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Abstract

Colorectal cancer is believed to be initiated in colonic crypts as consequence of several genetic mutations in normal
cells. Clusters of abnormal crypts, called Aberrant Crypt Foci (ACF), are thought to be the first manifestation of a possible
carcinogenic process. Assuming that the formation of an ACF is due to the accumulation of abnormal cells we use multiscale
technics to study their evolution. Starting from a 3-d crypt model we make its projection in a plane and then build a model in
which the colon is a 2-d structure with crypts periodically distributed. Inside the crypts, the dynamics of the abnormal cells
is governed by a convective-diffusive model, whose unknowns are the cell density of abnormal cells and a pressure. Outside
the crypts, in the inter-cryptal region, a proliferative-diffusive model is assumed for the dynamics of abnormal cells. For the
numerical implementation of this model, it is used a technique based on heterogeneous multiscale methods. Two scales are
employed: a macro-scale and a micro-scale. The macro-scale corresponds to the region of the colon where the evolution of
ACF is taking place, whilst the micro-scale is related to the region occupied by each crypt and its inter-cryptal region. Pressure
and cell density are computed at the macro-scale level using the micro-scale structure in a neighborhood of the quadrature
macro-scale points. This strategy reduces the computational cost of the simulations. Numerical results, simulating the ACF
evolution, are shown and discussed.

Keywords: Convective-Diffusive Model, Heterogeneous Multiscale Methods, Colonic Crypts.

1. Introduction

Colorectal Cancer (CRC) is the third most frequent type of malignant tumors in the world [1], and the most
incident men cancer in Portugal [2]. Unlike most other malignancies, it is possible to prevent colorectal cancer
due to the long period of time elapsed between the appearance of an adenoma and the eclosion of the carcinoma.
There are several stages in the colorectal cancer growth. The earliest expression of this process is the appearance
of Aberrant Crypt Foci (ACF). These are clusters of abnormal crypts that are the precursors of the adenomas and
can be detected by screening colonoscopy. A normal cell becomes abnormal as a consequence of several genetic
mutations [3].

There is no scientific agreement about the way how these clusters are formed starting from the accumulation
of abnormal cells. Two majors mechanisms have been proposed in order to explain these process, the top-down
and the bottom-up morphogenesis. In the first one see [4] it is assumed that at the beginning abnormal cells appear
in a superficial portion of the mucosae and spread laterally and downward inside the crypt. In the bottom-up
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morphogenesis [5], the first abnormal cells appear at the bottom of the crypt where they proliferate and fill all
the crypt. It has also been suggested in [5] that a combination of these two mechanisms could be considered.
An abnormal cell in the crypt base migrates to the crypt apex where it expands in agreement to the top-down
morphogenesis model. The reader can refer to [6, 7, 8, 9, 3, 10, 11, 12, 13] for a review in colorectal cancer
modeling and to [14, 15, 16, 5, 17, 4, 18] for the medical analysis of aberrant crypt foci and colorectal cancer.

Assuming that ACF are consequence of accumulation of abnormal cells, we will characterize the dynamics of
these cells, in order to describe the evolution of ACF.

At the beginning we consider a 3-d crypt model, where a crypt is represented by a cylinder in R3 closed at the
bottom and opened at the top, to which an inter-cryptal region closed to the crypt orifice is joined. The evolution of
abnormal cells, inside the crypt, will be characterized by a convection-diffusion model similar to those described in
[19, 20] whose solutions are the cell density of abnormal cells and a pressure due to the proliferative process. In the
inter-cryptal region, where normal cells are apoptotic [11, 6], we use a proliferative-diffusive model. After making
the projection of the 3-d crypt in a plane and obtaining then a 2-d model for the crypt, the colon is considered as
a plain periodic spread structure composed by a crypt and a inter-crypt region. In this way we obtain a coupled
parabolic-elliptic model in a domain Ω ⊂ R2.

