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ANOMALOUS DIFFUSION IN POROUS MEDIA

J. A. FERREIRA, G. PENA AND G. ROMANAZZI

Abstract: In this paper, an incompressible single phase and single component
flow in a porous media presenting a nonfickian behaviour is studied. The model is
composed by a parabolic equation for the pressure, with homogeneous Dirichlet or
Neumann boundary conditions, coupled with a mass conservation equation for the
concentration, a transport equation for the mass flux and by a Darcy’s law for the
velocity. The transport equation for the mass flux takes into account a nonfickian
behaviour both in space and time. An IMEX finite element method is proposed to
solve numerically the coupled system of equations and the behaviour of the physical
unknowns is illustrated.

Keywords: porous media, nonfickian diffusion, darcy law, imex method, numerical
simulation.

1. Introduction
Traditionally, the behaviour of a miscible displacement of one fluid by

another in a porous medium Ω ⊂ R2 is described by the following set of
equations: a parabolic pressure equation

∂

∂t
(φρ) +∇ · (ρv) = q in Ω× (0, T ], (1)

where ρ, φ, q and v represent the density of the mixture, the porosity of the
medium, the source or sink term and the flow velocity given by Darcy’s law

v = −1

µ
K∇p in Ω× (0, T ], (2)

where K and µ represent the permeability tensor and the viscosity of the
mixture; and by a mass conservation equation

∂

∂t
(φρc) +∇ · (ρcv) +∇ · J = qc∗ in Ω× (0, T ], (3)
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where c and J represent the concentration of the injected fluid and the mass
flux. In (3) c∗ denotes the prescribed concentration at sources or c∗ = c at
sinks.

For incompressible fluids, under the assumption that the mass flux J is
described by Fick’s law

J = −D(v)∇c, (4)

and by using a constant density ρ, equation (3) is replaced by the advection-
diffusion equation

ρ
∂

∂t
(φc) + ρ∇ · (cv)−∇ · (D(v)∇c) = qc∗ in Ω× (0, T ], (5)

with the diffusion-dispersion tensor D(v) that is defined by

D(v) = DmφI + dt‖v‖I +
d` − dt
‖v‖ vvt, (6)

where ‖v‖ is the magnitude of the velocity, Dm is the molecular diffusion
coefficient, and dt, d` are the transverse and longitudinal dispersivities, re-
spectively.

In order to compute the unknowns ρ, p,v, φ and c, equations (1), (2), (3)
are complemented by some state equations or constitutive relations. For
instance in [1], different state equations are summarized for the following
scenarios: the density is constant and the fluid is incompressible, the fluid is
compressible with constant compressibility, or the porous media is deformable
with a high gradient of pressure.

The parabolic equation (5) has been largely considered in the numerical
simulation of fluid flows in several contexts as can be seen for instance in [1–6]
and in the references therein. The main theoretical objection to use equation
(5) is its parabolic character which induces an infinite speed of propagation
for the concentration, that is phisically unacceptable [7]. Another objection
to (5), observed in [7], is related with definition (6) of the diffusion-dispersion
tensor D(v) where the transversal and longitudinal dispersions are assumed
to be constant. In fact it is often observed in applications that they increase
with the distance and/or with time. A third objection is the linear depen-
dence of the mass flux J on the gradient of the concentration given by (4).
This is because, when a large concentration gradient exists, nonlinear effects
become important and (4) should then be replaced by a nonlinear relation
between J and ∇c that includes additional terms. This problem was also ob-
served when high pressure gradients are present [8–10]. Several approaches
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have been considered in the literature to overcome these objections to use
(5). We mention, without being exhaustive, the papers [7, 8, 10–22].

