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Abstract.
It is generally accepted that colorectal cancer (CRC) occurs as a consequence of sev-

eral genetic mutations in the colonic mucosa. The detectionand assessment of aberrant crypt
foci (ACF), which are clusters of abnormal colonic crypts and believed to be the precursors
of CRC, is therefore of crucial importance.

This paper models and describes the dynamics of abnormal cells in the colon epithe-
lium, with the goal of simulating the appearance and evolution of ACF.

The colon is represented by a rectangular periodic domain, consisting of small rectan-
gles containing at their centers small circles (these symbolize the crypts) and the exterior of
the circles represents the intercryptal regions. The dynamics of the abnormal cells is modeled
by a convection-diffusion system (where the convective velocity is defined by a Darcy’s law),
inside the crypt, and by a pure diffusive model in the intercryptal region. Moreover this model
is coupled with a level set equation for tracking the boundaryof the abnormal cell set.

Numerical simulations are reported and discussed for the particular case of a periodic
domain consisting only of two rectangles.
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1. Introduction

Colorectal Cancer (CRC) is one of the most frequent types of malignant tumors in the
world [1]. Unlike most other kind of cancer, it is possible toprevent CRC. This is due to
the long period of time elapsed between the appearance of an adenoma and the eclosion of
the carcinoma. This processus is called adenoma-carcinomasequence. Earliest events in the
process development of adenomas are the ACF that can be detected by clinical observation.

There are no certainties about the molecular pathology of the ACF morphogenesis,
two different theories have been proposed: the top-down [8]and the bottom-up [7] theories. In
top-down morphogenesis, the initial mutation appears in a cell in the intercryptal region, that
expands laterally and enters and fills the adjacent normal crypts. In bottom-up morphogenesis,
the first abnormal cell occurs at the base of the crypt, where there exists a strong prolifera-
tive activity that promotes its increase in number, until they eventually fill the entire crypt.
Different experimental results support each hypothesis. There is even strong evidence that



both situations can occur during ACF morphogenesis, and thatthe processes are not mutually
exclusive.

The goal of this work is to simulate both mechanisms of ACF morphogenesis using
different locations for the first abnormal cell. Inside crypts the abnormal cell density is char-
acterized by a convection-diffusion equation where the convective velocity obeys to a Darcy’s
Law [3] and in the intercryptal region is characterized by a diffusive equation. We use a level-
set equation in order to track the abnormal region. A similarstudy has been performed in [2],
but only inside the crypt and with a different flux expressionthat defined the level-set velocity.

The paper is organized as follows. We present in Section 2 thedifferential coupled
convective-diffusive and level-set model, the solution ofsuch model is approximated numeri-
cally using a Finite Elements discretized model that is discussed in Section 3. In Section 4 we
discuss and show instead some numerical simulations obtained with two different initial con-
figurations of a single abnormal cell set. Finally in the lastsection, we state our conclusions
and indicate possible future works in this area.

2. Model

Each colonic crypt can be represented by a three-dimensional (3-D) cylinder closed at
the bottom and with a round opening orifice at the top, see leftpicture in Figure 1. However,
following the approach used in [2], it can also be represented in two-dimensions (2-D) by a
circle.

In Figure 1(right) each circle represents a transversal section of the crypt. In this
representation the circumference with the largest radiusR locates the cells that reside at the
top of the crypt (in the orifice), while those at the bottom of the crypt are represented by the
unique center of the concentric circumferences.

Figure 1. Representation of a single crypt in 3D (left picture) and in 2D (right picture). In the
right picture the circumference with radiusr = R represents points in the orifice (top) of the
crypt.

In general a piece of colon is defined as a rectangular domain that consists of millions
of periodic small rectangles with a circle(crypt) at the center and a intercryptal region out-



side the circle. In this work we will consider only two of these small rectangles which are
represented in Figure 2. Here each circle represents the projection of a crypt in the plan, as
described at the beginning of this section, thus circles in Figure 1 are inΩin, and the rest of
the domain, that is the intercryptal region, isΩext.
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Figure 2. Geometrical domain used in the numerical simulations.

In the crypt regionΩin, we use a convective-diffusive model similar to that used in
our previous model, see [3]. The main difference with respect that model, is that now we
consider the dynamics of normal and abnormal cells inside aswell as outside the crypts.
Their density at timet and in position(x, y) in the entire domainΩ := Ωin ∪ Ωext is denoted
by N = N(x, y, t) andC = C(x, y, t) for the normal and the abnormal cells, respectively.
Though abnormal cells have larger volume with respect to normal cells, see [4], we assume
that all cells have the same volume. Thus the overall densityhypothesis inΩ is

N + C = 1. (1)

This allows us to simplify the model, reducing the number of parameters, and enabling the
possibility to extend it to more realistic situations in future works, read the discussion in
Section 6.

