor

nsum = nV C ∗ [ncoarse + (ngrids − 1) ∗ (npre + npost + 2)] (8)

6

times. In (8) ngrids(= log2(N
f
x /N c

x) + 1) is the number of grids used; ncoarse is

the number of smoothing sweeps at the coarsest level, npre is the number of pre-

smoothing sweeps and npost is the number of post-smoothing sweeps in a single

V-cycle. In order to predict the multi-summation effect in Tcomp (this is the quadratic

term of Tnmgrid in (5)), we need to exploit its dependence with respect to both nsum
in (8) and Tcomp in (7). First, we observe that the same multi-summation work can be

obtained across a sequence of serial runs of the code with a coarsest mesh N c
x × N c

y

and different finest levels 2lN c
x × 2lN c

y (for l = 1, 2, . . .), so long as we keep nsum
constant through all these runs. The associated execution times obtained are denoted

as Tl in the following part of this section. The parameter nsum is kept constant by

appropriate variation of the parameter ncoarse, according to the equation (8). In fact

the possibility of changing this parameter in (8) permits us to obtain the same nsum
(equal to the value used in the target problem that we wish to predict) through all the

sequential runs (associated to l = 1, 2, . . .) where a different number of grids (ngrids)

is used. According to equation (7), we can then obtain a straight line through all the

points (l, Tl). Therefore, we can obtain Tnmgrid (as expressed in (5)) using the value

extrapolated to l = 0 of the line plotted through the points (l, Tl) and dividing it by

np.

This methodology for obtaining Tnmgrid can be therefore described through the

following steps:

1. run the code on a single processor with the coarsest mesh N c
x × N c

y and finest

mesh 2lN c
x × 2lN c

y for l = 1, 2, 3, in each case collect the execution time Tl

obtained;

2. determine the least square fitting line through the points (l, Tl) for l = 1, 2, 3;

3. extrapolate the least square fitting line obtained in step 2 to l = 0;

4. get as prediction for Tnmgrid the quotient obtained by dividing the extrapolated

value obtained in step 3 by the number of processors np (see Equation (5)).

In order to predict Tmgrid we need, as explained before, to run the code on a sin-

gle processor with a finest mesh of size N f
x × Ñ f

y . This is analogous to our earlier

work in [11], see also Figure 1. Since now we are only interested to catch the com-

putational cost associated with the multigrid, we do not consider terms due to the

multi-summation at the coarsest mesh. These will be therefore removed from the

computational cost.

The methodology for determining Tmgrid is then described through the following

steps:

1. run the code on a single processor with coarsest mesh N c
x × Ñ c

y , with Ñ c
y =

Nc
y

np

and finest mesh N f
x × Ñ f

y , saving the execution time as Tnlevels−1;

2. run the code on a single processor with the same coarsest mesh as in step 1 and

with the finest mesh equal to 2lN c
x × 2lN c

y for l = 1, 2, 3;

7

3. determine the least square fitting line through the points (l, Tl) for l = 1, 2, 3;

4. extrapolate the least square fitting line obtained in step 2 to l = 0, obtaining the

value T0;

5. get as prediction for Tmgrid the difference between Tnlevels−1 and T0 (the former

represents Tmgrid plus some MLMI work and T0 is an estimate of this MLMI

work, which must be therefore removed).

Finally, the computational time predicted, Tcomp, is the sum of Tnmgrid and Tmgrid

obtained from the methodology described.

3.2 Predicting the overhead time Tcomm

The goal of this section is to develop a simple model that captures the main features of

the parallel overheads with just a small number of parameters that may be computed

based upon runs using only a few processors. The model presented here is slightly less

simple than that described in [11], because the code mEHL includes both point-to-

point and global communications, as opposed to only point-to-point communications

in the multigrid code described in [11]. Similar to [11] however, we use the model

Tcomm = α(np) + γ(np) · work. (9)

In (9) the term work is used to represent the problem size on each processor at the

finest level, it can be expressed in MBytes of the memory required. Also note that

the length of the messages (N) does not appear in this formula since it is assumed

that for a given size of target problem (e.g. a mesh of dimension 16385 × 16385) the

size of the messages is known a priori (in this case, since the partition is by rows, the

messages on the finest mesh will be of length 16385). This is the primary reason that

the expression (9) can be so simple.