In this paper we start in Section 2 by presenting some mathematical mod-
els that were introduced in the literature to avoid some of the limitations
of the classical diffusion equation mentioned above. Between these models,
a coupled model for the evolution of a mixture in a porous medium is de-
scribed at the end of this section and it will be used in the rest of this work.
In Section 3 we propose an implicit-explicit method, based on finite element
methods, to discretize this coupled model. Section 4 is devoted to the numer-
ical simulation, we start by presenting some numerical experiments showing
the accuracy of the proposed method. The qualitative behaviours of the rel-
evant quantities for a diffusion process in a porous medium are compared in
fickian and nonfickian contexts. It should be stressed that, to the best of our
knowledge, such comparison has not yet been illustrated. Finally, in Section
5 we summarize the main conclusions.

2. Modelling memory in diffusion on porous media
2.1. Memory in time on dispersive mass flux. A common approach to
overcome the infinite propagation speed for the concentration in the advection-
diffusion equation (5) is its replacement by the following nonlocal time integro-
differential equation

∂c

∂t
(t) +Ac(t) +

∫ t

0

Ker(t− s)B(s, t)c(s)ds = f in Ω× (0, T ] (7)

where A and B are second order differential operators with respect to the
spatial variables, Ker represents a time convolution kernel and f is a reaction
term [11–16, 18]. Numerical methods for initial values problems defined by
(7) were largely studied and a huge collection of methods is now available,
see for example [23–36].

This type of integro-differential equation with memory in time can be ob-
tained by assuming that the mass flux admits the decomposition

J = Jm + Jd (8)

where Jm = −φDm∇c is the molecular diffusion and Jd is the dispersive mass
flux that satisfies the following differential equation

A
∂Jd
∂t

+ Jd = −Ddis(v)∇c, (9)
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where A is a tensor and Ddis(v) is the dispersive tensor

Ddis(v) = dt‖v‖I +
dt − d`
‖v‖ vvt.

Equation (9) was proposed in [18] in the case that the porous medium
presents small-scale heterogeneities. In particular, when A is an invertible
matrix, the dispersive mass flux Jd solution of (9) admits the representation

Jd(t) = e−A
−1tJd(0)−

∫ t

0

e−A
−1(t−s)A−1Ddis(v)∇c(s)ds. (10)

If the molecular mass flux Jm is given by Fick’s law (4) with D(v) replaced
by φDmI, that is

Jm(t) = −φDm∇c(t),
from (3), (8) and (10) we obtain

∂

∂t
(φρc) +∇ · (ρcv) = ∇ · (φDm∇c)

+

∫ t

0

e−A
−1(t−s)∇ ·

(
A−1Ddis(v)∇c(s)

)
ds+ qc∗

in Ω×(0, T ], when Jd(0) is constant. We observe that using a one dimensional
domain Ω, equation (9) is a first order approximation of Jd(t+ A), when

Jd(t+ A) = −Ddis(v)∇c(t),
that describes then the memory effect in time of a nonlocal approach, see [18].
A second order differential equation in time and space was also obtained
in [18], that has finite velocity of propagation under convenient assumptions
on the model parameters used.

2.2. Memory in time and space on dispersive mass flux. In what
follows we take into account the memory effect both in time and space of the
dispersive mass flux Jd(x, t). The resulting total mass flux J will be then
replaced accordingly in the advection-diffusion mass conservation equation
(5) that will be added to a system of differential equations describing the
flux J itself.

For incompressible flows, [7] introduced the following equation for the mass
flux

A
∂J

∂t
+ A(J · ∇)v + A(v · ∇)J + J = −D(v)∇c in Ω× (0, T ], (11)
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where A is a dispersion tensor and D(v) is the diffusion-dispersion tensor
given by (6).

We highlight in what follows the meaning of equation (11). When velocity
v is constant and A = τI, equation (11) has the form

τ
∂J

∂t
+ τ(v · ∇)J + J = −D(v)∇c (12)

that is similar to (9), where only the dispersive flux was considered. Assuming
that J is zero at t = 0, the solution of (12) is

J(x, t) = −
∫ t

0

e−τ(t−s)D(v)∇c(x− v(t− s), s) ds.

