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a b s t r a c t

We propose a model for describing and predicting the parallel performance of a broad class of parallel
numerical software on distributed memory architectures. The purpose of this model is to allow reliable
predictions to be made for the performance of the software on large numbers of processors of a given par-
allel system, by only benchmarking the code on small numbers of processors. Having described the meth-
ods used, and emphasized the simplicity of their implementation, the approach is tested on a range of
engineering software applications that are built upon the use of multigrid algorithms. Despite their sim-
plicity, the models are demonstrated to provide both accurate and robust predictions across a range of
different parallel architectures, partitioning strategies and multigrid codes. In particular, the effectiveness
of the predictive methodology is shown for a practical engineering software implementation of an elas-
tohydrodynamic lubrication solver.

� 2010 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.
1. Introduction

Parallel computational engineering software is now becoming
widely used for the simulation of a broad range of problems across
a significant number of application domains. For the computa-
tional engineer there are a number of advantages associated with
the use of parallel computer systems, including faster job turn-
around and the ability to run simulations that would not otherwise
be possible (due to their memory requirements for example). In
practice however, this computational work is not undertaken in
isolation and so there is a need to map computational tasks onto
available resources, schedule tasks across resources, prioritize
tasks within a prescribed budget, etc. – often in competition with
other users who wish to access some or all of these resources.
The work described in this paper is motivated by these constraints
and the resulting need for both the computational scientists and
the automated resource schedulers to be able to make accurate
predictions as to the execution time of a given job on a given com-
putational resource. If such information can be obtained cheaply
and reliably then informed decisions concerning the trade-off be-
tween extra computational resolution versus machine availability,
turn-around time, charges, etc., can be made with confidence. Sim-
ilarly, scarce resources can be scheduled and assigned with greater
efficiency.
d and Elsevier Ltd. All rights reser
In order to keep the task tractable, we focus our attention here
on parallel engineering software that is based upon use of multi-
grid methods [4,5,33]. Multigrid is a computational technique that
is growing in importance across a very wide selection of engineer-
ing applications, from computational fluid dynamics [9,20],
through to phase change problems [16,28], for example. The idea
behind the technique is to accelerate the iterative solution of a dis-
crete set of algebraic equations on a very fine finite difference/ele-
ment/volume mesh by taking some of the iterations, on a suitably
modified problem, on a coarser mesh. These iterations can, in turn,
be accelerated by iterations on a mesh that is coarser still, repeat-
ing the process until only a very coarse mesh is used at the most
basic level. The success of this approach is based upon choosing
the iterative method on each mesh to satisfy the so-called smooth-
ing property, which ensures that the error components of the
highest frequency that may be represented on each mesh are elim-
inated the fastest. See [4,5,33] for further details.

The parallel implementation of multigrid software has been the
topic of much recent research, e.g. [3,11–13,19]. This is typically
based upon using a geometric partition of the coarsest mesh that
is present and then mapping this in the natural manner to each
of the finer meshes. Such an approach is also taken throughout this
work. Of course there are many ways in which this geometric par-
tition may be undertaken [20], however for the majority of this pa-
per we restrict our attention to the use of a so-called strip partition,
which is described more fully in Section 3 below. This is primarily
because the practical engineering software [12,13], that we use as
the most challenging test case in this paper is written with this
ved.

http://dx.doi.org/10.1016/j.advengsoft.2010.10.005
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partitioning strategy. In the final sections of the paper we also dis-
cuss how our results extend to other partitioning strategies.

All of the computational domains considered in this work are in
two dimensions, although extensions to problems in three dimen-
sions are briefly discussed towards the end of the paper. Further-
more, the domains that we consider are typically rectangular in
shape. It is important to emphasize however that use of a rectan-
gular domain does not necessarily mean that the problems being
solved have such a simple geometry. For example, the elastohydro-
dynamic lubrication software that is described in Section 6, uses a
lubrication approximation to allow contact problems over a range
of complex geometries, including flows for which cavitation oc-
curs, to be represented [12,13]. Similar long-wave approximations
are widely used in thin film flow simulations to allow all sorts of
geometric complexity to be modelled on simple rectangular
domains in two dimensions, e.g. [9,10]. Other techniques which al-
low geometry to be represented implicitly on simple domains in-
clude phase-field, level-set and volume-of-fluid methods (see, for
example [28,1,14] respectively).

As already indicated above, the main contribution of this work
is to propose, and assess, a model for describing and predicting
the performance of parallel multigrid software running on a dis-
tributed memory architecture. The goal of the model is to allow
reliable predictions to be made as to the execution time of a given
code on a large number of processors, of a given parallel system, by
only benchmarking the code on small numbers of processors. We
show that the prediction model is accurate and robust with respect
to both the processor and the communication architectures consid-
ered. In particular we consider heterogeneous and multicore pro-
cessor architectures, combined with different communication
architectures, such as Myrinet and Fast Ethernet switching. Fur-
thermore, unlike our previously published work [23–25,27], we
demonstrate the effectiveness of our approach on practical engi-
neering software [12,13], in addition to codes that are based upon
slightly less complex mathematical models [11].

The layout of the paper is as follows. In the next section we de-
scribe some related work into performance modelling. In Section 3,
we provide a very brief introduction to parallel multigrid algo-
rithms for the solution of elliptic or parabolic partial differential
equations (PDEs) in two space dimensions. This is followed by an
analysis of the typical multigrid performance on an abstract dis-
tributed memory architecture. This analysis is then used to build
a predictive model, for this class of code, that is designed to allow
estimates of run times to be obtained for large numbers of proces-
sors, based upon observed performance on very small numbers of
processors. In Section 4 we describe in detail our initial implemen-
tation of the predictive methodology [24], and show some predic-
tion results for benchmark codes across different parallel
architectures. These results show the great potential of our strat-
egy but also illustrate some limitations of this initial implementa-
tion, which are discussed. In Section 5 we therefore generalize the
implementation of our predictive model and illustrate that this
delivers both accurate and robust predictions across all of our test
problems. In Section 6, we then describe how the general predic-
tive methodology that has been presented may be applied to a
practical parallel multilevel code that is used to model elastohy-
drodynamic lubrication (EHL) [12,13]. The paper concludes with
two further sections, which discuss additional generalizations
and applicability of our work.
2. Related work

Research into performance modelling and prediction for parallel
and distributed software and systems is by no means new. Indeed,
an excellent recent survey of the state-of-the-art in this area is pro-
vided in [21]. It makes no sense to attempt to repeat such a survey
here, however we do present a very brief overview of some of the
main techniques that have been used, in order to allow the novelty
of the approach that we propose to be highlighted. In particular,
two broad classes of methods may be identified: one of which is
based upon the use of analytical models which provide a detailed
description of an individual application; whilst the other is based
upon obtaining a detailed description of the target high perfor-
mance computing (HPC) systems that may be used to execute a
code (based upon carefully selected benchmark tests), and then
combining this with the output of an application trace for the soft-
ware in question.