Furthermore, we will assume that the following relations are valid:

α(np) ≈ c + d log2(np) + e log2(np)2, (10)

γ(np) ≈ constant. (11)

The prediction of the parallel overheads requires the inclusion of a quadratic term in

the model of α(np). This is the main difference with respect to the multigrid overhead

model described in [11], where a linear model is sufficient to capture the overheads due

to local communication patterns alone. The justifications for this model and the above

assumptions are based upon a substantial body of empirical evidence. An illustration

of this is provided in Figure 2. This figure shows plots of overhead against work at

the finest level for different numbers of processors. In almost each case we observe a

linear growth in overhead with work, with an almost constant slope (i.e. the slope is

approximately independent of np). We also note that in the case when the growth of

the overhead is not perfectly linear (as for np = 64, 128) the least square fitting line

8

1 1.5 2 2.5 3 3.5 4
−100

−50

0

50

100

150

200

250

300

350

work per proc

T
im

e
(s

e
c
s
.)

Overhead on WRG2, problem size: 257x257−−>8193x8193 with np=128

np=2
np=4
np=8
np=16
np=32
np=64
np=128

Figure 2: Overhead time (Tcomm) on the heterogeneous parallel system WRG2 with

a fixed size of messages (Nx = 257, . . . , 16385). The overhead patterns plotted are

obtained using Tpara − Tcomp, where Tpara is the actual measure of parallel time and

Tcomp is obtained using the methodology described in Section 3.1.1

procs np=2 np=4 np=8 np=16 np=32 np=64 np=128

slope 57.9089 68.2272 82.1748 67.6626 69.9855 81.6459 62.4410

Table 1: Best fit slopes for the overhead patterns observed in Figure 2.

for the overhead pattern plotted has an almost equal linear slope to that observed when

fewer processors are used, see Table 1.

We also observe that the overhead increases non-linearly as the number of proces-

sors used (np) is doubled, (hence the need for the quadratic term in (10)). Note that

the length of the messages is the same in all of these runs.

The predictive methodology for Tcomm that follows (and that is similar to that

described in [11]) is based on a series of runs on a limited number of processors

np0 = 1, 2, 4, 8.

1. For ` = 1 to 3:

Using the methodology described in the previous subsection, determine Tcomp

for a parallel run across np processors with a fine grid dimension N f
x×(21−`N f

y),

and define work ∝ N f
x (21−`Ñ f

y).

2. For ` = 1 to 3:

Run the code on np0 = 2, 4, 8 processors, with a fine grid of dimension N f
x ×

9

np0(21−`Ñ f
y).

3. Fit a straight line as in Eq. (9) through the data collected in steps 1 and 2 to

estimate α(np0) and γ(np0), for the three cases np0 = 2, 4 and 8.

4. Fit a parabola as in Eq. (10) through the points (1, α(2)) (2, α(4)) and (3, α(8))
to estimate c, d and e: based upon Eq.(10) with these coefficient values now

compute α(np) for the required choice of np.

5. Use the model in Eq. (9) to estimate the value of Tcomm for the required choice

of np (using the values γ(np) = γ(8) and α(np) determined in steps 3 and 4

respectively).

6. Combine Tcomm from step 5 with Tcomp (determined in step 1, for ` = 1) to

estimate Tparallel as in Eq. (4).

4 Numerical Results

We have tested our model for two different cluster architectures (referred to here as

WRG2 and WRG3), which are both available on the White Rose Grid [14].

4.1 Implementation of the methodology across the White Rose

Grid

We make use of two clusters on this grid, with the following characteristics:

• WRG2 (White Rose Grid Node 2) is a cluster of 128 dual processor nodes, each

based around 2.2 or 2.4GHz Intel Xeon processors with 2GBytes of memory

and 512 KB of L2 cache. Myrinet switching is used to connect the nodes.