This last expression means that the mass flux J(x, t) at point x and at time
t depends on the behaviour of the concentration gradient at previous times
and previous positions, that is, it accounts for a memory effect in time and
space. In fact, (12) can also be obtained by the linear expansion of

J(x + τv, t+ τ) = −D(v)∇c,
which further shows the existence of memory in time and space for the mass
flux. Energy estimates for the coupled model (3), (12) have been obtained
in [37], for the case of constant porosity, velocity and density and an extra
term of fickian diffusion in equation (3).

An equivalent form for equation (11) appears also in [19, 20] where slow
moving incompressible fluids are considered. In these works, it is assumed
that the mass flux is decomposed as in (8) with Jd that satisfies

∂Jd
∂t

+ (v · ∇)Jd + (Jd · ∇)v = −D0(v)∇c+Dms, (13)

where

s = −ηJd, (14)

Dm is the usual molecular diffusion coefficient, and

D0(v) = β1‖v‖2I + β2vvT

with βi, i = 1, 2, that are medium constants and η that is a positive definite
tensor that depends on the velocity. Combining (13) with (14) we obtain

∂Jd
∂t

+ (v · ∇)Jd +
(
∇v +Dmη)Jd = −D0(v)∇c.
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As pointed out in [7], the proposed models avoid some of the limitations
of the classical diffusion model, namely the dispersive mass flux is influ-
enced by the weighted contribution from all previous values of the gradi-
ent of the concentration. This fact implies that the dispersive mass flux is
scale-dependent and the longitudinal-transversal dispersivities are time de-
pendent.

2.3. Differential model. In this paper, the model used is described by
a constant density ρ = 1, the parabolic pressure equation (1), the Darcy’s
law (2), the mass conservation equation (3) in nonconservative form and by
equation (11) provided with A = τI. This leads to the following model

∂φ

∂t
+∇ · v = q in Ω× (0, T ],

v = −1

µ
K∇p in Ω× (0, T ],

∂

∂t
(φc) + v · ∇c+∇ · J = f(c) in Ω× (0, T ],

τ
∂J

∂t
+ τ(J · ∇)v + τ(v · ∇)J + J = −D(v)∇c in Ω× (0, T ],

(15)

where D(v) is given by (6), τ is a parameter controlling the memory effect of
the mass flux (see the discussion done in the previous section) and f(c) = qc∗.

In this scenario, the porosity φ can be either known or calculated by using
a constitutive law, as done in [6]. Indeed, when the porosity is not known
for a certain media, it can be assumed a relationship between the porosity
and the pressure. For instance if the media is slightly compressible, then it
can be assumed that

φ(p) = φoecR(p−po) (16)

where cR denotes the rock compressibility constant of the medium, po is a
reference pressure and φo is the reference porosity (see [38]).

In the context of porous media, it is common, see [1], to consider a viscosity
µ dependent on the concentration through the standard quarter power law

µ(c) = (µ−0.25
s c+ (1− c)µ−0.25

0 )−4. (17)

The system of equation (15) is complemented with boundary conditions
for pressure, concentration and flux. We consider Dirichlet and Neumann
boundary conditions for the pressure, concentration and flux. To formal-
ize our setting, we first introduce two, possibly different, nonempty disjoint
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partitions of the boundary

∂Ω = ΓD,p ∪ ΓN,p and ∂Ω = ΓD,c ∪ ΓN,c.