We simulate the ACF evolution using a multiscale model that describes the dynamics in space and time of the
normal and abnormal cells in the colon. For the numerical implementation, we use an Heterogeneous Multiscale
Method (HMM) [21] with a finite elements discretization in space. Two scales are used: a macro and a micro-
scale. The macro-scale describes the region (measurable in decimeters) of the colon where the evolution of ACF
is taking place, whilst the micro-scale describes the region (measurable in micrometers) occupied by a single
crypt with an inter-cryptal region. Pressure and density are computed at the macro-scale level with the coefficients
responsible for diffusion and proliferation, that are defined at the micro-scale.

The results presented here follows our recent work [22], wherein a convection-diffusion type equation for
pressure and density is modeled in 2-d, to track the time evolution of an epithelial cell set. The model presented
in this work differs with respect to [22] in two main aspects. Here we start from a 3-d model and after a projection
in a plane we obtain a 2-d model in the crypt, whereas in [22] the model was build directly in 2-d. The other
point is that the multiscale structure permit us to model a region of the colon with millions of crypts whereas,
in all our previous works [19, 20, 22] we modeled, using a single scale, a region of the colon occupied by few
(one or two) crypts. We used, for instance in [19] and [20], a single-scale convective-diffusive model for colonic
cells dynamics and colonic crypt morphogenesis, respectively. In [19, 22] we coupled the model with a level set
equation to describe the dynamics of the boundary of a colonic cell set.

The outline of the paper is as follows. In Section 2 we describe the 3-d crypt geometry and the model for
the colonic cell dynamics. The 3-d crypt is then projected on a plane in a 2-d crypt geometry, in Section 3.
Afterwards, we present in Section 3 a multiscale model for the problem in a colon geometry represented as a
periodical distribution of such 2-d crypt geometries.The implementation of Heterogeneous Multiscale Methods
is discussed in Section 4 and includes the numerical discretization of the multiscale model, and the numerical
algorithms for computing their solutions. Numerical results are shown and discussed in Section 5. Finally in the
last section there are some comments and outlook work.

2. 3-d Crypt-geometry and cell model

In this model the colon is cut, open, and rolled out to give a three dimensional domain that consists of crypts
periodically distributed. A crypt can be represented by a 3d-domain in R3 closed at the bottom and opened at the
top.We also consider the inter-cryptal region closed to the crypt orifice. So, a ”crypt” will be represented by a
2d-manifold S of R3 such that S = S 1 ∪ S 2 ∪ S 3, where

S 1 =

{
(x1, x2, x3) ∈ R3 : rS <

√
x2

1 + x2
2 and max{|x1|, |x2|} ≤

1
2
, x3 = h

}
(1)

S 2 =

{
(x1, x2, x3) ∈ R3 :

√
x2

1 + x2
2 = rS , x3 ∈]0, h]

}
(2)

S 3 =

{
(x1, x2, x3) ∈ R3 :

√
x2

1 + x2
2 ≤ rS , x3 = 0

}
(3)
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and where h is the height of the crypt and rS is the radius of the crypt orifice (see Figure 1,left).
In the crypt region S we assume that there are two kinds of cells, normal and abnormal with densities

N(x1, x2, x3, t) and C(x1, x2, x3, t), at time t ∈ (0,T ) respectively. An overall density hypothesis, N + C = 1,
will be considered. This hypothesis describes a no-void condition (see [20]), it is used in the context of living
tissue growth [23, 6] and for modeling the tumor growth [24, 25, 26].

Inside the crypt we use a transport/diffusion model describing cell dynamics [27, 24, 20], for both cells popu-
lation. Therefore, in (S 2 ∪ S 3) × (0,T ) the densities N and C must verify⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂N
∂t
− ∇ · (v1N) = ∇ · (D1∇N) + α1N − β1NC,

∂C
∂t
− ∇ · (v2C) = ∇ · (D2∇C) + β1NC.

(4)

where D1,D2 are the diffusion coefficient of normal and abnormal cells, respectively, α1 the birth rate of normal
cells and β1 the death rate of normal cells.This latter corresponds to the birth rate of abnormal cells. The parameters
v1 and v2 in (4) are the convective velocity of the normal and abnormal cells, respectively.