• WRG3 (White Rose Grid Node 3) is a cluster of 87 Sun microsystem dual pro-

cessor AMD nodes, each formed by two dual core 2.0GHz processors. Each of

the 87 × 4 = 348 batched processors has L2 cache memory of size 512KB and

access to 8GBytes of physical memory. Again, Myrinet switching is used.

Users of WRG2 and WRG3 do not get exclusive access to their resources and

hence some variations in the execution time of the same parallel job can be observed

across different runs. These variations can be limited when the methodology takes

into account the specific hardware features of these clusters, see discussion in [10,

11]. We have also to consider the situation that will exist for a large parallel run. In

WRG2, for example, since a large parallel run will inevitably involve some of the

slower processors (with 2.2GHz instead of 2.4GHz) we need to run all the runs for

determining both Tcomp and Tcomm using at least one slower processor. Similarly,

for the multicore cluster WRG3, a large parallel run will use all four cores for each

10

node. As a consequence, in the methodology for predicting Tcomm in Section 3.2 we

need to use np0 = 4, 8, 16 in WRG3 with all cores taken in single nodes (1, 2 or 4

respectively) as opposed to np0 = 2, 4, 8 used in WRG2.

4.2 Discussion and results

In this section we present a selection of results for the prediction model applied to the

code mEHL using the two clusters WRG2 and WRG3. We have tested the model for

the two following problems

1. np = 64, N c
x × N c

y = 257 × 128,

N f
x × N c

y = 16385 × 8193,

nV c = 9, npre = 3, npost = 1, Maximum memory used per processor

756MB;

2. np = 128, N c
x × N c

y = 257 × 257, N f
x × N c

y = 16385 × 16385,nV c = 9
npre = 3, npost = 1, Maximum memory used per processor 763MB.

The problem size chosen in these tests represents a typical scenario in which a user

wishes to use as many processors as possible in order to numerically solve a problem

with the highest possible level of mesh resolution. In fact the problem size proposed

for these tests is that associated with the largest problem that can be solved on the

given number of processors (64 or 128).

In Tables 2 and 3 are shown the measurements, the predictions and the errors ob-

tained using the methodology for the clusters WRG2 and WRG3 respectively. We

observe that in both cases the methodology shows high accuracy for the prediction of

the code’s performance. The error measured is less than 5% in all the combinations

examined. However, it may be observed that low accuracy is achieved when the par-

allel overheads become predominant with respect to the computational time. This can

be seen with both clusters WRG2 and WRG3, as shown in Figures 3 and 4. In these

figures, the plots of the execution time running on 128 processors are shown with re-

spect to the memory usage at the finest level per processor (work on finest grid). These

plots provide evidence that the methodology is able to describe the irregular patterns

of the performance of the code as the work per processor increases, but very accurate

predictions are obtained only when the work per processor is sufficiently high. This

feature is almost certainly due to the model for Tcomp being more reliable than our

simple model for Tcomm so that when the latter dominates the accuracy deteriorates.

Fortunately, for efficient parallel applications Tcomp is dominant and so this is unlikely

to be a problem in practice.

5 Conclusions

In this paper we have proposed a simple methodology, extending that presented in

[11], for predicting the performance of a complex parallel numerical multilevel code

11

procs np=64 np=128

size 16385 × 8193 16385 × 16385
prediction 1051.31 1242.86

measurement 1074.86 1260.24

|error| 2.91% 1.38%

Table 2: Predictions and measurements (both quoted in seconds) for WRG2.

1 1.5 2 2.5 3 3.5 4
500

600

700

800

900

1000

1100

1200

1300

work on finest grid

T
im

e
(s

e
c
s
.)

Parallel execution time on WRG2 for np=128

Time measured
Time predicted

Figure 3: Prediction on WRG2 with a fixed size of messages with N f
x = 16385. The

three points plotted with work=1,2 and 4 are associated to the work on the finest mesh

N f
y = 4097, 8913 and 16385 respectively.

that combines both multigrid and multilevel multi-integration computations. This

methodology has been demonstrated to be robust and accurate across different par-

allel architectures, including multicore and inhomogeneous architectures.

The next stage of this work is to model the overhead patterns when different domain

decomposition strategies are used (e.g. partitioning the data into blocks rather than

strips), and to consider running the software across multiple Grid resources as part of

a single computation.