We assume that the pressure profile is known on ΓD,p

p = pD on ΓD,p, (18)

and that satisfies a Neumann boundary condition on ΓN,p

− 1

µ(c)
K∇p · n = 0 on ΓN,p,

where n denotes the outer unit normal. For the Darcy’s law (2), we have
that this last boundary condition can be recast as

v · n = 0 on ΓN,p. (19)

The concentration and mass flux’s boundary conditions are then imposed as
follows

c(x, t) = g(x, t), ∀x ∈ ΓD,c and J(x, t) · n = 0, ∀x ∈ ΓN,c, (20)

where g(x, t) is a known function defined in ΓD,c. System (15) is also com-
plemented with initial data for the pressure, concentration and flux

c(0) = c0, p(0) = p0, J(0) = J0. (21)

3. An IMEX finite element method
In this section, we present a continuous Galerkin finite element method to

solve the system (15). Let us first introduce some notations used in this and
in the next section. We denote by L2(Ω) and H1(Ω) the standard L2 and
H1 Sobolev spaces of scalar functions. Given a nonzero measure portion Γ of
∂Ω, H1

Γ(Ω) denotes the space of H1(Ω) of functions that have zero trace on
Γ. Also, the equivalent spaces for vectorial functions are represented using
the same notation, but with bold letters. With an abuse of notation, we shall
denote by the same notation, (·, ·), the inner product of L2 and L2.

The weak formulation of the differential problem (15), (18), (19), (20) and
(21) reads as follows: find

p(t) ∈ H1(Ω), p(t) = pD on ΓD,p,

c(t) ∈ H1(Ω), c(t) = g(t) on ΓD,c

and
J(t) ∈ H1(Ω)
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such that ∀w1 ∈ H1
ΓD,p

(Ω), ∀w1 ∈ H1
ΓD,c

(Ω) and ∀w3 ∈ H1(Ω)×H1(Ω)(
∂

∂t
φ(p(t)), w1

)
+

(
1

µ(c(t))
K∇p(t),∇w1

)
= (q, w1), (22)(

∂

∂t
(φ(t)c(t)), w2

)
+ (v(t) · ∇c(t), w2)− (J(t),∇w2) = (f(c(t)), w2), (23)(

τ
∂J

∂t
(t) + D(v(t))∇c(t) + τ(J(t) · ∇)v(t),w3

)
+

+ (τ(v(t) · ∇)J(t) + J(t),w3) = 0.
(24)

We introduce now a finite element discretization of the previous variational
problem. Let k denote a positive integer and h a positive real number. We
denote by Pk the space of polynomials of degree less than or equal to k, and
by Th an admissible triangulation of Ω. We introduce the finite-elements
space

V k
h = {vh ∈ C0(Ω̄)| vh|K ∈ Pk, ∀K ∈ Th}

with k = 1, 2. The other spaces used in the following are

V k,0
h = {vh ∈ V k

h | vh|∂Ω
= 0},

V k,0,D,p
h = {vh ∈ V k

h | vh|ΓD,p
= 0}

and
V k,0,D,c
h = {vh ∈ V k

h | vh|ΓD,c
= 0}.

A fully discrete Galerkin approximation of the system (15) is now pre-
sented. The time discretization divides the time-interval [0, T ] in N subin-
tervals with a fixed time step ∆t = T/N . This approximation computes the
pressure, concentration and flux following this order at each time tn with
tn = tn−1 + ∆t starting with t0 = 0.

The fully discrete Galerkin approximation used for the pressure equation
(22) at time tn+1 is presented below. The variational formulation for the
pressure problem reads as: find pn+1 ∈ V k

h such that pn+1 = pD,h(tn+1)
on ΓD,p, where pD,h(tn+1) is the projection of pD(tn+1) into V k

h , and for all

vh ∈ V k,0,D,p
h(
dφ

dp
(pn)pn+1, vh

)
+

+∆t

(
K

µ(cn)
∇pn+1,∇vh

)
= ∆t(qn+1, vh) +

(
dφ

dp
(pn)pn, vh

)
.

