
Performance Prediction for Parallel Numerical
Software on the White Rose Grid

Giuseppe Romanazzi and Peter K. Jimack

School of Computing, University of Leeds, UK
{roman,pkj}@comp.leeds.ac.uk

Abstract

The development of Grid environments over recent years now allows scientists access to a range of
shared resources which may be located across different sites. These include computational resources
such as large parallel computers which may be used to produceaccurate numerical simulations in a
relatively short time. Since different computer architectures have different performance characteristics,
different levels of availability and different access charges, to be able to make optimal decisions con-
cerning their selection and utilization for a given scientific application, we need to be able to predict the
application’s performance on each available parallel environment. In this research we seek to model
the performance of typical state-of-the-art numerical software, based upon multigrid techniques, on
different distributed memory parallel machines for varying numbers of available CPUs. The goal of the
work is to use these models to support decisions as to which resources should be requested or reserved:
including the possibility of solving a single problem across multiple resources when they are available.

1 Introduction

Computational Grids should enable the effec-
tive utilization of geographically distributed re-
sources by distributed teams of researchers in
a transparent and seamless manner. Their po-
tential has already been successfully demon-
strated across a very wide range of scientific
applications involving distributed data analysis,
remote visualization and large-scale computa-
tion. It is the latter aspect of Grid computing
and e-Science that is addressed by this work. In
particular, we investigate the problem of how to
access the wide variety of heterogeneous com-
pute resources potentially available on a Grid in
a manner that maximizes their efficiency of uti-
lization.

Previous work on this issue has, justifiably,
viewed this problem as one of resource manage-
ment, [9], and projects such as Globus [1], Nim-
rod/G [5] and Gridway [7] have all addressed
related scheduling issues with noteworthy suc-
cess. Our viewpoint is rather different however
and is based upon an analysis of the sort of com-
putational problems that Grid users may wish
to solve. Our goal is to provide automatic pre-
dictive capabilities that will allow optimal de-
cisions to be made concerning the selection of
Grid resources for a given computational prob-
lem. In order to be able to support such deci-

sions there is a fundamental requirement to be
able to predict the performance characteristics
of a given piece of application software on an
arbitrary resource. This paper describes an at-
tempt to achieve this in the context of a gen-
eral class of computational algorithm, known as
multigrid.

Multigrid is one of the most power numeri-
cal techniques to have been developed over the
last 30 years [3, 4, 12]. As such, state-of-the-
art parallel numerical software is now increas-
ingly incorporating multigrid implementation in
a variety of application domains [2, 8, 10]. In
the next section we provide a very brief intro-
duction to parallel multigrid algorithms for the
solution of elliptic or parabolic partial differen-
tial equations (PDEs) in two space dimensions.
This is followed by an analysis of the perfor-
mance of two such codes on an abstract dis-
tributed memory architecture. The analysis is
then used to build a predictive model for this
class of code, that is designed to allow estimates
of run times to be obtained for large numbers of
processors, based upon observed performance
on very small numbers of processors. The paper
concludes with a description of some numeri-
cal tests to assess the accuracy and robustness
of these predictions and a discussion of the out-
comes obtained. Further extensions of the work
are also suggested.



2 Multigrid and Parallel Im-
plementation

The general principal upon which multigrid is
based is that when using many iterative solvers
for the systems of algebraic equations that re-
sult from the discretization of PDEs, the com-
ponent of the error that is damped most quickly
is the high frequency part [4, 12]. This ob-
servation leads to the development of an algo-
rithm which takes a very small number of iter-
ations on the finite difference or finite element
grid upon which the solution is sought, and then
restricts the residual and equations to a coarse
grid, to solve for an estimate of the error on
this grid. This error is then interpolated back
onto the original grid before a small number of
further iterations are taken and the process re-
peated. When the error equation is itself solved
in the same manner, using a still coarser grid,
and these corrections are repeated recursively
down to a very coarse base grid, the resulting
process is known as multigrid.