We assume v1 = v2 = v (see [27]) and in order to simplify the model, a ”fluid-like” behavior obeying to the
following Darcy law v = −∇p is also considered.

Based on these hypothesis we obtain from (4) the following elliptic-parabolic coupled model in (S 2 ∪ S 3) ×
(0,T ) ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂C
∂t
− ∇ · (∇pC) = ∇ · (D2∇C) + β1C(1 −C),

−Δp = ∇ · ((D2 − D1)∇C) + α1(1 −C).

(5)

Since in the inter-cryptal region S 1, there is no high proliferative activity, as in inner crypt region, we will consider
the same equation for the density C, without the convective term, that is we have in S 1 × (0,T )

∂C
∂t
= ∇.(D∗2∇C) + β1C(1 −C) (6)

where D∗2 is the diffusion coefficient of the abnormal cells in S 1.
In normal colonic crypts it has been observed, see [28], that the proliferative activity is present in the lower

two thirds of the crypt, and that this activity is larger at the bottom of the crypt and decreases upwards towards
the orifice. We define therefore the proliferative coefficients α1 and β1, as decreasing functions, in S 2 ∪ S 3, with
respect the height of the crypt, thus

α1(x3) =

{
τα1 (x3 − 2/3h)2 if x3 ≤ 2

3 h
0 elsewhere

β1(x3) =

{
τβ1 (x3 − 2/3h)2 + γβ1 if x3 ≤ 2

3 h
γβ1 elsewhere

where τα1 is larger than τβ1 to guarantee that α1 is larger than β1.
Considering the new parameters

DS =

{
D2 in S 2 ∪ S 3

D∗2 in S 1
, ES =

{
D2 − D1 in S 2 ∪ S 3

0 in S 1
, (7)

αS =

{
α1 in S 2 ∪ S 3

0 in S 1
, βS =

{
β1 in S 2 ∪ S 3

β2 in S 1
, (8)

where β2 is defined as a constant function in S 1 such that β2 = γβ1 , we can rewrite (5)-(6) in all S × (0,T ) as
follows⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂C
∂t
− ∇ · (∇pC) = ∇ · [DS∇C] + βS C(1 −C),

−Δp = ∇ · (ES∇C) + αS (1 −C).
(9)
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3. 2-d Multiscale colon model

In this section we describe the projection of the 3-d ”crypt” S in a 2-d crypt domain P =
[
− 1

2 ,
1
2

]
×
[
− 1

2 ,
1
2

]
and make the correspondent changes in system (9). The multiscale model is then presented in a two dimensional
colonic region Ω that is formed by a periodic distribution of the crypt micro-domain εP. Here ε is a small positive
parameter that represents roughly on the ratio of the crypt orifice with respect the dimension of the colon region
examined. By considering the bijective transformation Π : S → P defined by

Π(x1, x2, x3) = (X1, X2) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x1, x2), if (x1, x2, x3) ∈ S 1(
1
rS

[
r +

x3

h
(rS − r)

]
x1,

1
rS

[
r +

x3

h
(rS − r)

]
x2

)
, if (x1, x2, x3) ∈ S 2

r
rS

(x1, x2), if (x1, x2, x3) ∈ S 3

(10)

we have that ∀i = 1, 2, 3 Π(S i) = Pi where, see Figure 1,

P1 = P − BrS (0, 0), P2 = BrS (0, 0) − Br(0, 0), P3 = Br(0, 0) and 0 < r < rS <
1
2 .

