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Abstract.

It is generally accepted that colorectal cancer (CRC) occwa@onsequence of sev-
eral genetic mutations in the colonic mucosa. The deteetimhassessment of aberrant crypt
foci (ACF), which are clusters of abnormal colonic crypts amtidved to be the precursors
of CRC, is therefore of crucial importance.

This paper models and describes the dynamics of abnornlalinghe colon epithe-
lium, with the goal of simulating the appearance and evolutdACF.

The colon is represented by a rectangular periodic domanscsting of small rectan-
gles containing at their centers small circles (these syimbdhe crypts) and the exterior of
the circles represents the intercryptal regions. The dyicarmof the abnormal cells is modeled
by a convection-diffusion system (where the convectiveitgis defined by a Darcy’s law),
inside the crypt, and by a pure diffusive model in the intgptal region. Moreover this model
is coupled with a level set equation for tracking the bound#rthe abnormal cell set.

Numerical simulations are reported and discussed for théigalar case of a periodic
domain consisting only of two rectangles.
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1. Introduction

Colorectal Cancer (CRC) is one of the most frequent types of maigimmors in the
world [1]. Unlike most other kind of cancer, it is possiblegrevent CRC. This is due to
the long period of time elapsed between the appearance aleroma and the eclosion of
the carcinoma. This processus is called adenoma-carcisemqeence. Earliest events in the
process development of adenomas are the ACF that can beedklgctlinical observation.

There are no certainties about the molecular pathology @fAGF morphogenesis,
two different theories have been proposed: the top-dovan@ihe bottom-up [7] theories. In
top-down morphogenesis, the initial mutation appears iellarcthe intercryptal region, that
expands laterally and enters and fills the adjacent normgptgrIn bottom-up morphogenesis,
the first abnormal cell occurs at the base of the crypt, whegeetexists a strong prolifera-
tive activity that promotes its increase in number, untéytleventually fill the entire crypt.
Different experimental results support each hypothesiserd is even strong evidence that



both situations can occur during ACF morphogenesis, andhikgirocesses are not mutually
exclusive.

The goal of this work is to simulate both mechanisms of ACF rhogenesis using
different locations for the first abnormal cell. Inside diythe abnormal cell density is char-
acterized by a convection-diffusion equation where theveotive velocity obeys to a Darcy’s
Law [3] and in the intercryptal region is characterized byftudive equation. We use a level-
set equation in order to track the abnormal region. A sinstady has been performed in [2],
but only inside the crypt and with a different flux expresdioat defined the level-set velocity.

The paper is organized as follows. We present in Section 2lifferential coupled
convective-diffusive and level-set model, the solutioswth model is approximated numeri-
cally using a Finite Elements discretized model that isuBsed in Section 3. In Section 4 we
discuss and show instead some numerical simulations @otaith two different initial con-
figurations of a single abnormal cell set. Finally in the ksesttion, we state our conclusions
and indicate possible future works in this area.

2. Model

Each colonic crypt can be represented by a three-dimerig@iiy cylinder closed at
the bottom and with a round opening orifice at the top, segleftire in Figure 1. However,
following the approach used in [2], it can also be represkmdwo-dimensions (2-D) by a
circle.

In Figure 1(right) each circle represents a transversaigeof the crypt. In this
representation the circumference with the largest rafliliscates the cells that reside at the
top of the crypt (in the orifice), while those at the bottomlwd trypt are represented by the
unique center of the concentric circumferences.

Figure 1. Representation of a single crypt in 3D (left piciuned in 2D (right picture). In the
right picture the circumference with radius= R represents points in the orifice (top) of the

crypt.