Further details of this procedure may be
found in [3, 4, 12], for example, however it is
sufficient to note here that multigrid, and re-
lated multilevel techniques, represent the state-
of-the-art in computational methods for PDEs
and, as such, provide one of the most impor-
tant potential applications for high performance
computing. Any parallel implementation of
such an algorithm requires a number of compo-
nents to be implemented to run concurrently:

• application of the iterative solver at each
grid level,

• restriction of the residual to a coarse level,

• exact solution at the coarsest level,

• interpolation of the error to a fine level,

• a convergence test.

There is also a variant of the algorithm (primar-
ily designed with nonlinear problems in mind),
known as FAS (full approximation scheme)
[12], which requires the solution as well as the
residual to be restricted to the coarser grid at
each level.

In this work we consider the parallel imple-
mentation of two multigrid codes: one is stan-
dard and the other uses the FAS approach. In
both cases they partition a two-dimensional fi-
nite difference grid across a set of parallel pro-
cessors by assigning blocks of rows to different
processors. Note that if the coarsest mesh is par-
titioned in this manner, then if all finer meshes
are uniform refinements of this they are auto-
matically partitioned too: see Figure 1 for an
illustration.

It is clear from inspection of the meshes in
Fig. 1 that each stage of the parallel multi-
grid process requires communication between
neighbouring processes (iteration, restriction,
coarse grid solution, interpolation, convergence
test). The precise way in which these are im-
plemented will vary from code to code, how-
ever the basic structure of the algorithm will re-
main the same. For example, it is typical for
each processor to be responsible for one block
of rows but also to store an additional dummy
row (sometimes referred to as a ghost row) of
unknowns immediately above and immediately
below its own subdomain. These rows are used
for storing copies of the top and bottom rows
owned by the processors below and above re-
spectively. In this work we consider two differ-
ent implementations, both based upon MPI [11],
referred to as m1 and m2.

2.1 The algorithm m1

This algorithm solves the steady-state equation

−∇2u = f in Ω,
Ω = [0, 1]× [0, 1],
u|∂Ω = 0.

The discretization is based upon the standard
five point finite difference stencil on each grid.
The iterative solver employed is the well-known
Red-Black Gauss-Seidel (RBGS) method [8],
which is ideally suited to parallel implemen-
tation but requires two neighbour-to-neighbour
communications for each update sweep through
the grid points.



p=0

p=3

p=1

p=2

Figure 1: Partitioning of a coarse and a fine mesh across four processors by assigning a block of rows
to each processor (bold lines represent the partition boundaries)

2.2 The algorithm m2

This algorithm, described in more detail in [8],
uses an unconditionally-stable implicit time-
stepping scheme to solve the transient problem

∂u

∂t
= ∇2u + f in (0, T] × Ω,

Ω = [0, 1]× [0, 1],
u|∂Ω = 0,
u|t=0 = u0.

As for m1, the discretization of the Laplacian is
based upon the standard five point finite differ-
ence stencil. Hence, at each time step it is nec-
essary to solve an algebraic system of equations
for which multigrid is used. Again RBGS is se-
lected as the iterative scheme and so commu-
nications are required between neighbour pro-
cessors after each red and black sweep. The al-
gorithm m2 is implemented using the FAS ap-
proach [12].

3 Scalability and a Predictive
Model

The goal of most parallel numerical implemen-
tations is to be able to solve larger problems
than would be otherwise possible. For the nu-
merical solution of PDEs this means solving
problems on finer grids, so as to be able to
achieve higher accuracy. Ideally, when increas-
ing the size of a problem by a factor ofnp and
solving it usingnp processors (instead of a sin-
gle processor), the solution time should be un-
changed. This would represent a perfect effi-
ciency and is rarely achieved due to the paral-

lel overheads such as inter-processor communi-
cations and any computations that are repeated
on more than one processor. In this research
our aim is to be able to predict these overheads
in the situation where the size of the problem
(the number of discrete unknowns,N2, on the
finest mesh) scales in proportion to the number
of processors. Consequently, the basic assump-
tion that we make is that the parallel solution
time (onnp processors) may be represented as

Tparallel = Tcomp + Tcomm. (1)

In (1),Tcomp represents the computational time
for a problem of sizeN2/np (= N(1)2, say)
on a single processor, andTcomm represents all
of the parallel overheads (primarily due to inter-
processor communications).