Examples of the former approach include a the LogP approach of
[7] or, more recently, the work of [17]. In [17], for example, the fo-
cus is on a particular large-scale parallel application and so it is
deemed worthwhile to invest the effort required to build a detailed
analytic model of this application for a selection of possible HPC re-
sources. The advantage of this approach is the very accurate pre-
dictions that are possible, and are delivered consistently for the
applications and HPC systems that are considered. The main draw-
back however is that substantial code-specific knowledge is re-
quired, and considerable person effort is needed each time a new
HPC resource becomes available for consideration.

The alternative class of method tends to be rather more empir-
ical, but is also more flexible and portable than the analytic ap-
proaches. For example, [6,22] present techniques for performance
prediction in which user knowledge of the code is replaced by
the need to execute a detailed trace of the software. This trace
identifies the main communication and computation activities,
and is then combined with the output from thorough benchmarks
of the HPC systems being considered. The main advantages of this
approach are the lack of a need to have a highly detailed knowl-
edge of the software being considered, and the resulting relative
ease with which new software may be assessed. However, this
trace-based approach typically requires significant computational
effort and could lead to the requirement for new benchmarks to
be obtained for each HPC system. This could be a significant
disadvantage.

In the approach that we present in the following sections, we
aim to develop a compromise between these two different classes
of method. This paper represents the development, and maturing,
of our initial efforts to find such a middle ground, which have ap-
peared in [23–27]. The goal is to build predictions based upon the
empirical approach, in order to allow a wide variety of codes to be
incorporated with relative ease, but to avoid the need for detailed
and expensive benchmarking of every target HPC architecture, or
for expensive traces to be executed for each parallel code being
considered. This is achieved by running the target software on each
target architecture using different, but always small, numbers of
processors. Empirical models that allow us to extrapolate the tim-
ings obtained, to much larger numbers of processors, are then
parameterized and applied.

In addition to the development of performance modelling to
allow individual engineering practitioners to make informed
decisions concerning mesh resolution, resource selection, etc. (in
terms of availability, turn-around time and cost), the use of
reliable models is also of great practical value in the scheduling
of resources on computational Grids. The research in [29], for
example, addresses this particular issue. There, the execution time
for each job is broken into two parts, representing computation
and communication costs, that are subsequently estimated. This
is the same general approach that is used in our work. Finally,
we note that techniques have also been developed, involving
stochastic models, to predict how an application may behave
when there is contention for resources, e.g. [30]. We do not
consider this here however.
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To our knowledge, no previous research on parallel perfor-
mance modelling and prediction has focused on multigrid-based
software. As described in the introduction, this is an extremely
important class of numerical algorithm which, due to its computa-
tional efficiency, is becoming more and more widely used in
practical engineering software. Illustrative work includes [9,11–
13,16,19,20,28], but there are many more examples that could be
cited. The original multigrid approach, e.g. [4], was designed for
the solution of linear problems however the technique may also
be applied directly to nonlinear problems via the so-called full
approximation scheme (FAS), see [33] for details. In this paper both
linear and nonlinear (FAS) multigrid are considered. In both cases
we are able to exploit one of the fundamental properties of multi-
grid, which is that the computational cost of the standard sequen-
tial algorithm grows only linearly with the problem size (i.e. the
number of unknowns used in the discretization of the underlying
PDE problem), [5,33]. This is illustrated in the following section,
see Fig. 2, and allows us to assume that if the number of parallel
processors is increased in proportion to the size of the finest mesh
used in the discretization, then the computational work per pro-
cessor will remain approximately constant. The next section begins
with a brief discussion of multigrid, and its parallel implementa-
tion, before providing further detail of the predictive methodology
that we have adopted.
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Fig. 1. Strip partitioning of a coarse and a fine mesh across four processors by
assigning a block of rows to each processor.
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Fig. 2. Computational multigrid time for combinations of two codes (m1,m2)
running on two different Clusters (A,B): in each case the solution time scales
linearly with the problem size (as represented by the memory requirement for each
run).
3. Parallel multigrid implementations and predictive
methodology

3.1. Parallel multigrid software

The general principal upon which multigrid is based is that,
when using a suitable iterative solver (i.e. with the smoothing
property) for the system of algebraic equations that results from
the discretization of a PDE of interest, the component of the error
that is damped most quickly is the highest frequency part [5,33].
This observation leads to the development of an algorithm which
takes a very small number of iterations on the finest grid upon
which the discretized PDE solution is sought, and then restricts
the residual and equations to a coarser grid, to solve for an esti-
mate of the error on this grid. This error is then interpolated back
onto the original grid before a small number of further iterations
are taken and the process repeated. When the error equation is it-
self solved in the same manner, using a still coarser grid, and these
corrections are repeated recursively down to a very coarse base
grid, the resulting process is known as multigrid.

Any parallel software that is based upon the use of multigrid re-
quires a number of components to be implemented in parallel.
Each of the following components will require some element of
inter-processor communication in order to achieve this
implementation:

� application of the iterative solver at each grid level;
� exact solution at the coarsest level;
� a convergence test;
� restriction of the residual to a coarser level;
� interpolation of the error to a finer level.

In addition, in the FAS variant of the algorithm it is also neces-
sary that the solution (as well as the residual) should be restricted
to the coarser grid at each level [33].

For the first part of this work we consider the parallel imple-
mentation of two multigrid codes: one is linear and the other uses
the FAS approach. In both cases they are based upon finite differ-
ence (FD) discretizations and they partition the two-dimensional
FD grid across a set of parallel processors by assigning blocks of
rows to different processors (a so-called strip partition). Note that
when the coarsest mesh is partitioned in this manner, then if all fi-
ner meshes are uniform refinements of this, they are automatically
partitioned too: see Fig. 1 for an illustration.