Fig. 1. Crypt projection, R stays for rS

Note that h is the height of the crypt, rS is the radius of P2 and of the crypt orifice, and r is the radius of P3.
For an arbitrary function g defined in S , a correspondent g∗ function is defined in P by

g∗(X1, X2) = g(x1, x2, x3),

where (X1, X2) = Π(x1, x2, x3). Using the relation between the space derivatives of g(x1, x2, x3) and the space
derivatives of g∗(X1, X2), system (9) can be rewritten in P×]0,T [ as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C∗

∂t
−A∗i j

∂

∂Xi
(C∗
∂p∗

∂Xj
) = A∗i j

∂

∂Xi
(D∗
∂C∗

∂Xj
) + β∗C∗(1 −C∗),

−A∗i j
∂2 p∗

∂Xi∂Xj
= A∗i j

∂

∂Xi
(E∗
∂C∗

∂Xj
) + α∗1(1 −C∗),

(11)
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where p∗,C∗ : P→ R are respectively the pressure and the cell density in P and for i = 1, 2

A∗ii(X1, X2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, in P1

gi(X1, X2), in P2

(
r
rS

)2
, in P3

; A∗12(X1, X2) = A∗21(X1, X2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, in P1

g3(X1, X2), in P2

(
r
rS

)2
, in P3

with

g1(X1, X2) =
X2

1 + X2
2

r2
S

+
(rS − r)2

h2(X2
1 + X2

2)
X2

1; g2(X1, X2) =
X2

1 + X2
2

r2
S

+
(rS − r)2

h2(X2
1 + X2

2)
X2

2 ; g3(X1, X2) =
(rS − r)2

h2(X2
1 + X2

2)
X1X2.

Let ε be the size of the crypt in the colon. The two dimensional multiscale problem is modeled now in the
rectangular domain Ω formed by the domain (εP) that is periodically distributed, see Figure 2. In order to define

Fig. 2. Colon as a periodic structure

a problem in Ω we consider the periodic coefficients Aεi j,D
ε , Eε , αε and βε defined in all the domain Ω in the

following way: ∀X ∈ Ω

Aεi j(X) = Ai j

(X
ε

)
with Ai j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A∗i j in P

by periodicity elsewhere

Similar definitions are valid for the other periodic coefficients Dε , Eε , αε and βε . Using these coefficients, we
define a new model (12) -(13) in Ω to which we add initial conditions and homogeneous boundary conditions for
pressure and cell density, that is we have in Ω × (0,T )

∂Cε

∂t
− Aεi j

∂

∂Xi
(Cε
∂pε

∂Xj
) = Aεi j

∂

∂Xi
(Dε
∂Cε

∂Xj
) + βεCε(1 −Cε), (12)

−Aεi j
∂2 pε

∂Xi∂Xj
= Aεi j

∂

∂Xi
(Eε
∂Cε

∂Xj
) + αε(1 −Cε). (13)

4. Solution of the 2-d multiscale colon model

In this section we describe the multiscale method that is used to determine a numerical solution of (12)-(13). A
finite element method, that results from a macro and a micro-scale discretization, is used. While macro-scale finite
elements, that have edges of size H >> ε, are used to approximate numerically pε and Cε in all Ω, the micro-scale
elements, that have edges of size h ≤ ε, permit us to catch the high oscillations of the coefficients Aεi j,D

ε , . . . used
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in (12)-(13). Multiscale finite element methods avoid the inefficient use of a single scale to discretize the multiscale
problem in all the domain Ω. A single scale can be, in fact, too coarse to catch the oscillations of the micro-scale
periodic coefficients that vary with ε, or when the scale is of order ε, it can require an high computational cost and
a large memory allocation for the numerical implementation of the method.

The multiscale method used here is based on the FE-HMM method [29] and it is briefly described in Paragraph
4.1. The implementation of FE-HMM to solve problem (12)-(13) is presented in Paragraph 4.2.

4.1. Brief Description of FE-HMM

This method has been presented by Assyr Abdulle in [29, 30]. His works are applied to multiscale problems
involving elliptic PDE equations in divergence form or with parabolic PDE equations. Parabolic equations are
reduced to PDE elliptic equations after approximating the derivatives in time by the Euler formula. Convergence
results for FE-HMM are proved in [31], when the multiscale coefficients of the problem are uniform elliptic,
symmetric and bounded.

This method uses a macro-scale finite element discretization with edge size H in all the domain Ω and a
micro-scale finite elements with a step-size h, only in a neighborhood of the quadrature points, that are used in
the quadrature formulae to approximate the integrals of the variational macro-scale formulation, see Figure 4.1.
Therefore this strategy reduces the computational cost of the numerical implementation with respect to the use of
classical FEM methods, with a micro-scale discretization used in all Ω, as discussed before.