In general a piece of colon is defined as a rectangular dorhairconsists of millions
of periodic small rectangles with a circle(crypt) at the teerand a intercryptal region out-



side the circle. In this work we will consider only two of tleesmall rectangles which are
represented in Figure 2. Here each circle represents thectom of a crypt in the plan, as
described at the beginning of this section, thus circlesigufe 1 are int2,,, and the rest of

the domain, that is the intercryptal region{is,,.
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Figure 2. Geometrical domain used in the numerical simutati

In the crypt regiort;,, we use a convective-diffusive model similar to that used in
our previous model, see [3]. The main difference with respleat model, is that now we
consider the dynamics of normal and abnormal cells inside/elsas outside the crypts.
Their density at time and in position(z, y) in the entire domaif := ;,, U Q.. is denoted
by N = N(z,y,t) andC = C(z,y,t) for the normal and the abnormal cells, respectively.
Though abnormal cells have larger volume with respect tonabcells, see [4], we assume
that all cells have the same volume. Thus the overall dehgjppthesis i is

N+C=1. 1)

This allows us to simplify the model, reducing the number afgmeters, and enabling the
possibility to extend it to more realistic situations indtg works, read the discussion in
Section 6.

Moreover, we suppose that both normal and abnormal cell@with the same con-
vective velocity in€;,, defined by a Darcy’s Law

v=—Vp. (2)

The model described yields the following differential gystin(;,,:

ON .

S~V (VpN) =V (DIVN) +aiNin Q4 x (0,7),

90 3)
E—V(VPC):V(DQVC)—FOQC in QmX (O,T),

where D1, a; and D,, a, are respectively the diffusion coefficient and the rate ofhbof
normal and abnormal cells in;,,.



If we sum the two equations in (3) and use the relation (2)fdHewing differential
system in the unknownS andp is obtained:

Z= V- (VpC) =V - (DVC) 4 auC in Q, x (0,7),
—Ap =V ((DQ — Dl)VC) + (042 — Oél)C + in Qm X (O, T)

(4)

Since in the inter-cryptal regidn.,; only the abnormal cells can spread and proliferate
[9], we assume that here the densityt) must verify the diffusion equation

80_? =V (D;VC)+03C  in Qe x (0,7). ®)

As the proliferative activity of normal and abnormal ceBshigher at the bottom of
the crypt with a slow decreasing along the crypt axis [3, 4 wil consider rates of birthy;
andas,, that are decreasing functions with respect the distammee fhe center of the circles,
see in Section 5 the equations (15)-(16).

The proliferative activity in colonic crypts can promote taions of normal into ab-
normal cells. In the inter-cryptal region the normal celtse & a apoptotic phase, so the
abnormal cells, are expected to diffuse less than insideryps. Therefore we will assume
that D5 < D,. Finally we mention that it is theoretically known, read thiscussion in [9],
that abnormal cells proliferate more than normal cellQjn This leads us to use a prolifera-
tive ratea, (for abnormal cells) in2;, that is larger with respect to that used for normal cells
(a2 > ), see their expression in equations (15)-(16) in Section 5.

2.1. Boundary conditions

In order to solve the differential systems (4) and (5), wedrteempose some boundary
conditions in the crypt interface boundaries I'; (see Figure 2) and also in the eddesi =
1,...,4 of the boundary of2. We use the following boundary transmission conditions

[Cl] = 0 onT; x (0,7),
(6)
op oC Lo0C
8_nO+D28_n = Dig- onT; x (0,7).

The first condition guarantees that the density is contisdbrough the interface boundaries
[';, while the second condition asserts, using the equatignsd (5), that the normal flux in
I'; is continuous in the interface boundaries. We impose aldmarogeneous Dirichlet and a
Neumann boundary condition in the lateral boundafigsl,

oC
_
o =0 on[Ly U Ly] x (0,7),

C(z,y,t), = Clx,y,t)p, =0,
and a Neumann-periodic conditionin, L3

oC
o> — 0 on[L, U Ls] x (0,7T),

C(ZL‘, Y, t)Ll = C(ZE, Y, t)L3‘



These conditions it;, with ¢ = 1, 3, are used to model the colon in a hypothetical situation
in which a cut is applied in,; and then the unfolded colon is rolled in the plane, read the
discussion in Section 6.

We impose also the following initial condition for the deysi":

Clz,y,0) = Co(z,y) InQ, (7)

whereCy(z,y) is a given function representing the initial density dt=ition of abnormal
cells.