(25)
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After calculating pn+1 we reconstruct the velocity as

vn = − K

µ(cn)
∇pn+1. (26)

In order to solve the concentration and flux equations, we use the weak
formulations (23) and (24), that is, we solve the following problem: find
cn+1 ∈ V k

h such that cn+1 = gh(tn+1) on ΓD,c (where gh(tn+1) is the projection
of g(tn+1) into V k

h ) and Jn+1 ∈ V k
h × V k

h such that

(φ(pn+1)cn+1, vh)+

+∆t(vn · ∇cn+1, vh)
−∆t(Jn+1,∇vh) = (φ(pn)cn, vh) + ∆t(fn+1, vh)

(27)

and

(τ + ∆t)(Jn+1,wh)+

τ∆t((vn ·∇)Jn+1 + (Jn+1 ·∇)vn,wh)
+∆t(D(vn)∇cn+1,wh) = τ(Jn,wh)

(28)

for all vh ∈ V k,0,D,c
h and wh = (w1,h, w2,h)

T with w1,h, w2,h ∈ V k
h .

Let {ϕpi}i=1,...,Np
, {ϕcj}j=1,...,Nc

and {ϕJ
l }l=1,...,NJ

denote the basis functions

of the spaces V k,0,D,p
h , V k,0,D

h and V k
h × V k

h respectively, the solution of the
problem (25)-(28) can be expressed as a linear combinations of the respective
basis functions

pn+1 =
∑

i=1,...,Np

αpiϕ
p
i , cn+1 =

∑
j=1,...,Nc

βcjϕ
c
j, Jn+1 =

∑
l=1,...,NJ

γJl ϕ
J
l .

Gathering the degrees of freedom for the pressure, concentration and flux
in the vectors Pn+1, Wn+1 and Un+1, respectively, these can be calculated by
solving the following linear systems

Mn+1Pn+1 = Fp,n+1 (29)

and [
An+1 B
Cn Dn+1

] [
Wn+1

Un+1

]
=

[
Fc,n+1

FJ,n+1

]
(30)
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where

Mn+1(i, j) =
(
dφ
dp (pn)ϕ

p
j , ϕ

p
i

)
+ ∆t

(
K

µ(cn)∇ϕ
p
j ,∇ϕpi

)
, ∀i, j = 1, . . . , Np,

An+1(i, j) =
(
φ(pn+1)ϕ

c
j, ϕ

c
i

)
+ ∆t

(
(vn · ∇ϕcj), ϕci

)
, ∀i, j = 1, . . . , Nc,

B(i, l) = −∆t
(
ϕJ
l ,∇ϕci

)
, ∀i = 1, . . . , Nc,

∀l = 1, . . . , NJ,
Cn(l, i) = ∆t

(
D(vn)∇ϕci ,ϕJ

l

)
, ∀l = 1, . . . , NJ,

∀i = 1, . . . , Nc,
Dn+1(l,m) = (τ + ∆t)

(
ϕJ
m,ϕ

J
l

)
+τ∆t

(
(vn ·∇)ϕJ

m,ϕ
J
l

)
+τ∆t

(
(ϕJ

m ·∇)vn,ϕ
J
l

)
, ∀l,m = 1, . . . , NJ,

Fp,n+1(i) =
(
dφ
dp (pn)pn, ϕ

p
i

)
+ ∆t (qn+1, ϕ

p
i ) , ∀i = 1, . . . , Np,

Fc,n+1(i) = (φ(pn)cn, ϕ
c
i) + ∆t (fn+1, ϕ

c
i) , ∀i = 1, . . . , Nc,

FJ,n+1(l) = τ
(
Jn,ϕ

J
l

)
, ∀l = 1 . . . , NJ.

We remark that matrix B does not depend on time and can be assembled
only once. There are several ways to optimize the assembly of the linear
systems (29)-(30). A first possibility lies in the mass counterpart of the
pressure associated matrix Mn+1 and An+1. These matrices can be assembled
using the finite element space corresponding to all the degrees of freedom
that steam from the triangulation (boundary conditions are implemented by
a simple row elimination procedure) and stored. The mass counterpart of
Mn+1 is nothing more than, up to a constant, the mass counterpart of An+1.

Notice that the concentration and flux problems are implicitly coupled for
stability reasons. Indeed, on the simpler fickian case (τ = 0), an explicit
treatment of the flux, either in the concentration equation, or in the flux
equation, would lead to a time discretization with an undesirable stability
restriction in the time step.