The calculation ofTcomp is straightforward
since this simply requires execution of a prob-
lem of sizeN(1)2 on a single processor. One of
the major attractions of the multigrid approach
is that this time should be proportional to the
size of the problem on the single processor. Fig-
ure 2 demonstrates that this is indeed the case
for both of the implementations, m1 and m2,
considered in this paper. Note that in Fig. 2
results are presented for a single processor of
two different computers, denoted as WRG2 and
WRG3. Further details of these architectures
are provided in the next section. It is clear
however that for each code, on each processor,
Tcomp is proportional toN(1)2, although the
constant of proportionality is of course differ-
ent in each case. Since our interest is in scaling
the problem size with the number of processors,
np, thenTcomp remains independent ofnp.



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0

5

10

15

20

25

N(1)2

T
co

m
p

Serial time, np=1

 

 
m2−WRG2
m2−WRG3
m1−WRG2
m1−WRG3

Figure 2:Tcomp, the serial time forN(1) = 256, . . . , 2048

The more challenging task that we have,
therefore, is to modelTcomm in a manner that
will allow predictions to be made for large val-
ues ofnp. Note that any additional work that is
undertaken when computing in parallel is asso-
ciated with the dummy rows that are stored on
each processor, as is the communication over-
head. When solving on a fine mesh of sizeN2

the value ofTcomm may be estimated, to leading
order, as

Tcomm ∝ Tstart + kN. (2)

Here Tstart relates to the start-up cost for the
communications whilstkN represents the num-
ber of tasks of sizeN at each multigrid cycle
(which will depend upon the number of com-
munications and the number of additional iter-
ative solves on duplicated rows). Furthermore,
it is important to note thatk itself may not nec-
essarily be independent ofN . In fact, slightly
more thannp times the work is undertaken by
the parallel multigrid algorithm on anN2 fine
mesh than by the sequential multigrid solver on
anN2/np fine mesh. This is because in the for-
mer case either there are more mesh levels, or
else the coarsest grid must be finer. In all of
the examples discussed in this paper we con-
sider each problem using the same coarse level
N2

0 (with N0 a power of 2) and the same work
per processor at the finest level (N2 on np pro-
cessors, whereN =

√
npN(1)). Therefore, the

number of grid levels used,nlevels, depends on
the number of processorsnp, that is

nlevels = log2(N/N0) + 1. (3)

We consider two different models forTcomm,

based upon (2). In the first of these we do as-
sume thatk is approximately constant to obtain

Tcomm = a + bN. (4)

In the second model we add a quadratic term
γN(1)2 that allows a nonlinear growth of the
overhead time

Tcomm = α + βN + γN(1)2. (5)

The quadratic term introduced in (5) is designed
to allow a degree of nonlinearity to the overhead
model, reflecting the fact thatk in (2) may not
necessarily be a constant. As will be demon-
strated below, the importance (or otherwise) of
this nonlinear effect depends upon the specific
characteristics of the processor and communica-
tion hardware that are present on each particular
parallel architecture.

In order to obtain values for(a, b) and
(α, β, γ) in (4) and (5) respectively, the paral-
lel performance of a given code must be as-
sessed on each target architecture. Note from
Fig. 1 that the communication pattern is iden-
tical regardless ofnp: requiring only neighbour
to neighbour communications. Hence our next
assumption is that(a, b) or (α, β, γ) may be de-
termined using just a small number of proces-
sors. In this work we choosenp = 4 in order to
approximate(a, b) or (α, β, γ) by fitting (4) or
(5) respectively to a plot of(Tparallel − Tcomp)
againstN . Note that, from (1),Tcomm =
Tparallel − Tcomp andTcomp is known from the
data collected on a single processor.

A summary of the overall predictive
methodology is provided by the following steps.



In the following notationnp is the target num-
ber of processors andN2 is the largest problem
that can be solved on these processors without
swapping effects causing performance to be di-
minished. Similarly,N(1)2 = N2/np is the
largest such problem that can fit onto a single
processor.