We describe now the application of FE-HMM for solving a simple second order elliptic equation

−∇ · (aε∇uε) = f with uε = 0 in ∂Ω, (14)

where aε(x) ∈ L∞(Ω) is an high oscillating parameter, that is periodic in the square micro-domain εP, and it is
symmetric, uniformly elliptic and bounded in Ω.

Let TH be a partition of Ω with quadrilaterals of edge H and H1
0 = {v ∈ H1(Ω) : v = 0 in ∂Ω}, we define the

macro-scale finite element space

VH =
{
vH ∈ H1

0(Ω) | uH |K is a (bi)linear polynomial ∀K ∈ TH

}
. (15)

From (14) we have the following variational formulation: find uH ∈ VH such that∑
K∈TH

∫
K

aε∇uH · ∇vHdx =
∑

K∈TH

∫
K

f vHdx, ∀vH ∈ VH . (16)

Fig. 3. HMM Finite Element Discretization using macroelements K with edges H. Micro square elements are used in a neighborhood K δl of
a limited number of quadrature points inside each element K. K δl have edges δ with ε ≤ δ << H.

The method approximates each integral of the first member in (16), by using the two point Gauss quadrature
formula∑

l=1,...,4

ωKl q
H(xKδl

) ≈
∫

K
qH(x)dx, with ωKl =

|K|
4

and xKδl
= FK

⎛⎜⎜⎜⎜⎝±
√

3
6
,±
√

3
6

⎞⎟⎟⎟⎟⎠ , l = 1, . . . , 4, (17)
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where FK is the affine mapping of I = (− 1
2 ,

1
2 ) × (− 1

2 ,
1
2 ) into K. The values qH(xKδl

) in (17) are approximated by

the average
1
|Kδl |

∫
Kδl

qh
Kl

(x)dx of some micro-functions qh
Kl

that are defined in next paragraph.

Applying such integral approximation to the first member of (16), the macro-scale variational formulation
becomes : find uH ∈ VH such that

B(uH , vH) :=
∑

K∈TH

∑
l∈L

ωKl

|Kδl |

∫
Kδl

aε(x)∇uh∇vhdx =
∫

f vHdx, ∀vH ∈ VH . (18)

4.1.1. Micro-Functions
We describe here the properties of the micro-functions vh (and uh), that define B(uH , vH) in (18), and their

relation with the associated vH (and uH). Each vh is defined in Kδl = xKδl
+ δI, with l = 1, . . . , 4, δ ≥ ε and satisfy

• vh − vH |Kδl ∈ S =

⎧⎪⎪⎨⎪⎪⎩z : Kδl → R : z is periodic in Kδl ,∀T ∈ Th z|T is linear and
∫

Kδl

zdx = 0

⎫⎪⎪⎬⎪⎪⎭ (19)

•
∫

Kδl

aε(x)∇vh∇zhdx = 0 ∀zh ∈ S (20)

A possible vh satisfying (20) in Kδl is the function w such that

w|Kδl
∈ S and F′ε(w)(z) = 0 , ∀z ∈ S (21)

where F′ε(w) is the Fréchet derivative in w of the functional Fε = Aε(w,w) with Aε(w, z) =
1
2

∫
aε∇w · ∇zdx.

Since Aε(·, ·) is a bilinear and symmetric operator in S × S , the problem (21) is equivalent to determining
w ∈ S that minimize Fε(v) in S , with v verifying (19). This minimization problem can be solved by using
Lagrange multipliers: determine w ∈ S and Λ ∈ R such that{

F′(w) + DTΛ = 0
Dw = β

(22)

where Dw = β describes numerically the condition (19).

4.1.2. Convergence
An important property of FE-HMM is that it has a number of computations that does not depend on the size of

ε. Moreover, it can be proved, see [31, 32], that if the multiscale problem (14) has multiscale coefficient aε , with
the properties described at the beginning of Section 4.1 the following result of a priori estimate in L2(Ω) is valid

‖uε − uH‖L2(Ω) ≤ C

(
H +

√
ε +

h
ε

)
.