Moreover, we suppose that both normal and abnormal cells move with the same con-
vective velocity inΩin defined by a Darcy’s Law

v = −∇p. (2)

The model described yields the following differential system inΩin:




∂N

∂t
−∇ · (∇pN) = ∇ · (D1∇N) + α1N in Ωin × (0, T ),

∂C

∂t
−∇ · (∇pC) = ∇ · (D2∇C) + α2C in Ωin × (0, T ),

(3)

whereD1, α1 andD2, α2 are respectively the diffusion coefficient and the rate of birth of
normal and abnormal cells inΩin.



If we sum the two equations in (3) and use the relation (2), thefollowing differential
system in the unknownsC andp is obtained:





∂C

∂t
−∇ · (∇pC) = ∇ · (D2∇C) + α2C in Ωin × (0, T ),

−∆p = ∇ · ((D2 − D1)∇C) + (α2 − α1)C + α1 in Ωin × (0, T ).
(4)

Since in the inter-cryptal regionΩext only the abnormal cells can spread and proliferate
[9], we assume that here the densityC(t) must verify the diffusion equation

∂C

∂t
= ∇ · (D∗

2∇C) + α∗
2C in Ωext × (0, T ). (5)

As the proliferative activity of normal and abnormal cells is higher at the bottom of
the crypt with a slow decreasing along the crypt axis [3, 4], we will consider rates of birth,α1

andα2, that are decreasing functions with respect the distance from the center of the circles,
see in Section 5 the equations (15)-(16).

The proliferative activity in colonic crypts can promote mutations of normal into ab-
normal cells. In the inter-cryptal region the normal cells are in a apoptotic phase, so the
abnormal cells, are expected to diffuse less than inside thecrypts. Therefore we will assume
thatD∗

2 < D2. Finally we mention that it is theoretically known, read thediscussion in [9],
that abnormal cells proliferate more than normal cells inΩin. This leads us to use a prolifera-
tive rateα2 (for abnormal cells) inΩin that is larger with respect to that used for normal cells
(α2 > α1), see their expression in equations (15)-(16) in Section 5.

2.1. Boundary conditions

In order to solve the differential systems (4) and (5), we need to impose some boundary
conditions in the crypt interface boundariesΓ1, Γ2 (see Figure 2) and also in the edgesLi, i =

1, . . . , 4 of the boundary ofΩ. We use the following boundary transmission conditions

[|C |] = 0 on Γi × (0, T ),

∂p

∂n
C + D2

∂C

∂n
= D∗

2

∂C

∂n
on Γi × (0, T ).

(6)

The first condition guarantees that the density is continuous through the interface boundaries
Γi, while the second condition asserts, using the equations (4)1 and (5), that the normal flux in
Γi is continuous in the interface boundaries. We impose also anhomogeneous Dirichlet and a
Neumann boundary condition in the lateral boundariesL2, L4

∂C

∂n
= 0 on [L2 ∪ L4] × (0, T ),

C(x, y, t)L2
= C(x, y, t)L4

= 0,

and a Neumann-periodic condition inL1, L3

∂C

∂n
= 0 on[L1 ∪ L3] × (0, T ),

C(x, y, t)L1
= C(x, y, t)L3

.



These conditions inLi, with i = 1, 3, are used to model the colon in a hypothetical situation
in which a cut is applied inL1 and then the unfolded colon is rolled in the plane, read the
discussion in Section 6.

We impose also the following initial condition for the density C:

C(x, y, 0) = C0(x, y) in Ω, (7)

whereC0(x, y) is a given function representing the initial density distribution of abnormal
cells.

2.2. Level Set tracking

In order to predict the evolution of abnormal cells, we need to model not only their
density, but also the dynamics of the sets containing such cells. The boundaries of these
abnormal sets can in fact mark colonic areas where cells are in a configuration that can bring
to the formation of an ACF.

We use a level set functionΦ(x, y, t) at level0 to track in space and time the boundary

B(t) =
{
(x, y) ∈ Ω : Φ(x, y, t) = 0

}
.

of an abnormal cell set with interior part denoted byD(t),

D(t) =
{
(x, y) ∈ Ω : Φ(x, y, t) ≤ 0

}
.