It is clear from inspection of the meshes in Fig. 1 that each stage
of the parallel multigrid process requires communication between
neighbouring processes (iteration, restriction, coarse grid solution,
interpolation, convergence test). The precise way in which these
are implemented will vary from code to code, however the basic
structure of the algorithm will remain the same. In this work we
consider two different implementations, referred to as m1 and
m2, which are described in the following paragraphs. For a full dis-
cussion of these multigrid codes see also our initial work on this
problem, [23]. Also, note from Fig. 2 that, as already highlighted
in the previous section, the computational time scales linearly with
the size of the problem for each of these codes (when run in
sequential mode).
3.1.1. The algorithm m1
This algorithm solves the steady-state equation

�r2u ¼ f in X;

X ¼ ½0;1� � ½0;1�;
uj@X ¼ 0:

The discretization is based upon a central finite difference
scheme on each grid. The iterative solver employed is the well-
known Red–Black Gauss-Seidel (RBGS) method [18], which is ide-
ally suited to parallel implementation. The partitioning of the grids
is based upon Fig. 1 with both processors p and p + 1 owning the
row of unknowns on the top of block p. This means that communi-
cations between processors are only required in the restriction
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phase and after each red and black sweep of RBGS. The code re-
quires then some extra, dummy rows which are updated after each
communication. This code uses a series of non-blocking sends and
receives in MPI [31] during the communication phase.
3.1.2. The algorithm m2
This algorithm, described in more detail in [18], uses an uncon-

ditionally-stable implicit time-stepping scheme to solve the tran-
sient problem

@u
@t
¼ r2uþ f in ð0; T� �X;

X ¼ ½0;1� � ½0;1�;
uj@X ¼ 0;
ujt¼0 ¼ u0:

As for m1, the discretization of the Laplacian is based upon the
standard five point finite difference stencil. Hence, at each time
step it is necessary to solve an algebraic system of equations for
which multigrid is used. Again RBGS is selected as the iterative
scheme and so communications are required between neighbour
processors after each red and black sweep. Different from m1, here
only processor p owns the row of unknowns at the top of block p.
This means that communications are also required at the interpo-
lation phase, as well as the restriction and convergence test phases.
Also different from m1, the inter-processor sends and receives are
based upon a mixture of MPI blocking and non-blocking functions.
Finally, as mentioned above, m2 is implemented using the FAS
algorithm [33] and so the current solution must also be restricted
from the fine to the coarser grid at each level.
Fig. 3. Partitioning of a square mesh across four processors (top) and the equivalent
problem considered on two processors (bottom).
3.2. Parallel architectures

The model, described in the following sections, is used to pre-
dict the performance of multigrid numerical codes, running on
two different clusters of the White Rose Grid [8] environment:

� Cluster A (White Rose Grid Node 2) is an heterogeneous cluster
of 128 dual processor nodes, each based around 2.2 or 2.4 GHz
Intel Xeon processors with 2 GBytes of memory and 512 KB of
L2 cache. Myrinet or Fast Ethernet switching are used in the
tests to connect the nodes.
� Cluster B (White Rose Grid Node 3) is a multicore cluster of 87

Sun microsystem dual processor AMD nodes, each formed by
two dual core 2.0 GHz processors. Each of the 87 � 4 = 348
batched processors has L2 cache memory of size 512 KB and
access to 8 Gb of physical memory (but only 8 Gb in total, even
when all 4 cores are active on a given node). Again, either
Myrinet or Fast Ethernet switching may be used.

3.3. Basic predictive methodology

The goal of most parallel numerical implementations is to be
able to solve larger problems than would be otherwise possible.
For the numerical solution of PDEs this means solving problems
on finer grids, so as to be able to achieve higher accuracy. Ideally,
when increasing the size of a problem by a factor of np and solving
it using np processors (instead of a single processor), the solution
time should be unchanged. This would represent a perfect effi-
ciency and is rarely achieved due to the parallel overheads such
as inter-processor communications and any computations that
are repeated on more than one processor. In this research our pri-
mary goal is to be able to predict these overheads. We aim to
achieve this by running across a small number of processors, with
the size of the problem (the number of discrete unknowns on the
finest mesh) scaled in proportion to the number of processors used,
as illustrated in Fig. 3.

The predictive model seeks to forecast the execution time of
parallel runs of different multigrid codes when used to solve a
large ‘‘target’’ problem using np processors on a given HPC archi-
tecture. This target problem is defined on a square computational
mesh of dimension N � N, with an homogeneous ‘‘strip’’ distribu-
tion of the computational domain across the available np proces-
sors, see Fig. 1.

In quantitative terms, the basic assumption that we make is
that the parallel solution time (on np processors) may be repre-
sented as

T ¼ Tcomp þ Tcomm: ð1Þ

In (1), Tcomp represents the computational time for a problem of size
N � eN on a single processor (where eN ¼ N=np), and Tcomm represents
all of the parallel overheads (primarily due to inter-processor
communications).

The calculation of Tcomp is straightforward since this simply re-
quires the execution of a problem of size N � eN on a single proces-
sor. Note that it is important that the precise dimensions of the
problem solved on each processor in the parallel implementation
are maintained for the sequential solve in order to obtain an accu-
rate value for Tcomp. This is because the memory access and conten-
tion patterns observed in the parallel runs (such as cache and
multicore effects at the node-level) vary with respect to the geo-
metrical dimensions of the memory allocated to each processor,
and they can consequently influence the computational time
measured.

The more challenging task is to model Tcomm in a manner that
will allow predictions to be made for large values of np. Recall that
our goal is to develop a simple model that will capture the main
features of this class of numerical algorithm with just a small num-
ber of parameters that may be computed based upon runs using
only a few processors. The overhead term Tcomm used in the model
(1) depends on a variety of factors, such as the processor, the com-
munication architecture, and, of course, the parallel implementa-
tion of the code. We seek to capture this term based upon
simulations of the target problem running on a smaller number
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of processors, but using the same length of messages in the send
and receive operations as for the target problem. Keeping this in
mind we describe the predictive methodology for the parallel over-
heads in the following sections.