2.2. Level Set tracking

In order to predict the evolution of abnormal cells, we nemdibdel not only their
density, but also the dynamics of the sets containing sultb. c€he boundaries of these
abnormal sets can in fact mark colonic areas where cellsxae&onfiguration that can bring
to the formation of an ACF.

We use a level set functiob(z, y, t) at levelO to track in space and time the boundary

B(t) = {(x,y) € @ : ®(z,y,t) = 0}.
of an abnormal cell set with interior part denotedbyt),
D(t) = {(z,y) € Q : ®(x,y,t) <0}.

Given the normal velocitys ,, := ves - n Of the level set, see [5], we have that the

level set function satisfies 50

— n|VO| =0, 8

BN + Vg | | 8)
wherevs is the velocity andh is the outward normal of the level set considered. This wloc
is equal to the ratio between the flux, obtained using egugiid), (5), and the cell density

C(z,y,t) of the abnormal cells

D,VC . .
Vell,¥,1) = DivVC .
— 20 in Qe x (0,7)

3. Numerical model

In this section we use a finite element discretization (witkeanidiscrete Galerkin
formulation) applied to the model systems (4) and (5). Ndying equations (4)and (5) by
a test functionp and integrating by parts we obtain

oC
—p drdy + / (CVp+ DoVCO)V dady + /
Qin Q0

(D;VC)Vep d:vdy:/ongcpdxdy.
o Ot Q

(10)

ext



Applying on the other hand the semidiscrete Galerkin foatiah to the pressure equation
(4)2, we obtain

/ VpVydxdy = —/ ((Dg—Dl)VC')Vgodxdy+/ (ag—al)&pdxdy+/ aypdxdy.
Qin Qin

(11)
The equations (10)-(11) result finally in the following diste system
oC . :
ME + (Evp + K(Ds, D3))C = M(as)C in Qx(0,7),

Ko, p=—(Kq,, (Dy — D) — Mg, (e — 1))C + Mg, o1(-) in Q;, x(0,7),
(12)

whereq (-) is the vector with the value of; in the(2;, nodes. We have represented in (12)
by K and )M the stiffness and the mass matrix, respectively, and usethd@ous notation for
these matrices if;,, (.., and2. The matrixK'(D,, D3) is instead the stiffness matrix in
that it is equal taK,, (D) in Q;, and toKq,_, (D3) in Qeyy.

The matrixEy, has a dimension equal to the number of degrees of fre€dgnused
in €, its coefficients are

Nin
(Evp)ij = Zpk:/ eiVoiVopdr, i,j=1,... N.
k=1 Qin
In order to integrate in time the parabolic equation (1) use the following second-
order implicit trapezoidal scheme (Crank-Nicolson method)

MC™ = MC™ — %(Evp + K(Dy, D3) — M(ag))(C™ 4 C™*1) (13)

whereC™ is an approximation of’ at timet,,,. This equation can be reduced to
(M + %G) cmtl = <M - %G) cm (14)
where we posed’ := Ev, + K(D2, D3) — M(az).

4. Multi-scale Algorithm

Two different scales in space and time, respectively, aegl g solve the level set
equation (8) and the pressure-density system (12). Regptdantime-scaling, we use the
time-stepdt for solving (8) andyt in (14). In particular, we require that the level-set timepst
dt satisfies the Courant-Friedrich-Levy (CFL) conditidnh < W) , Wheredz, dy are
the 2-D space steps used in (8), see Step 3 of the algorithmwbét contrast the time step
ot is computed implementing an adaptive control step in thegirattion time interval (for the
level-set equation, ¢ + dt], using a classical approach (as that described in [6], Ch&p)e
This means thatt is always smaller or at most equalda

In order to simulate the dynamics of a set of abnormal cell®,ii] with initial density

Co(z,y) and level set functio®® := &(x, y, 0), the following algorithm is implemented:



Compute the initial pressungz, y,0) in Q;, using (12) with Cj in place ofC. Let
t® =0andn =0

Compute the velocity s using (9) inB(t°), elsewherevg is null

Define the level set time-stefs = 0.5 (M)

Maz|ve n|

Whilet"™ + dt < T do

1. Determine the level-sét at timet" ! := " + dt
integrating the equation (8) forward in time with the folloy second order Total
Variation Diminishing Runge-Kutta scheme:

— First, an Euler step is taken to approximate the solutiafidt

CAISn+1 — P

nn @n = U,
dt —|—Uq>7 |V | 0

hered™ is the current approximation of the level set functibiat timet”,
— Then a second Euler step is used to advance the solutitin'at- dt,

(’I;nJrQ - (/Iv)nJrl

dt + U:I;n+17n‘v(’i)n+1’ =0.