1. Forℓ = 1 to m

Run the code on a single proces-
sor with a fine grid of dimension
(21−ℓN(1))2.

In each case collectTcomp based upon av-
erage timings over at least5 runs.

2. Forℓ = 1 to m

Run the code on 4 [or 8] proces-
sors, with a fine grid of dimen-
sion(22−ℓN(1))2 [or (22−ℓN(1)×
23−ℓN(1))].

In each case collectTparallel based upon
average timings over at least5 runs.

3. Fit a straight line of the form (4) through
the data collected in steps 1 and 2 to es-
timate a and b, or fit a quadratic curve
through the data collected to estimateα,
β andγ in (5).

4. Use either model (4) or model (5) to
estimate the value ofTcomm for larger
choices of np and combine this with
Tcomp (determined in step 1) to estimate
Tparallel as in (1).

4 Numerical Results

The approach derived in the previous section is
now used to predict the performance of the two
multigrid codes, m1 and m2, on the two parallel
architectures WRG2 and WRG3. These com-
puters form part of the University of Leeds’ con-
tribution to the White Rose Grid [6]

• WRG2 (White Rose Grid Node 2) is a
cluster of 128 dual processor nodes, each
based around 2.2 or 2.4GHz Intel Xeon
processors with 2GBytes of memory and
512 KB of L2 cache. Myrinet switch-
ing is used to connect the nodes and Sun
Grid Engine Enterprise Edition provides
resource management.

• WRG3 (White Rose Grid Node 3) is a
cluster of 87 Sun microsystem dual pro-
cessor AMD nodes, each formed by two
dual core 2.0GHz processors. Each of
the 87 × 4 = 348 batched processors
has L2 cache memory of size 512KB and
2Gbytes of physical memory. Again, both
Myrinet switching and Sun Grid Engine
are used for communication and resource
management respectively.

Table 1 shows values of(a, b) and(α, β, γ)
obtained by following steps 1 to 4 described
above, usingN(1) = 2048 andm = 4. Each
of the codes is run on each of the selected par-
allel architectures. Clearly the precise values
obtained for(a, b) and(α, β, γ) depend upon a
number of factors.

• Because users of WRG2 and WRG3 do
not get exclusive access to the machines,
or the Myrinet switches, there is always
some variation in the solution times ob-
tained in steps 1 and 2.

• On WRG2 there are both 2.4GHz and
2.2GHz processor nodes, hence the pa-
rameters will depend on which proces-
sors are used to collect execution times in
steps 1 and 2.

• On WRG3 the situation is made more
complex by the fact that each node con-
sists of two processors and 4 cores. Users
may therefore have access to a core on a
node where other users are running jobs
or else they may have an entire node to
themselves. This creates significant vari-
ations in the timings for both sequential
and small parallel runs.

As outlined in steps 1 and 2 above, a simple way
to reduce the effects of these variations is sim-
ply to take average timings over five runs (say),
however such a crude approach may not always
be sufficient. Hence, for WRG2 it makes sense
to ensure that the slower processors are used in
all of the model timings since when running a
large parallel job it is inevitable that some of the
processors will be the slower 2.2GHz ones. Fur-
thermore, in order to better control the effects
of multiple cores on WRG3, we have chosen to
undertake all of the sequential runs using four
copies of the same code: all running on the



m2-WRG2 m2-WRG3 m1-WRG2 m1-WRG3

1 node
a =
b =

−0.2864
4.795e− 04

5.139e− 04
−0.1658

−6.917e− 02
1.069e− 04

2.943e− 04
−0.2250

2 nodes
a =
b =

4.083e − 04
−8.518e− 03

3.191e− 04
−0.2316

1 node
α =
β =
γ =

3.230e− 02
1.385e− 04
2.877e− 07

−0.2079
5.704e − 04
−4.765e− 08

−5.760e− 02
9.135e− 05
1.309e− 08

6.012e− 02
−8.833e− 05
3.228e− 07

2 nodes
α =
β =
γ =

−0.4211
9.621e − 04
−4.671e− 07

−1.698e− 02
3.106e− 05
2.430e− 07

Table 1: Parameters(a, b) and(α, β, γ) of the Tcomm models (4) and (5) respectively, obtained for
np = 4 and forN(4) = 512, . . . , 4096 with coarse grid of size32