4. Linear predictive methodology for the parallel overheads

A preliminary methodology for predicting the parallel over-
heads, i.e. Tcomm in (1), is described here. It is based on the model
presented in [25]. For convenience, we define as ‘‘work per proces-
sor’’ the memory required by each processor: this is because the
computational work per processor in a multigrid code is propor-
tional to the problem size assigned, and therefore to the associated
memory required by each processor. Moreover, we use the term
‘‘processor’’ to refer to a single core-processor in the parallel archi-
tecture considered.

Figs. 4 and 5 show respectively plots of the actual overhead ob-
served for the multigrid code (m1) against the computational work
for two different HPC systems: one based upon Fast Ethernet
switching, and the other based upon Myrinet. In the associated
runs we have kept fixed the first dimension of the problem (i.e.
N) and have varied the work per processor. Note that this means
that each processor has to solve a problem size of dimension
N � eN where eN is allowed to vary.

Based upon the empirical evidence of the plots shown in Figs. 4
and 5, and similar tests, we can estimate Tcomm using the following
model
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Fig. 4. Overhead (Tcomm) associated to a fixed size of messages (N) using Fast
Ethernet switching and code m1.
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Fig. 5. Overhead (Tcomm) associated to a fixed size of messages (N) using Myrinet
switching and code m1.
Tcomm ¼ aðnpÞ þ cðnpÞ �work: ð2Þ

The length of the messages (which are always of length N on the
finest mesh) does not appear in this formula since it is assumed
that for a given size of target problem (e.g. a mesh of dimension
32,768 � 32,768) the size of the messages is known a priori (in this
case, since the partition is by rows, the largest messages will be of
length 32,768). Hence there is no need to include N in the model as
it is fixed in advance. This is the primary reason that the expression
(2) can be so simple.

Furthermore, the following simple relations are assumed to
hold:

aðnpÞ � c þ dlog2ðnpÞ ð3Þ
cðnpÞ � constant: ð4Þ

These are based on the observation that, as illustrated in Figs. 4
and 5, in each case we have an almost linear growth in overhead
with work, where the slope is approximately constant, and there
is an almost constant difference between graphs as np is doubled.
Note that the length of the messages is the same in all of these runs
(see Fig. 3 for constant work with two different choices of np and
Fig. 6 for the same np but half the work per processor).

In order to be able to use the model (2) it is necessary to eval-
uate the parameters c,d and c appearing in (3) and (4). In our meth-
odology, these parameters are determined using measurements
taken for np = 4 and np = 8 with c = c(8), and c and d obtained using
a simple linear fit through the two data points.

4.1. Algorithm to compute estimated execution time

A summary of the overall predictive methodology is provided
by the following steps. We define as N � N and np the target prob-
lem size and number of processors respectively (i.e. we wish to
predict a code’s performance for these values). Also, let eN ¼ N=np
and define N � eN to be the size of problem on each processor in
the target configuration.

(1) Run the code on a single processor with a fine grid of dimen-
sion N � eN and then with dimension N � eN2 and N � eN4. In
each case collect the computational time Tcomp and define
as work the memory allocated by the processor.
Fig. 6. Scaling the work per processor whilst maintaining the communication
volume.
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(2) Run the code on np0 = 4, 8 processors, with a fine grid of
dimension N � ðnp0 � eNÞ;N � ðnp0 � eN2Þ, and N � ðnp0 � eN4Þ. In
each case collect the parallel time T and then compute
Tcomm = T � Tcomp.

(3) Fit a straight line as in Eq. (2) (for both choices of np = np0)
through the data collected in steps 1 and 2 to estimate
a(np0) and c(np0).

(4) Fit a straight line as in (4) through the points (2,a(4)) and
(3,a(8)) to estimate c and d: based upon Eq. (4) now com-
pute a(np) for the required choice of np.

(5) Use the model in Eq. (2) to estimate the value of Tcomm for the
required choice of np (using the values c(np) = c(8) and a(np)
determined in steps 3 and 4 respectively).

(6) Combine Tcomm from step 5 with Tcomp (determined in step 1,
with finest size N � eN) to estimate T as in Eq. (1).

Users of Clusters A and B do not get exclusive access to their re-
sources and hence some variations in the execution time of the
same parallel job can be observed across different runs. For this
reason it will never be possible to obtain perfect predictions for
parallel run times, however it is possible to aim to obtain esti-
mated timings that are within this range of variability. In order
to achieve this some basic knowledge of the target HPC systems
is required. For example, since Cluster A has a mixture of 2.2 GHz
and 2.4 GHz processors it is necessary to ensure that all runs for
determining both Tcomp and Tcomm use at least one slower processor.
Similarly, for the multicore Cluster B, all timings for 4 or 8 cores
should be taken using just one or two computational nodes
respectively.
4.2. Numerical results

We have tested our model for a range of problems with four dif-
ferent cluster architectures (each permutation of Clusters A and B
with Myrinet and Fast Ethernet switching) and on the two multi-
grid codes (m1 and m2) described in Sections 3.1.1 and 3.1.2
respectively. Results for a such range of problems are presented
in Tables 1 and 2. Each table presents, for a different code, four
combinations of parallel architecture (defined by cluster, number
of processors and switching used), with the associated problem
size for the target problem. The last three rows of each table give
the elapsed time in seconds, and the associated predictions and er-
rors from the methodology that has been described.
Table 1
Test cases np = 64 on Cluster A and np = 32 on Cluster B for the multigrid code m1: measu

Cluster Cluster A Cluster

nprocs np = 64 np = 64
Switching Ethernet Myrinet
Size 65,536 � 65,536 65,536 �
Memory per core (GB) 2 2
Measurement 1703.9 1014.9
Prediction 1719.8 1133.9
jerrorj (%) 0.93 11.73

Table 2
Test cases np = 64 on Cluster A, and np = 64 on Cluster B for multigrid code m2: measurem