The velocityvg,... ,, used above is computed using the following strategy:

+ Compute the densitg’ and the pressurg both at timet"*! in the set

A= {(x, y)|<T>"+1 < 0} using the same approaches presented in steps 2
and 3 below,

+ Computevg,.., (using (9)) and afterwards;,... ,, in the setA, elsewhere
pose them equal to zero.

— Average the approximations at tinrfeandt" ! 4 dt to obtain the approximate
solution at time™+! . )
(I)n-l—l — ZPn _EIv)n—i-Q.
2 + 2
The gradientsv® are computed using a second order Hamilton-Jacobi ENO up-
wind method, that is a second order accurate polynomiatpotation (see [5],

Chapter 3).
DefineB(t"*!) := {(z, y)|®"*! < 0} and apply Step 2 and Step 3A{t""') — A

2. Compute the densitg’ at time¢"*! solving the linear system (14) in", t"+1]
using the adaptive control step described previously

3. Compute the pressupeat timet™ ! solving the pressure equation (12)
using the density’ computed in the previous step

4. Determine the velocity in €2;, andQ).,; in B(¢t"™!) using (9)
elsewhere we posep = 0

5. Update theindex: n=n+1



, : , in(dz, d
6. Define the new time-step for the level-set equatitin= 0.5 (—mm( & y))

max |[Vg p|
end While.

Note that steps 2 and 3 of the algorithm are performed onlyconaputational domain
defined byA or B(t"*1) — A. This permit us to avoid to compute density and pressurd in al
the domair(2 and to save then computational resources as the memory aethipsing time
needed in the numerical simulations.

5. Numerical Results

We use diffusion coefficients that are constant in space iamet tD; = 2, Dy, =
1, D5 = 1/10. We suppose that the crypt orifice radidss equal to 1, and then we use a
geometrical domain that has dimensions scaled based orassamption. Let(x, y) be the
distance between a poifit, y) in a crypt and the center of such crypt. Taking into account
that for normal colonic crypts we only have proliferativeiaty until two thirds of the height,
we define the proliferative rateg andas in the following way

r(z,y) —2/3)% if r(x, 2/3
(@y) = {(( y)o ) if rEx,§§§2§3’ (19)

2/9) - ((r(z,y) —1)24+1) if r(z,y) <1
calery) = { (2/9) - (( <2/%> P i w; 1
Note thata, in (16) is always positive and continuous in the boundaryaafhecrypt. This
allows us to have abnormal cells that proliferate inside a as outside the crypts. Note
also that since the normal cells cannot be renewed outs&leryipts (because they are in a
apoptosis phase), we haxge = 0in Q...

In the next two paragraphs we present two initial configoregiof the problem: the
first represents a set of abnormal cells in the inter-cryygigion and the second has a set of
abnormal cells in the center of a crypt. The figures 3 and 4 stwone snapshots of the simu-
lation of the boundary cell set (in black) and density (inotw) performed in Matlab. These
are displayed for particular simulation times that are uisahd relevant in the discussion of
the numerical results.

(16)

5.1. Initial abnormal cells in €2.,; and discussion

We describe here the numerical simulation results obtaieithg the evolution of an
abnormal cell set with uniform density = 1, initially located and centered 0. ,; between
the two crypts. The left picture depicted at the top of Figidésplays the initial configuration
of the cell set.

The simulation shows that the abnormal cells diffuse rgpid{?. ., in the time interval
[0, 0.5], but the closer these cells are to the crypt boundary, tisethey propagate.