Given the normal velocityvΦ,n := vΦ · n of the level set, see [5], we have that the
level set function satisfies

∂Φ

∂t
+ vΦ,n|∇Φ| = 0, (8)

wherevΦ is the velocity andn is the outward normal of the level set considered. This velocity
is equal to the ratio between the flux, obtained using equations (4)1, (5), and the cell density
C(x, y, t) of the abnormal cells

vΦ(x, y, t) =





−(∇p +
D2∇C

C
) in Ωin × (0, T )

−
D∗

2∇C

C
in Ωext × (0, T )

(9)

3. Numerical model

In this section we use a finite element discretization (with asemidiscrete Galerkin
formulation) applied to the model systems (4) and (5). Multiplying equations (4)1 and (5) by
a test functionϕ and integrating by parts we obtain
∫

Ω

∂C

∂t
ϕ dxdy +

∫

Ωin

(C∇p + D2∇C)∇ϕ dxdy +

∫

Ωext

(D∗
2∇C)∇ϕ dxdy =

∫

Ω

α2Cϕdxdy.

(10)



Applying on the other hand the semidiscrete Galerkin formulation to the pressure equation
(4)2, we obtain
∫

Ωin

∇p∇ϕ dxdy = −

∫

Ωin

((D2−D1)∇C)∇ϕ dxdy+

∫

Ωin

(α2−α1)Cϕdxdy+

∫

Ωin

α1ϕdxdy.

(11)
The equations (10)-(11) result finally in the following discrete system




M
∂C

∂t
+ (E∇p + K(D2, D

∗
2))C = M(α2)C in Ω × (0, T ),

KΩin
p = −(KΩin

(D2 − D1) − MΩin
(α2 − α1))C + MΩin

α1(·) in Ωin × (0, T ),
(12)

whereα1(·) is the vector with the value ofα1 in theΩin nodes. We have represented in (12)
by K andM the stiffness and the mass matrix, respectively, and used anobvious notation for
these matrices inΩin, Ωext andΩ. The matrixK(D2, D

∗
2) is instead the stiffness matrix inΩ

that it is equal toKΩin
(D2) in Ωin and toKΩext

(D∗
2) in Ωext.

The matrixE∇p has a dimension equal to the number of degrees of freedomNin, used
in Ωin, its coefficients are

(E∇p)i,j =

Nin∑

k=1

pk

∫

Ωin

ϕj∇ϕi∇ϕkdx, i, j = 1, . . . Nin.

In order to integrate in time the parabolic equation (12)1, we use the following second-
order implicit trapezoidal scheme (Crank-Nicolson method):

MCm+1 = MCm −
δt

2
(E∇p + K(D2, D

∗
2) − M(α2))(C

m + Cm+1) (13)

whereCm is an approximation ofC at timetm. This equation can be reduced to
(

M +
δt

2
G

)
Cm+1 =

(
M −

δt

2
G

)
Cm (14)

where we posedG := E∇p + K(D2, D
∗
2) − M(α2).

4. Multi-scale Algorithm

Two different scales in space and time, respectively, are used to solve the level set
equation (8) and the pressure-density system (12). Regarding the time-scaling, we use the
time-stepdt for solving (8) andδt in (14). In particular, we require that the level-set time step

dt satisfies the Courant-Friedrich-Levy (CFL) condition,dt <
(

min(dx,dy)
max|vΦ,n|

)
, wheredx, dy are

the 2-D space steps used in (8), see Step 3 of the algorithm below. In contrast the time step
δt is computed implementing an adaptive control step in the integration time interval (for the
level-set equation)[t, t + dt], using a classical approach (as that described in [6], Chapter 12).
This means thatδt is always smaller or at most equal todt.

In order to simulate the dynamics of a set of abnormal cells in[0, T ] with initial density
C0(x, y) and level set functionΦ0 := Φ(x, y, 0), the following algorithm is implemented:



• Compute the initial pressurep(x, y, 0) in Ωin using (12)2 with C0 in place ofC. Let
t0 = 0 andn = 0

• Compute the velocityvΦ using (9) inB(t0), elsewherevΦ is null

• Define the level set time-stepdt = 0.5

(
min(dx, dy)

max|vΦ,n|

)

• While tn + dt < T do

1. Determine the level-setΦ at timetn+1 := tn + dt

integrating the equation (8) forward in time with the following second order Total
Variation Diminishing Runge-Kutta scheme:

– First, an Euler step is taken to approximate the solution attn+1

Φ̃n+1 − Φn

dt
+ vΦn,n|∇Φn| = 0,

hereΦn is the current approximation of the level set functionΦ at timetn,

– Then a second Euler step is used to advance the solution attn+1 + dt,

Φ̃n+2 − Φ̃n+1

dt
+ veΦn+1,n

|∇Φ̃n+1| = 0.