Acknowledgements

This work is supported by EPSRC grant EP/C010027/1.

12

procs np=64 np=128

size 16385 × 8193 16385 × 16385
prediction 904.39 1107.79

measurement 908.44 1124.19

|error| 0.44% 1.45%

Table 3: Predictions and measurements (both quoted in seconds) for WRG2.

1 1.5 2 2.5 3 3.5 4
500

600

700

800

900

1000

1100

1200

work on finest grid

T
im

e
 (

s
e

c
s
.)

Paralle execution time on WRG3 for np=128

Time measured
Time predicted

Figure 4: Prediction on WRG3 with a fixed size of messages with N f
x = 16385. The

three points plotted with work=1,2 and 4 are associated to the finest mesh (N f
y) equal

to 4097, 8913 and 16385 respectively.

References

[1] W.L. Briggs, V.E. Henson, and S.F. McCormick, “A Multigrid Tutorial”, SIAM

(2000).

[2] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E. Santos, R.

Subramonian, and T. von Eicken, “LogP: towards a realistic Model of Parallel

Computation”, SIGPLAN Not., 28, 7, 1–12, 1993.

[3] L. Carrington, M. Laurenzano, A. Snavely, R. Campbell, and L.P. Davis, “How

well can Simple Metrics represent the Performance of HPC Applications?”, in

“Proceedings of SC2005”, 2005.

[4] C.E. Goodyer and M. Berzins, Parallelization and Scalability issues of a Mul-

tilevel Elastohydrodynamic Lubrication Solver, Concurrency and Computation:

Practice and Experience, 19, 369–396, 2007.

[5] C.E. Goodyer, M. Berzins, P.K. Jimack, L.E. Scales, A Grid-Enabled Problem

13

Solving Environment for Parallel Computational Engineering Design. Advances

in Engineering Software, vol.37, 439–449, 2006.

[6] P. H. Gaskell, P. K. Jimack, Y. Y. Koh and H. M. Thompson, “Development

and Application of a Parallel Multigrid Solver for the Simulation of Spreading

Droplets”, Int. J. Numer. Meth. Fluids, 56, 979–1002, 2008.

[7] D.J. Kerbyson, H.J. Alme, A. Hoisie, F. Petrini, H.J. Wasserman, and M. Git-

tings, “Predictive Performance and Scalability Modeling of a Large-scale Appli-

cation”, in “Proceedings of SC2001”, 2001.

[8] G. Rodriguez, R.M. Badia, and J. Labarta, “Generation of Simple Analytical

Models for Message Passing”, in “Proceedings of Euro-Par 2004”, (Editor), M.

Danelutto et al. (LNCS 3149, Springer), 183–188, 2004.

[9] G. Romanazzi and P.K. Jimack, “Performance Prediction for Parallel Numerical

Software on the White Rose Grid”, in “Proceedings of UK e-Science All Hands

Meeting”, ed. S.J. Cox (ISBN 978-0-9553988-3-4), 517–524, 2007.

[10] G. Romanazzi and P.K. Jimack, “Parallel Performance Prediction for Multigrid

Codes on Distributed Memory Architectures” in “High Performance Comput-

ing and Communications (HPCC-07)”, (Editor), R. Perrott et al., LNCS 4782,

Springer, 647–658, 2007.

[11] G. Romanazzi and P.K. Jimack, “Parallel Performance Prediction for Numerical

Codes in a Multi-Cluster Environment”, School of Computing Research Report

2008.2, University of Leeds, 2008.

[12] U. Trottenberg, C.W. Oosterlee, and A. Schüller, “Multigrid”, Academic Press

(2003).

[13] C.H. Venner and A.A. Lubrecht, “Multilevel Methods in Lubrication”, Elsevier,

Amsterdam, 2000.

[14] P.M. Dew, J.G. Schmidt, M. Thompson, and P. Morris, “The White Rose Grid:

Practice and Experience”, in “Proceedings of the 2nd UK All Hands e-Science

Meeting”, (Editor), S.J. Cox, EPSRC, 2003.

14