At time t = 0.5 the abnormal cells start to enter in the crypt. We observadhthat
the level set, that marks the boundary of the cell set, opsilae crypt boundarids;, see the
right picture depicted in the middle of Figure 3.



C, time= 0 C, time= 0.011433

C, time= 0.50217 C, time=1.0018

C, time= 2.0008

Figure 3. Density and level-set (in black) at tihe0.01 (in the top pictures).5, 1 (in the
middle pictures)].5, 2 (in the bottom pictures). Dashed lines mark the two crydtaas.

When time moves forward the cells spread inside the crypts @ntimet = 2, the
level set reaches the boundary of the donfajiisee the right picture depicted at the bottom of
Figure 3. Note that at time= 2 in spite of abnormal cells are filling both crypts with a low
density, most of them remain in the inter-cryptal region difidise only vertically avoiding to
enter in such crypts. This phenomenon is due to the preszerted by the cells that opposes
the uniform diffusion in each direction that is expectedin;.

5.2. Initial abnormal cells in €2;,, and discussion

In this section, we describe the evolution of abnormal celien they are initially
located at the bottom of a crypt with the uniform dengity= 1. This initial configuration is



displayed in the left picture at the top of Figure 4.

This figure shows that cells diffuse more rapidly inside thgts than outside. In fact,
the cells reach now the orifice of the crypt at tih@02, while in the previous case, see Figure
3, this was observed if1.., at timet = 0.5. Moreover at timg = 0.01 we notice that some
cells have already overpassed the orifice because theyaatedbin(2,,;, see the left picture
depicted in the middle of Figure 4. The rapid propagationatismbserved in the crypts is due

C, time=10 C, time= 0.00Z008

C, time=0.01047 C, time= 1.0019

C, time= 2.0062 C, time= 3.0045

Figure 4. Density and level-set at tinde 0.002 (in the top pictures).01, 1 (in the middle
pictures) an, 3 (in the bottom pictures).

by the presence of a convective velocity in (4), that is iadtsupposed null if2.,; because
no pressure is exerted there. This loss of pressute.ipexplains also the slow spread of
abnormal cells, when they exit from the crypts, with resgecthe propagation observed
before in();,, see bottom pictures in Figure 4. We note finally that, whes libundary



of the cell set has overpassed the crypt boundaries, thetylsterts to increase more in a
neighborhood of the boundari€s than inside the crypts. These dynamics are explained by
the fact that abnormal cells that leave the crypts cannenter in(2;, due to the pressure
exerted by the cells that are exiting frdm, .

6. Conclusion and Future work

We have presented a model for tracking density and pres$atmormal cells inside
the colon. We used a coupled convection-diffusion levehsedel that is able to reproduce
some dynamical aspects of abnormal cells in colonic crypisteack also the abnormal cell
set boundary.

Based on the results presented in Section 5.1, we infer thhattiis model we have
represented the bottom-up and the top-down theories teslan the Introduction. Regarding
the top-down theory, we observe that our parameter choiomifgethe propagation from
the inter-cryptal region to the adjacent crypts of a limiteanber of abnormal cells, see for
instance the low density depicted in Figure 3. A differentapaeters’ choice can be used to
increase the density of such cells. We think, for examplat, dhpossible modification of the
Darcy’s law, such as = ;Vp with ¢ smaller than 1 will reduce the pressure exerte@jn
and this could permit the entrance of more abnormal celldénhe crypts.

In the numerical simulations a domain with only two cryptswansidered. However,
a reasonable model should consider more than just two ¢yygswill be studied in a future
research. We think also to consider, in a future work, séamaormal cell sets that are able
to merge and to simulate then the dynamics of their bounslaned densities.

In the future, we intend also to associate an height fundbdhe density and then to
simulate the evolution of abnormal cells in 3-D.

In this way we could model and show that the formation of ACF eé®@asequence of
the accumulation of abnormal cells. We may describe in fagbath in the third dimension
of the abnormal cell set in the colon epithelium instead sf lescribing an increase of the
density in two-dimensions as done in this work.
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