4. Numerical experiments
This section aims to study numerically the accuracy of the IMEX finite

element method described by equations (25), (26), (27) and (28), and to
illustrate the nonfickian behaviour of the solution of the initial boundary
value problem (15), (18), (19), (20) and (21).

In order to proceed with the description of the numerical experiments we
make the following assumption on the domain, parameters and functions
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used in (15): Ω = [0, 1]2, f = q = 0, φ(x, t) = ep(x,t), µ(c) = 1
((1−M)c+M)4

(where M = 0.5−0.25, using µS = 1 and µ0 = 0.5 in (17)).

4.1. Convergence behaviour. We start by studying numerically the con-
vergence properties of the IMEX method introduced before. We take K = I
(where I is the two-dimensional identity matrix) and Dm = dt = dl =
0.1. We use as initial conditions (at time t = 0): the pressure p(x, 0) =
x1x2(x1−1)(x2−1), the concentration c(x, 0) = e((x1−0.5)2+(x2−0.5)2)/0.05 where
x = (x1, x2), and the mass flux J(x, 0) = 0. As boundary conditions (see
(20)) we use

p(x, t) = 0,∀x ∈ ∂Ω, c(x, t) = 0,∀x ∈ ΓD,c and J(x, t)·n = 0,∀x ∈ ΓN,c,

where ΓN,c = {0} × [0, 1] and ΓD,c = ∂Ω\ΓN,c.
The errors of the numerical pressure, concentration and flux components

are measured by using the following time discrete norm

||u||∆t =

(
∆t

N−1∑
i=0

||u(tn)||2L2(Ω)

) 1
2

that us just the discrete analogue (by application of the rectangle quadrature
rule in time) of the standard norm in L2([0, T ], L2(Ω)). The errors are defined
using reference solutions obtained with ∆t = 10−5 and h = 0.03125.

In Figure 1 we plot the error measure in the ‖ · ‖∆t norm associated with
several simulations. All of the numerical results are computed with piece-
wise linear, quadratic finite elements or with a mix of both types of elements.
The results show that the numerical error decays with unexpected conver-
gence orders. Indeed, it does not seem clear what is the dependence of the
numerical convergence orders with respect to the degree of the polynomial
approximation spaces used.

4.2. Qualitative behaviour. Let us consider a numerical example to illus-
trate the difference in behaviour between the fickian and nonfickian regimes.
We assume the following parameters: Ω and µ(c) are the same as in the
previous example, po = 0, φo = 0.3, cR = 10−7, Dm = 10−6, dl = 4 · 10−3 and
dt = 2 ·10−3. We consider that the medium is isotropic and take the diagonal
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Figure 1. L2-norm error results for T = 0.1, time step ∆t = 10−5.

components of the permeability tensor K = (kij)i,j=1,2 as

k11 = k22 =
1

2

((
1− 10−7

2

)
(sin(6 cos(x1)π) cos(4π sin(3x2))− 1) + 1

)
.

The permeability behaviour is illustrated in Figure 2.
As boundary conditions, we use for the concentration c(x, t) = 4(1−x2)x2,
∀x ∈ ΓD,c, where ΓD,c denotes the left side of the square, and J · n = 0 on
∂Ω\ΓD,c. Defined by ΓD,p the union of the left and right sides of the square Ω,
we use p(x, t) = 1 on the left side of the square and p(x, t) = 0 on the right
side of the square and homogeneous Neumann boundary conditions for the
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Figure 2. The ‖ · ‖∞ norm of the permeability tensor.

pressure on ΓN,p = ∂Ω\ΓD,p. The initial profile for the flux and concentration
is zero while the initial pressure field is given by

p(x, 0) = 1− x1, ∀x ∈ Ω.