Here uε and uH are, respectively, the theoretical solution of the continuous multiscale problem and the numerical
solution of the method FE-HMM. A similar results is valid after using a post-processing procedure in H1(Ω).

4.2. FE-HMM applied to the colon multiscale problem

In this section we apply the FE-HMM method to the coupled multiscale problem (12)-(13), with some modi-
fications with respect to its original version presented in the previous paragraph. In our case we have a parabolic
equation (12) that is coupled with an elliptic problem (13). This latter is not in divergence form. Consequently the
bilinear form associated to the variational formulation is not symmetric. In order to overcome this difficulty we
will introduce some terms in the variational formulation of (12)-(13) that enables to solve the arising microprob-
lems with Lagrange multipliers following, the same procedure and technique described in Paragraph 4.1.
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Let consider the macro-scale Finite Element space VH defined in (15) with basis {φm}, we define the following
matrices Fa,Ga and Ma for a general function a(x) by

Fa =

⎛⎜⎜⎜⎜⎜⎜⎝
∫

a(x)φk

2∑
i

∂Aεi
∂xi
· ∇φldx)

⎞⎟⎟⎟⎟⎟⎟⎠
k,l

, Ga =

(∫
a(x)∇φk · (Aε∇φl)dx

)
k,l

, Ma =

(∫
a(x)φkφldx

)
k,l

, (23)

where
∂Aεi
∂xi
=

⎛⎜⎜⎜⎜⎝∂Aεi j

∂xi

⎞⎟⎟⎟⎟⎠
j=1,2

. These matrices are used later in the description of the numerical method with a(x)

having different expressions, see (24)-(25).
The coupled system (12)-(13) can be discretized using the Galerkin Finite Element method in the space VH

defined in (15) with partition TH . The variational problems associated to (12)-(13) determine an algebraic problem
in the vectors pH ,CH that are defined respectively by the values of pε and Cε in the macro-nodes of the partition
TH . Consider a discretization in time {tn} with time step Δt, we apply as first the Backward Euler method in the
interval [tn−1, tn] to the macro finite element discretization of the parabolic equation (13). Therefore we have that,
known CH,n−1 and pH,n−1 that are respectively the approximation at time tn−1 of CH and pH , the numerical solution
CH,n is obtained by solving

(M1 + ΔtAC)CH,n = M1CH,n−1 with AC = B∇p + D∇p + FDε +GDε − Mβ(1−CH,n−1) (24)

where B∇p = MpH,n−1·b with b =

⎛⎜⎜⎜⎜⎜⎜⎝
2∑

i=1

∂Ai

∂xi
· ∇φm

⎞⎟⎟⎟⎟⎟⎟⎠
m

and D∇p = ((d · ∇φk)φl)k,l with d = pH,n−1 · (A∇φm)m.

After computing CH,n using (24), we get pH,n by solving the macro finite element discretization of (13) at time tn

(F1 +G1)pH,n = −(FEε +GEε )C
H,n + Mα(1 −CH,n). (25)

We remark that the linear operators Fa(u, v) =
∫

a(x)u
2∑

i=1

∂Aεi
∂xi
∇vdx and D∇p(u, v) = (d · ∇u)v associated to the

matrices Fa and D∇p in (24)-(25) are not symmetric. In order to have symmetric operators in the first members of
(24)-(25), and apply then the technique described in Paragraph 4.1, we modify system (24)-(25) into

(M1 + Δt ÃC)CH,n = (M1 + Δt B̃C)CH,n−1 (26)

(F1 + FT
1 +G1)pH,n = −(FEε +GEε )C

H,n + Mα(1 −CH,n−1) + FT
1 pH,n−1 (27)

where ÃC = B∇p + D∇p + DT
∇p + FDε + FT

Dε + GDε − Mβ(1−Cε ) and B̃C = FT
Dε + DT

∇p. We obtain (26) by adding

Δt(FT
Dε + DT

∇p)CH,n+1 and Δt(FT
Dε + DT

∇p)CH,n respectively to the first and second member of (24). Equation (27)

is instead obtained by adding FT
1 pH,n and FT

1 pH,n−1 respectively to the first and second member of (25). We have
now that the first member of equations in the system (26)-(27) have symmetric operators. We observe also that
system (26)-(27) is equivalent to (24)-(25) when a sufficient small Δt is used.