same node. This simulates the situation that will
exist for a large parallel run. In addition to this,
for WRG3, two predictive timings are obtained.
The first of these is obtained by running the 4
process parallel job on a single node, whilst the
second is obtained by running an 8 process par-
allel job across two nodes. The latter is designed
to allow both intra-communication (communi-
cation between processes in the same node) and
inter-communication (communication between
processors in different nodes) overheads to be
captured by our model (the former will only
capture intra-communication costs).

Given the values shown in Table 1, it is
now possible to make predictions for the perfor-
mance of the multigrid codes on greater num-
bers of processors. In this paper, we consider
executing the codes onnp = 64 processors,
with the grids scaled in size in proportion tonp.
Figure 3 shows results using the linear model,
(4), whilst Figure 4 shows similar results based
upon the quadratic model (5). In each case
all four combinations of algorithms (m1,m2)
and computer systems (WRG2,WRG3) are pre-
sented. Note that for the runs on WRG3 two
predictions (Tpredict1 and Tpredict2) are pre-
sented: these are based upon the parameters in
Table 1 when 1 node (4 cores) or 2 nodes (8
cores) are used in step 2 respectively.

Comparing Figs. 3 and 4 we see that for both
codes the linear model does just as good a job as
the quadratic model on the single core architec-
ture of WRG2. In all cases the error between
the predictions and the actual timings is around
about 20-30% for the largest problem consid-
ered (N(64) = 16384). This relatively large

under-prediction is almost certainly due to the
effects of the slower processors not being taken
into account correctly when capturing the pa-
rameters that are presented in Table 1.

From Fig. 4 it is apparent that using
quadratic model can provide significantly bet-
ter predictions for both multigrid implementa-
tions on WRG3, provided that Tpredicted2 is
used. Recall that this prediction is based upon
the use of 8 cores in step 2 of the methodology
described in the previous section (as opposed to
4 cores for Tpredicted1). This clearly demon-
strates that, since the large parallel job is likely
to run across all available cores on each node,
and to use multiple nodes, both intra- and inter-
communications must be captured by the pre-
dictive model.

5 Conclusion and Future
Work

In this paper we have proposed a simple
methodology for predicting the performance of
parallel multigrid codes based upon their char-
acteristics when executed on small numbers
of processors. The initial results presented are
quite encouraging and demonstrate that reason-
ably accurate and reliable predictions are possi-
ble provided that sufficient care is taken with the
construction of the model and the evaluation of
its parameters. In particular, it has been possible
to demonstrate that the effects of a multicore ar-
chitecture can be captured and that the models
proposed can be applied to two quite different
multigrid codes.



0.5 1 1.5

x 10
4

0

10

20

30

N(np)

T
im

e

m2−WRG2, np=64

 

 
Tmeasured
Tpredicted

0.5 1 1.5

x 10
4

0

10

20

30

N(np)

T
im

e

m2−WRG3, np=64

 

 
Tmeasured
Tpredicted1
Tpredicted2

0.5 1 1.5

x 10
4

0

2

4

6

N(np)

T
im

e

m1−WRG2, np=64

 

 
Tmeasured
Tpredicted

0.5 1 1.5

x 10
4

0

2

4

6

8

N(np)
T

im
e

m1−WRG3, np=64

 

 
Tmeasured
Tpredicted1
Tpredicted2

Figure 3: Linear modelT = Tcomp + a + bN for Time predicted, and Time measured onnp = 64
processors,N(64) = 2048, . . . , 16384

Nevertheless, it is clear that further research
still needs to be undertaken before we can reach
our goal of guaranteeing optimal resource uti-
lization across computational Grids. For exam-
ple, where an architecture is not completely ho-
mogeneous (e.g. WRG2) more care needs to
be taken in the evaluation of the model parame-
ters. Furthermore, additional investigations are
required in order to better understand the sensi-
tivity of the predicted times with respect to these
parameter values.