The velocityveΦn+1,n
used above is computed using the following strategy:

∗ Compute the densityC and the pressurep both at timetn+1 in the set
A := {(x, y)|Φ̃n+1 < 0} using the same approaches presented in steps 2
and 3 below,

∗ ComputeveΦn+1 (using (9)) and afterwardsveΦn+1,n
in the setA, elsewhere

pose them equal to zero.

– Average the approximations at timetn andtn+1+dt to obtain the approximate
solution at timetn+1

Φn+1 =
1

2
Φn +

1

2
Φ̃n+2.

The gradients∇Φ are computed using a second order Hamilton-Jacobi ENO up-
wind method, that is a second order accurate polynomial interpolation (see [5],
Chapter 3).

DefineB(tn+1) := {(x, y)|Φn+1 < 0} and apply Step 2 and Step 3 inB(tn+1)−A

2. Compute the densityC at time tn+1 solving the linear system (14) in[tn, tn+1]

using the adaptive control step described previously

3. Compute the pressurep at timetn+1 solving the pressure equation (12)2

using the densityC computed in the previous step

4. Determine the velocityvΦ in Ωin andΩext in B(tn+1) using (9)
elsewhere we posevΦ = 0

5. Update the indexn: n = n + 1



6. Define the new time-step for the level-set equation:dt = 0.5

(
min(dx, dy)

max |vΦ,n|

)

end While.

Note that steps 2 and 3 of the algorithm are performed only in acomputational domain
defined byA or B(tn+1) − A. This permit us to avoid to compute density and pressure in all
the domainΩ and to save then computational resources as the memory and the elapsing time
needed in the numerical simulations.

5. Numerical Results

We use diffusion coefficients that are constant in space and time: D1 = 2, D2 =

1, D∗
2 = 1/10. We suppose that the crypt orifice radiusR is equal to 1, and then we use a

geometrical domain that has dimensions scaled based on suchassumption. Letr(x, y) be the
distance between a point(x, y) in a crypt and the center of such crypt. Taking into account
that for normal colonic crypts we only have proliferative activity until two thirds of the height,
we define the proliferative ratesα1 andα2 in the following way

α1(x, y) =

{
(r(x, y) − 2/3)2 if r(x, y) < 2/3

0 if r(x, y) ≥ 2/3
, (15)

α2(x, y) =

{
(2/9) · ((r(x, y) − 1)2 + 1) if r(x, y) < 1

2/9 if r(x, y) ≥ 1
. (16)

Note thatα2 in (16) is always positive and continuous in the boundary of each crypt. This
allows us to have abnormal cells that proliferate inside as well as outside the crypts. Note
also that since the normal cells cannot be renewed outside the crypts (because they are in a
apoptosis phase), we haveα1 = 0 in Ωext.

In the next two paragraphs we present two initial configurations of the problem: the
first represents a set of abnormal cells in the inter-cryptalregion and the second has a set of
abnormal cells in the center of a crypt. The figures 3 and 4 showsome snapshots of the simu-
lation of the boundary cell set (in black) and density (in colour) performed in Matlab. These
are displayed for particular simulation times that are useful and relevant in the discussion of
the numerical results.

5.1. Initial abnormal cells in Ωext and discussion

We describe here the numerical simulation results obtainedduring the evolution of an
abnormal cell set with uniform densityC = 1, initially located and centered inΩext between
the two crypts. The left picture depicted at the top of Figure3 displays the initial configuration
of the cell set.

The simulation shows that the abnormal cells diffuse rapidly in Ωext in the time interval
[0, 0.5], but the closer these cells are to the crypt boundary, the less they propagate.

At time t = 0.5 the abnormal cells start to enter in the crypt. We observe in fact that
the level set, that marks the boundary of the cell set, overlaps the crypt boundariesΓi, see the
right picture depicted in the middle of Figure 3.



Figure 3. Density and level-set (in black) at time0, 0.01 (in the top pictures)0.5, 1 (in the
middle pictures),1.5, 2 (in the bottom pictures). Dashed lines mark the two crypt orifices.