5. Numerical Results

In this section we describe the evolution of two ACF in the colon by solving the numerical system (26)-(27)
with ε = 5e − 05 and with homogeneous boundary conditions for both pH and CH . We have implemented the
numerical procedure, described in the previous section, using MATLAB in a computer with an Intel Q9550
CPU (quad-core at 2.83GHz) with 3.77 GByte of total RAM memory. In the simulation we suppose that the two
ACF are initially located in the region Ω = [−2, 2] × [−1, 1] and that they have a uniform malignant cell density
C = 0.9 (see the two regions colored by red in the first picture on the left of Figure 4). These conditions define
the initial numerical solution CH,0 of the system (26)-(27) that is solved at different time steps tn = tn−1 + Δt with
Δt = 5e − 03. We use the proliferative coefficients D1 = 0.1 and D2 = D∗2 = 0.2, and a multiscale discretization
with macro and micro finite elements (quadrilaterals) that have edges of size H = 0.125 and h = ε/4, respectively.
The numerical solution CH,n obtained at time tn = 0 , 0.5 , 1 , 1.5 , 2 , 2.5 are depicted in Figure 4. The maximum
value of the associated density is shown in Table 1.
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Fig. 4. Simulation of the evolution of two aberrant crypt foci and its abnormal cell density. The six pictures show, from left to right and top to
bottom, the simulations obtained at time tn = 0 , 0.5 , 1 , 1.5 , 2 , 2.5 respectively. The colored bar on the right of each picture describes the
density distribution in an interval that goes from zero, depicted in dark blue, to the maximum density depicted in red, see also Table 1.

We observe that as the time advances the density of the malignant cells decreases and becomes more uniformly
distributed. At the final time of the simulation, t = 2.5 the two ACF join and form a unique ACF. Based on the
results in Table 1 and in the Figures 1 and 2, we can say that the malignant cells propagate quickly with an high
loss of density in the initial instants of time, when the two ACF are not in contact, and as the two ACF become
closer the propagation of cells in the colon decrease and the density of the cells becomes more homogeneously
distributed in Ω. In fact, we can deduce a loss of 75% of the maximum density in [0, 1] and a loss of 51% in [1, 2].

Table 1. Maximum density located in the centre of the ACF simulated
Time tn 0 0.5 1 1.5 2 2.5
max CH,n 0.900 0.399 0.223 0.149 0.109 0.085

6. Conclusions and future work

In this paper we have proposed a coupled multiscale model to describe the time evolution of the aberrant
crypt foci in a region of the colon. This model is able to reproduce some particular aspects of the behavior
of cells in colonic crypts, and to reveal processes/mechanisms that would be impossible to reach with real-life
experiments. In particular we can model both the top-down and bottom-up theories for the dynamics of the colonic
cells and also the interaction of normal with abnormal cells in a region of the colon, with milions of crypts. The
multiscale method used allows to catch the high oscillations of the multiscale parameters, with a reduction of the
computational time, compared to a single micro-scale model. In fact a single micro-scale code has a computational
time that increases for a decreasing epsilon. Based on our simulations with h = ε/4, it requires in each time-step
1727.2 and 3488.7 seconds for ε = 5e − 02 and ε = 4e − 02 respectively, whereas the FE-HMM approach has a
computational time independent of ε, a time-step run requires only 729.7 seconds for H = 0.125.

The drawback of this multiscale method is the lackness of convergence results due to the complexity of the
problem investigated. An analysis of the approximation error involves the study of the associated homogenized
problem [29, 31, 32] and it will be studied in future.
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