Integrating over [0, 0.5] with ∆t = 10−3 and h = 0.01, the pressure (and
velocity) remains essentially the same throughout the process. The con-
centration and the flux, however, exhibit changes, due to convection and
diffusion phenomena.

Since the system of equations to solve has with these parameters two equa-
tions dominated by convection phenomena, it is necessary to use stabilisation
techniques. To accomplish this, the interior penalty method is used for the
concentration and mass flux equations. This means that the terms

j1(cn+1, vh; vn) := γ
∑
F∈FI

∫
F

h2
F |vn · n|[[∇cn+1]]F · [[∇vh]]F ds, ∀vh ∈ Vk,0,D,c

h ,

(31)
and

j2(Jn+1,wh; vn) := γ
∑
F∈FI

∫
F

h2
F |vn·n|[[∇Jn+1]]F ·[[∇wh]]F ds, ∀wh ∈ V k

h ×V k
h ,

(32)
are added to (27) and (28) and properly discretised. In (31),(32), FI denotes
the set of interior edges of the triangulation Th, [[·]]F denotes the usual jump
function across the edge F , hF is the length of edge F and γ > 0 is a
stabilisation parameter. In all the following simulations, the stabilisation
parameter used is γ = 0.01.
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We plot in Figure 3 the concentration profiles at time t = 0.5. It is observed
that the main difference (with increasing τ) is the increase of the steepness of
the concentration front. This indicates that, for nonzero τ , the concentration
front advancing on the domain, diffuses less than in the fickian case (Figure
3a). This behaviour is in agreement with the expected finite propagation

(a) τ = 0 (b) τ = 0.1

(c) τ = 1 (d) τ = 10

Figure 3. Concentration profiles for t = 0.5 using a time step
∆t = 10−3 and space step h = 0.01.

speed for the concentration.
In Figure 4 we plot the fickian and the nonfickian velocity fields at time

t = 0.5 for τ = 0 and τ = 0.1 respectively. In the nonfickian case, the velocity
field presents a steep variation in the front while a smoother behaviour is
observed in the fickian case. This fact is consequence of the high variation
of the concentration in the front that happens in the nonfickian case.
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(a) τ = 0 (b) τ = 0.1

(c) τ = 0 (d) τ = 0.1

Figure 4. Concentration profiles and velocity fields ((a),(b)),
magnitude of the velocity field ((c),(d)) for t = 0.5 using a time
step ∆t = 10−3 and space step h = 0.01.

In Figure 5 the fickian and nonfickian mass flux fields at time t = 0.5
are plotted. In presence of memory in time and space effects, a delayed
distribution of the mass fluxes is observed. Also, their magnitude is higher
in the regions where the concentration presents steep gradients.

5. Conclusions
In this paper we presented a mathematical model to describe a diffusion

process in porous media when the mass flux of the fluid at a specified point
depends on the concentration behaviour in a spatial neighborhood and at
past times. The model is presented highlighting the main differences with



16 J. A. FERREIRA, G. PENA AND G. ROMANAZZI

(a) τ = 0 (b) τ = 0.1

(c) τ = 0 (d) τ = 0.1

Figure 5. Concentration profiles and mass flux fields ((a), (b)),
magnitude of flux field ((c),(d)) for t = 0.5 using a time step
∆t = 10−3 and space step h = 0.01.

several models described in the literature. The model can be used to study
the evolution of the concentration of an injected fluid in a resident fluid in
a porous medium when they are completely mixed and they flow together
as one fluid. Traditionally the mass flux of the injected fluid is described by
Fick’s law. However, to take into account its evolution when a space and time
memory effects are presented, Fick’s law is replaced by a partial differential
equation for the mass flux that is coupled with a mass conservation law and
with Darcy’s law for the velocity. To simulate the behaviour of this system a
IMEX finite element method is proposed which is coupled with a stabilisation
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techniques when the problem is dominated by convection. The convergence
properties of the method are numerically studied and the behaviour of the
concentration, mass flux and velocity are illustrated and compared with the
fickian one.
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