Cluster Cluster A Cluster

nprocs np = 64 np = 64
Switching Ethernet Myrine
Size 65,536 � 32,768 65,536
Memory per core (GB) 1.7 1.7
Measurement 1008.9 248.0
Prediction 546.8 222.8
jerrorj (%) 45.80 10.16
In many, but not all, cases our approach yields good predictions,
with an error of less than 13%. Very disappointing results are
obtained for the code m2 using architectures based upon Fast
Ethernet switching however (see Table 2). In these cases the model
severely under predicts the measured run times. Based upon fur-
ther numerical experiments (see, for example, [24,25]), we conjec-
ture that the simple linear model (Eq. (3)) used to describe the
latency term, a(np), in Eq. (2) is too crude to capture the
message-passing behaviour with Ethernet switching. This is partic-
ularly problematic for code m2 which, like most practical codes,
contains a mixture of blocking as well as non-blocking communi-
cations. In the following section therefore, we generalize the pre-
dictive model to include a nonlinear dependence of a(np) on
log(np).
5. A generalized predictive model

As described in the previous section, we now generalize the
model (2)–(4) in order to improve the accuracy of the predictions
across all of the test cases considered. The new model is based
upon Eq. (2), however now the parameters a and c are assumed
to satisfy the following relations:
aðnpÞ � c þ dlog2ðnpÞ þ eðlog2npÞ2; ð5Þ
cðnpÞ � constant: ð6Þ
The new quadratic term e(log2np)2 has been introduced in (6) (com-
pared to (3)). This allows a degree of nonlinearity to the overhead
model, and represents the main difference with respect to the mul-
tigrid overhead model described in the previous section.
5.1. The modified algorithm

We now summarize the new algorithm, based upon using (2),
(6) and (5) to estimate Tcomm. Note that the additional term in (6)
means that runs are now required on 4, 8 and 16 cores in order
to calculate the parameters in the model. The target configuration
is again assumed to be for a N � N mesh with np processors (and, as
before, eN ¼ N=np).
rements and prediction are given in seconds.

A Cluster B Cluster B

np = 32 np = 32
Ethernet Myrinet

65,536 32,768 � 32,768 32,768 � 32,768
1 1
443.0 259.5
454.3 226.4
2.55 12.76

ents and prediction are given in seconds.

A Cluster B Cluster B

np = 64 np = 64
t Ethernet Myrinet
� 32,768 65,536 � 32,768 65,536 � 32,768

1.7 1.7
268.2 162.1
181.0 153.0
32.51 5.61
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(1) Run the code on a single processor with a fine grid of dimen-
sion N � eN and then with dimension N � eN2 and N � eN4. In
each case collect the computational time Tcomp and define
as work the memory allocated in the processor.

(2) Run the code on np0 = 4, 8, 16 processors, with a fine grid of
dimension N � ðnp0 � eNÞ;N � ðnp0 � eN2Þ, and N � ðnp0 � eN4Þ. In
each case collect the parallel time T and then compute
Tcomm = T � Tcomp.

(3) Fit the best fitting line as in Eq. (2) (for all three choices of
np = np0) through the data collected in steps 1 and 2 to esti-
mate a(np0) and c(np0).

(4) Fit a parabola, as in Eq. (6), through the points (2,a(4)),
(3,a(8)) and (4,a(16)) to estimate c, d and e: based upon
Eq. (6) now compute a(np) for the required choice of np.

(5) Use the model in Eq. (2) to estimate the value of Tcomm for the
required choice of np (using the values c(np) = c(16) and
a(np) determined in steps 3 and 4 respectively).

(6) Combine Tcomm from step 5 with Tcomp (determined in step 1,
with finest size N � eN) to estimate T as in Eq. (1).

5.2. Numerical results

Tables 3 and 4 present results for the generalized model,
applied to the multigrid codes m1 and m2 respectively.

These tables confirm that the generalized model does indeed
deliver more accurate performance predictions compared to those
obtained with the linear model in Tables 1 and 2. In particular,
where the linear model worked well, the generalized model still
performs well, as one would expect. Furthermore, the poor results
originally obtained for code m2, using the HPC systems with Fast
Ethernet switching, have been significantly improved. Only one
of the cases considered yields results that are outside of the range
of variability of the run times across the shared systems (see the
first column of Table 4). Even in this case however, the error is al-
most half that obtained in the previous section.

It should be noted that for fast, low-latency, switching, both of
the models presented, in this and the previous section, perform
very well. The Ethernet case is particularly challenging since the
switching performance is significantly affected by other jobs being
run on the system. For this reason we do not propose any further
modifications to our models. Indeed, we next demonstrate, in the
following section, that the generalized model performs very well
when applied to a practical, and highly challenging, engineering
software example.
Table 3
Application of the modified predictive model to test cases np = 64 on Cluster A np = 32
on Cluster B for multigrid code m1: measurements and predictions are given in
seconds.

Cluster Cluster A Cluster A Cluster B Cluster B

nprocs np = 64 np = 64 np = 32 np = 32
Switching Ethernet Myrinet Ethernet Myrinet
Measurement 1703.9 1014.9 443.0 259.5
Prediction 1692.3 1102.9 456.8 268.8
jerrorj (%) 0.68 8.67 3.12 3.58

Table 4
Application of the modified predictive model to test cases np = 64 on Cluster A np = 64
on Cluster B for multigrid code m2: measurements and predictions are given in
seconds.

Cluster A Cluster A Cluster B Cluster B

Switching Ethernet Myrinet Ethernet Myrinet
Measurement 1008.9 248.0 268.2 162.1
Prediction 741.5 235.5 265.4 165.6
jerrorj (%) 26.5 5.04 1.04 2.16
6. Application to practical engineering software

We now test the predictive methodology described in the pre-
vious section on a practical engineering code, which is based on
the use of the multigrid strategy. This code simulates the elastohy-
drodynamic lubrication (EHL) problem for a point contact, whose
definition and parallel solution algorithm, are described briefly be-
low. For a full discussion of the parallel implementation see [12].