When time moves forward the cells spread inside the crypts and, at timet = 2, the
level set reaches the boundary of the domainΩ, see the right picture depicted at the bottom of
Figure 3. Note that at timet = 2 in spite of abnormal cells are filling both crypts with a low
density, most of them remain in the inter-cryptal region anddiffuse only vertically avoiding to
enter in such crypts. This phenomenon is due to the pressure exerted by the cells that opposes
the uniform diffusion in each direction that is expected inΩext.

5.2. Initial abnormal cells in Ωin and discussion

In this section, we describe the evolution of abnormal cellswhen they are initially
located at the bottom of a crypt with the uniform densityC = 1. This initial configuration is



displayed in the left picture at the top of Figure 4.
This figure shows that cells diffuse more rapidly inside the crypts than outside. In fact,

the cells reach now the orifice of the crypt at time0.002, while in the previous case, see Figure
3, this was observed inΩext at timet = 0.5. Moreover at timet = 0.01 we notice that some
cells have already overpassed the orifice because they are located inΩext, see the left picture
depicted in the middle of Figure 4. The rapid propagation of cells observed in the crypts is due

Figure 4. Density and level-set at time0, 0.002 (in the top pictures)0.01, 1 (in the middle
pictures) and2, 3 (in the bottom pictures).

by the presence of a convective velocity in (4), that is instead supposed null inΩext because
no pressure is exerted there. This loss of pressure inΩext explains also the slow spread of
abnormal cells, when they exit from the crypts, with respectto the propagation observed
before inΩin, see bottom pictures in Figure 4. We note finally that, when the boundary



of the cell set has overpassed the crypt boundaries, the density starts to increase more in a
neighborhood of the boundariesΓi than inside the crypts. These dynamics are explained by
the fact that abnormal cells that leave the crypts cannot re-enter inΩin due to the pressure
exerted by the cells that are exiting fromΩin.

6. Conclusion and Future work

We have presented a model for tracking density and pressure of abnormal cells inside
the colon. We used a coupled convection-diffusion level setmodel that is able to reproduce
some dynamical aspects of abnormal cells in colonic crypts and track also the abnormal cell
set boundary.

Based on the results presented in Section 5.1, we infer that with this model we have
represented the bottom-up and the top-down theories described in the Introduction. Regarding
the top-down theory, we observe that our parameter choice permits the propagation from
the inter-cryptal region to the adjacent crypts of a limitednumber of abnormal cells, see for
instance the low density depicted in Figure 3. A different parameters’ choice can be used to
increase the density of such cells. We think, for example, that a possible modification of the
Darcy’s law, such asv = µ∇p with µ smaller than 1 will reduce the pressure exerted inΩin

and this could permit the entrance of more abnormal cells inside the crypts.
In the numerical simulations a domain with only two crypts was considered. However,

a reasonable model should consider more than just two crypts, this will be studied in a future
research. We think also to consider, in a future work, several abnormal cell sets that are able
to merge and to simulate then the dynamics of their boundaries and densities.

In the future, we intend also to associate an height functionto the density and then to
simulate the evolution of abnormal cells in 3-D.

In this way we could model and show that the formation of ACF is aconsequence of
the accumulation of abnormal cells. We may describe in fact agrowth in the third dimension
of the abnormal cell set in the colon epithelium instead of just describing an increase of the
density in two-dimensions as done in this work.

Acknowledgements

This work was partially supported by Contract UTAustin/MAT/0009/2008 from the UT Austin
| Portugal Program (http://www.utaustinportugal.org/) and by the Centre for Mathematics of
the University of Coimbra and Fundao para a Ciłncia e a Tecnologia, through the European
program COMPETE/FEDER.



7. REFERENCES

[1] Boyle, P. and LevinSteward, B.,”World Cancer Report”,IARC Press, Lyon, France 2008.

[2] Figueiredo I.N., Leal C., Leonori T., Romanazzi G., Figueiredo P.N., Donato M.M.,
“A coupled convection-diffusion level set model for tracking epithelial cells in colonic
crypts”. Procedia Computer Science1, 955-963, 2010.

[3] Figueiredo I.N., Leal C., Romanazzi G., Engquist B., Figueiredo P., “A convection-
diffusion-shape model for aberrant colonic crypt morphogenesis”. Computing and Vi-
sualization in Science14(4), 157-166, 2011.

[4] Holt P. R. et al., “Modulation of Abnormal Colonic Epithelial Cell Proliferation and Dif-
ferentiation by Low-Fat Dairy Foods”.Journal of American Medical Association280(12),
1074-1079, 1998.

[5] Osher S., Fedkiw R., “Level set methods and dynamic implicit surfaces”. Applied Math-
ematical Sciences 153, Springer-Verlag, New York, 2003.
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