Other issues that will also need to be con-
sidered in future work include the incorporation
of a global convergence test into the model and
of an exact solver at the coarsest level. These
have not been important in the results presented
here since only a fixed number of multigrid V-
cycles have been used in the numerical tests
and the coarsest grid solves have just used a
large fixed number of RBGS sweeps. In prac-
tice however the number of cycles and the num-
ber of coarse grid sweeps will not be fixed and
will depend upon whether or not convergence

has been achieved.

Finally, we observe that, in addition to de-
ciding which single computational resource to
use in order to complete a given computational
task, there will be occasions when multiple Grid
resources are available and might be used to-
gether. Consequently, in future work we intend
to extend our models to provide predictions that
will allow decisions to be made on how best
to split the work across more than one resource
and to determine the likely efficiency (and cost-
effectiveness) of so doing.

References

[1] Globus Project, http://www.globus.org
(2007).

[2] Bank, R.E. and Holst, M.J., A New
Paradigm for Parallel Adaptive Meshing
Algorithms. SIAM Review45, 292–323
(2003).



0.5 1 1.5

x 10
4

0

10

20

30

N(np)

T
im

e

m2−WRG2, np=64

 

 

0.5 1 1.5

x 10
4

0

10

20

30

N(np)

T
im

e

m2−WRG3, np=64

 

 

0.5 1 1.5

x 10
4

0

2

4

6

N(np)

T
im

e

m1−WRG2, np=64

 

 

0.5 1 1.5

x 10
4

0

1

2

3

4

N(np)
T

im
e

m1−WRG3, np=64

 

 

Tmeasured
Tpredicted

Tmeasured
Tpredicted1
Tpredicted2

Tmeasured
Tpredicted

Tmeasured
Tpredicted1
Tpredicted2

Figure 4: Quadratic modelT = Tcomp + α + βN + γN(1)2 for Time predicted, and Time measured
onnp = 64 processors,N(64) = 2048, . . . , 16384

[3] Brandt, A., Multi-level adaptive solutions
to boundary value problems.Mathematics
of Computation31, 333–390 (1977).

[4] Briggs, W.L., Henson, V.E. and Mc-
Cormick, S.F.A Multigrid Tutorial. SIAM
(2000).

[5] Buyya, R., Abramson, D. and Giddy, J.G.,
Nimrod/G: An Architecture for a Resource
Management and Scheduling System in a
Global Computational Grid. InProceed-
ings of the 4th Int. Conf. on High Perfor-
mance Computing in Asia-Pacific Region.
IEEE Computer Society (2000).

[6] Dew, P.M., Schmidt, J.G., Thompson, M.
and Morris, P., The White Rose Grid:
practice and experience. In: Cox, S J (edi-
tor) Proceedings of the 2nd UK All Hands
e-Science Meeting.EPSRC (2003).

[7] Huedo, E., Montero, R.S. and Llorente,
I.M., A modular meta-scheduling archi-
tecture for interfacing pre-WS and WS
Grid resource management services.Fu-

ture Generation Computing Systems23,
252–261 (2007).

[8] Koh, Y.Y., Efficient Numerical Solution of
Droplet Spreading Flows.Ph.D. Thesis,
University of Leeds (2007).

[9] Krauter, K., Buyya, R. and Maheswaran,
M., A taxonomy and survey of Grid re-
source management systems.Int. J. of
Software: Practice and Experience32,
135–164 (2002).

[10] Lang, S. and Wittum, G., Large-scale
density-driven flow simulations using par-
allel unstructured grid adaptation and lo-
cal multigrid methods.Concurrency and
Computation: Practice and Experience
17, 1415–1440 (2005).

[11] Snir, M., Otto, S.W., Huss-Lederman S.,
Walker D.W. and Dongarra J.,MPI – The
Complete Reference.MIT Press (1996)

[12] Trottenberg, U., Oosterlee, C.W. and
Schüller, A., Multigrid. Academic Press
(2003).