6.1. Elastohydrodynamic lubrication

EHL plays an important role in many mechanical devices such
as journal bearings or gears where, under very heavy loads, the ex-
treme pressure in the lubricant causes elastic deformation of the
contacting elements. This is typically modelled via a thin-film
approximation for the lubricant flow, coupled with a film-thick-
ness equation which captures the elastic deformation. With a suit-
able non-dimensionalization (see [34] for further details) the
following equations are obtained on a two-dimensional domain
(Xmin,Xmax) � (Ymin,Ymax):

@

@X
qH3

gk
@P
@X

 !
þ @

@Y
qH3

gk
@P
@Y

 !
� us

@ðqHÞ
@X

¼ 0; ð7Þ

and

HðX;YÞ ¼ H00 þ
X2

2
þ Y2

2
þ 2

p2

Z Ymax

Ymin

Z Xmax

Xmin

� PðX0;Y 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX � X0Þ2 þ ðY � Y 0Þ2

q dX0 dY 0: ð8Þ

Here P and H are the unknown pressure and film-thickness respec-
tively, k and us are constants, H00 is an unknown offset value which
can be determined indirectly through a force balance constraint,
such asZ Ymax

Ymin

Z Xmax

Xmin

PðX;YÞ dX dY ¼ 2p
3
; ð9Þ

and the density q and viscosity g are given by the following empir-
ical relations:

qðPÞ ¼ 0:59� 109 þ 1:34phP

0:59� 109 þ phP

gðPÞ ¼ exp
ap0

zi
�1þ 1þ phP

p0

� �zi
� �� �

:

The coefficients ph,p0,a and zi are assumed to be known and
constant.

The code, that we refer to as mEHL, is based upon a finite differ-
ence approximation to (7) and a simple quadrature scheme for (8).
The efficient solution of the resulting discrete system depends crit-
ically upon the use of multilevel methods:

� Parallel nonlinear multigrid (the FAS scheme [5], whose parallel
implementation is described in [11,12]) is used for the solution
of the discrete form of (7);
� Parallel multilevel multi-integration (MLMI), see [12,34] is used

to evaluate the discrete form of (8).

The MLMI scheme is especially important since it allows the
cost of evaluating the film thickness over the entire domain,
approximated on a finest mesh of size N � N, to be reduced from
O(N4) to O(N2(logN)2). Note however that the parallel implementa-
tion of the MLMI requires each process to work with the entire
computational domain at the coarsest mesh level. This computa-
tional step of mEHL therefore involves a multi-summation, for
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approximating the double integral in (8), that is performed over
the coarsest mesh of the multilevel scheme, Nc � Nc say, on all of
the processors. For this reason, the mEHL algorithm is a little differ-
ent to the benchmark parallel multigrid solvers that we have con-
sidered so far in this paper. This has an impact on the way in which
the computational component of the parallel performance of the
software should be predicted, as described below.
6.2. Predictive model

Since the software that we wish to model in this section has
both a multigrid and a non-multigrid component, we can no longer
assume the very straightforward evaluation of Tcomp that was pos-
sible in the previous sections. Consequently, we now represent the
term Tcomp in the model as a sum of two components:

Tcomp ¼ Tmgrid þ Tnmgrid; ð10Þ

where Tmgrid is the computational time associated with the multi-
grid operations and Tnmgrid is the rest of the computational cost of
the code, principally due to the multi-summation computations re-
quired for the MLMI procedure. As before, assuming the parallel
multigrid is run on np processors with a partition by rows, Tmgrid

can be measured through a run on a single processor of the code,
with size of the problem equal to N � eN , with eN ¼ N

np. The strategy
for predicting Tnmgrid constitutes the fundamental contribution of
this section, as a generalization of the multigrid methodology de-
scribed previously, which only considers the case Tnmgrid � 0.

The cost Tnmgrid (required for each processor) has a multi-sum-
mation term that is quadratic with respect to the size of the overall
coarsest mesh, Nc � Nc, to leading order in powers of the dimension
of the problem Nc:

Tnmgrid /
ðNcNcÞ2

np
: ð11Þ

A parallel run of mEHL performs the multi-summation over the
coarsest mesh on each processor a certain number, nsum(ngr-
ids,ncoarse), of times. This number depends of the number of grid
levels, ngrids, and on the number, ncoarse, of smoothing sweeps
at the coarsest level, as shown in (12) below. For a full explanation
of this expression for nsum refer to [26].

nsum ¼ nVC � ½ncoarseþ ðngrids� 1Þ � ðnpreþ npost þ 2Þ� ð12Þ

In (12): ngrids is the number of grids used; ncoarse is the number of
smoothing sweeps at the coarsest level, npre is the number of pre-
smoothing sweeps and npost is the number of post-smoothing
sweeps in a single V-cycle.

In order to predict Tnmgrid we need to exploit its dependence
with respect to both nsum and Tcomp in (10). First, we observe that
the same multi-summation work can be obtained across a se-
quence of serial runs of the code with a coarsest mesh Nc � Nc

and different finest levels 2lNc � 2lNc (for l = 1,2, . . .), so long as
we keep nsum constant through all these runs. The associated exe-
cution times obtained are denoted as Tl in the following part of the
section. The parameter nsum is kept constant by appropriate vari-
ation of the parameter ncoarse, see [26]. In fact the possibility of
changing this parameter in (12) permits us to obtain the same
nsum (equal to the value used in the target problem that we wish
to predict) through all the sequential runs (associated to l = 1,2, . . .)
where a different number of grids (ngrids) is used. Therefore, we
can obtain Tnmgrid (as expressed in (11)) using the value extrapo-
lated to l = 0 of the line plotted through the points (l,Tl) and divid-
ing it by np.

The methodology for obtaining Tnmgrid can be therefore de-
scribed through the following steps:
(1) run the code on a single processor with the coarsest mesh
Nc � Nc and finest mesh 2lNc � 2lNc for l = 1,2,3, in each case
collect the execution time Tl obtained;

(2) determine the least square fitting line through the points
(l,Tl) for l = 1,2,3;

(3) extrapolate the least square fitting line obtained in step 2 to
l = 0;

(4) get as prediction for Tnmgrid the quotient obtained by dividing
the extrapolated value obtained in step 3 by the number of
processors np (see Eq. (11)).

In order to predict Tmgrid we need, as explained before, to run the
code on a single processor with a finest mesh of size N � eN . This is
analogous of the methodology for predicting Tcomp implemented
for the pure multigrid solvers discussed previously. However, since
now we are only interested to catch the computational cost associ-
ated with the multigrid, we do not consider terms due to the
non-multigrid components of the software. These are therefore
removed from the computational cost obtained.

The methodology for determining Tmgrid is then described
through the following steps:

(1) run the code on a single processor with coarsest mesh
Nc � fNc , with fNc ¼ Nc

np and finest mesh N � eN , saving the exe-
cution time as Tnlevels�1;

(2) run the code on a single processor with the same coarsest
mesh as in step 1 and with the finest mesh equal to
2lNc � 2lfNc for l = 1, 2, 3, in each case collect the execution
time Tl obtained

(3) determine the least square fitting line through the points
(l,Tl) for l = 1, 2, 3;

(4) extrapolate the least square fitting line obtained in step 2 to
l = 0, obtaining the value T0;

(5) get as prediction for Tmgrid the difference between Tnlevels�1

and T0 (the former represents Tmgrid plus some MLMI work
and T0 is an estimate of this MLMI work, which must be
therefore removed).

Finally, the computational time predicted, Tcomp, is the sum of
Tnmgrid and Tmgrid obtained from the methodology described.

Note that this approach may be used successfully regardless of
the relative residual reduction that is to be used as the convergence
criterion for the target problem. This is because, for an optimal
multigrid implementation, the rate of convergence is independent
of the mesh size and so the number of V-cycles (or W-cycles) re-
quired to reduce the norm of the residual by a constant factor
(10�3 say) is independent of the level of mesh refinement. This is
illustrated for the mEHL software in Fig. 7, which shows the resid-
ual reduction versus the number of V-cycles for runs using differ-
ent maximum refinement levels. Consequently, so long as the
convergence tolerance is always based upon a relative reduction
in the residual (which is the only sensible approach to use, given
that the residual can always be scaled through multiplication by
a constant factor) our approach of basing the estimate of the run
time of the target problem on a fixed number of cycles is certainly
valid.

6.3. Numerical results

In Tables 5 and 6 we present results of the application of this
predictive methodology to determine Tcomp in mEHL, combined
with the generalized methodology for Tcomm (described in Section
5). The predictions obtained with this methodology are seen to
be very accurate, with an error well below 10% in each combina-
tion of switching interconnect, problem size, processor number
and cluster that is considered.
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Table 5
EHL predictions and measurements (both quoted in seconds) for Cluster A.

nprocs np = 32 np = 64 np = 64 np = 128

Size 8193 � 2049 8193 � 4097 16385 � 8193 16385 � 16385
Switching Ethernet Ethernet Myrinet Myrinet
Measurement 250.5 361.5 1074.9 1260.2
Prediction 267.1 365.5 1051.3 1242.9
jerrorj (%) 6.63 0.97 2.20 1.37

Table 6
EHL predictions and measurements (both quoted in seconds) for Cluster B.

nprocs np = 32 np = 64 np = 64 np = 128

Size 8193 � 2049 8193 � 4097 16385 � 8193 16385 � 16385
Switching Ethernet Ethernet Myrinet Myrinet
Measurement 177.3 241.8 908.4 1124.2
Prediction 172.1 222.3 904.4 1107.8
jerrorj (%) 2.93 8.06 0.44 1.46
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7. Alternative partitioning strategies

So far in this paper we have only considered partitions of the
computational mesh in which different numbers of rows are stored
on the different processors. For the EHL code in the previous sec-
tion this is the only partitioning strategy that is available, however
for other parallel multigrid codes different partitioning strategies
may be available. This leads to the possibility of adding a further
level of complexity to our predictive methodology, in which we
seek to estimate the effects of different partitioning strategies on
the performance of multigrid codes on different HPC resources. In-
deed, it is well known that, depending on the particular problem
and hardware combination, different geometric partitionings of
the computational work can show better performance than others,
see for example [20,32]. In this section therefore, we consider the
further generalization of our methodology to a block partitioning
strategy, in which the unknowns may be split across the processors
by column as well as by row, [27]. Such a partitioning strategy is
possible for our code m1, so this is used in our numerical experi-
ments in order to assess the effectiveness of our new predictions.

7.1. Block partitioning

We consider a rectangular computational mesh of dimension
Na � Nb, together with a given homogeneous ‘‘block’’ distribution
of the computational domain across the available processors. Spe-
cifically, we consider the mesh to be mapped onto np processors as
a bi-dimensional grid npa � npb, with

np ¼ npa � npb;

see, for example, Fig. 8. As in this figure, in the following we use the
notation (npa,npb) to indicate the case where a grid of npa � npb pro-
cessors is used to partition the computational mesh.

Following the previous sections, the first assumption that we
make is that the parallel solution time (on np processors) may be
represented as (1). Now, in (1), Tcomp represents the computational
time for a problem of size fNa � fNb on a single processor (wherefNa ¼ Na

npa
and fNb ¼ Nb

npb
), and Tcomm again represents all of the parallel

overheads (primarily due to inter-processor communications). A
typical parallel multigrid code, such as m1, has a computational
work on each internal processor (i.e. each processor which has
an interior subdomain mapped to it) that is proportional to
ðfNa þ 2Þ � ðfNb þ 2Þ, as shown in Fig. 9. However, when only a sin-
gle processor is used the equivalent computational mesh is of
dimension fNa � fNb . The task of estimating Tcomp reliably is compli-
cated somewhat by this observation (compared to the model for
strip partitions described previously for example) and so a more
general approach is considered.

The computational time is now assumed to be equal to that
associated with a solution on a (2,2) processor grid, where the size
of the problem is scaled in such way that each processor in the
(2,2) grid solves on a computational mesh of dimension fNa � fNb .
In this way we consider each combination of one ghost row with
one ghost column as arises in a general parallel partition, see
Fig. 8. Our approach is not to seek to measure Tcomp explicitly,
but instead to determine it implicitly as an expression involving
the measured parallel time (T(2, 2)), across the (2,2) partition,
through the relation

Tð2;2Þ ¼ Tcomp þ Tcommð2;2Þ

(see below for further details).

7.2. Communication costs

The communication phase consists of a sequence of sends and
receives between neighbouring processors through the use of the
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Fig. 9. Parallel distribution of the grid nodes in a block parallel strategy. Each
computational node owns a section of the mesh enclosed by the solid lines: the
dashed lines represent ghost rows and columns added for efficient parallel
implementation. The left upper diagram illustrates the case nprocs = 12, with
npa = 3 and npb = 4, whilst the right upper shows the effect of the ghost rows and
columns on the section of the mesh that must be held for a computational node that
is away from the boundary of the domain. The bottom diagram illustrates the
computational grid when the code is implemented on a single processor
(nprocs = 1): in this case no ghost rows or columns are used.
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MPI library. When non-blocking communications are used exclu-
sively, a theoretical full overlapping of the communications be-
tween processors of the same row and of the same column of the
processor grid is expected. Tcomm is then equal to the largest over-
head time measured between processors in the same row and
those in the same column. We assess that these overheads depend
upon the number of processors in the same row and in the same
column, respectively. This is a reasonable assessment due to the
fact that, as described in the previous sections, the overhead in a
strip partition depends upon to the number of processors used.
Let Tcommðnpa ;1Þ, and Tcommð1;npbÞ, be the overhead times measured on
the strip of processors (npa,1), and in the column (1,npb),
respectively. Then, based upon the previous argument, we would
have

Tcomm ¼maxðTcommðnpa ;1Þ; Tcommð1;npbÞÞ: ð13Þ

We remark however that Eq. (13) is not valid for real codes, be-
cause there is some asynchrony in the communication: both the
complexity of the code and the access of memory induces an asyn-
chronous term for the elapsed overhead time. The expression that
represents this additional term, which we denote as TEXTRA, de-
pends upon the particular code being used. The next assumption
that we make however is that this term is equal to that measured
for the (2,2) grid of processors, where each processor solves on afNa � fNb computational mesh. We then have that

Tð2;2Þ ¼ Tcomp þ TEXTRA þmaxðTcommð2;1Þ; Tcommð1;2ÞÞ;

hence the resulting expression for TEXTRA is
TEXTRA ¼ Tð2;2Þ � Tcomp �maxðTcommð2;1Þ; Tcommð1;2ÞÞ: ð14Þ
Now, for the target problem on the (npa,npb) grid of processors, we
have
Tcomm ¼ TEXTRA þmaxðTcommðnpa ;1Þ; Tcommð1;npbÞÞ ð15Þ
Hence using (1), (15) and (14)

T ¼ Tcomp þ TEXTRA þmaxðTcommðnpa ;1Þ; Tcommð1;npbÞÞ
¼ Tð2;2Þ þmaxðTcommðnpa ;1Þ; Tcommð1;npbÞÞ �maxðTcommð2;1Þ; Tcommð1;2ÞÞ
� ð6ÞTð2;2Þ þmaxðTcommðnpa ;1Þ � Tcommð2;1Þ; Tcommð1;npbÞ � Tcommð1;2ÞÞ
¼ Tð2;2Þ þmaxðTðnpa ;1Þ � T ð2;1Þ; Tð1;npbÞ � Tð1;2ÞÞ

Finally we have

T � Tð2;2Þ þmaxðTa; TbÞ; ð16Þ

where Ta ¼ T ðnpa ;1Þ � Tð2;1Þ and Tb ¼ Tð1;npbÞ � T ð1;2Þ.
Based upon the evidence analysed in the previous sections both

overheads Ta and Tb are assumed to satisfy a relation of the follow-
ing type:

Ta ¼ aðnpaÞ þ cðnpaÞ �work; ð17Þ
Tb ¼ aðnpbÞ þ cðnpbÞ �work: ð18Þ
In (17) and (18) the term work is used to represent the problem size
on each processor at the finest level which can be expressed in
MBytes of the memory required since the computational work is
proportional to the mesh size for a multigrid implementation. Also
note that the length of the messages (that is Nb for the grid (npa,1)
and Na for the grid (1,npb)) does not appear in this formula since it is
assumed that for a given size of target problem (e.g. a mesh of
dimension Na � Nb and a partition of dimension npa � npb) the size
of the messages is known a priori. Finally, following the generalized
model of Section 5, we assume that the same nonlinear relations are
sufficient:

aðnpÞ � c þ dlog2ðnpÞ þ eðlog2npÞ2; ð19Þ
cðnpÞ � constant: ð20Þ

A summary of the overall predictive methodology is provided
by the following steps. We define as Na � Nb and (npa,npb) the tar-
get problem size and target grid of processors respectively (i.e. we
wish to predict a code’s performance for these values). Also, letfNa ¼ Na=npa and fNb ¼ Nb=npb, and define fNa � fNb to be the size
of problem (not considering the ghost rows) on each processor in
the target configuration.

(1) Run the code on a (2,2) grid with a fine grid of dimension
ð2eNaÞ � ð2eNbÞ and collect the parallel time T(2, 2).

(2) Run the code on the grids (np,1) with np = 2, 4, 8, 16 proces-
sors, with a fine grid of dimension ðnp � eNa

l Þ � fNb for l = 1, 2,
4. Define as work the memory allocated in each processor.
In each case collect the parallel time T(np, 1) and then com-
pute Tðnp� ;1Þ � T ð2;1Þ with np* = 4, 8, 16. Similar steps are com-
puted to collect T ð1;np�Þ � T ð1;2Þ, with np* = 4, 8, 16.

(3) Fit a straight line (using a least squares fit), as in Eq. (17) or
(18) (for each choice of np = np*), through the data collected
in step 2 in order to estimate a(np*) and c(np*) for both Ta

and Tb.
(4) Fit a parabola, as in Eq. (20), through the points (2,a(4)),

(3,a(8)) and 4,a (16)) to estimate c, d and e based upon Eq.
(20): now compute a(np) for the required choice of np.

(5) Use the model in Eq. (17) to estimate the values of Ta (and
use the model in Eq. (18) to estimate Tb) for the required
choice of np (using the values c(np) = c(16) and a(np) deter-
mined in steps 3 and 4 respectively).

(6) Determine max(Ta,Tb) from step 5 and combine with T(2, 2)

(determined in step 1) to estimate T as in Eq. (16).

7.3. Numerical results

Using the methodology described we are able to predict the
performance of the code m1 for a selection of target configurations.
The actual measured times once the target problems are run, the



Table 7
Measurements and predictions for Cluster A (both quoted in seconds).

np (npa,npb) Size Mem. per
proc. (GB)

Meas. Predict. jerrorj
(%)

64 (8,8) 65,536 � 32,768 1 378.36 358.89 5.1
64 (4,16) 32,768 � 65,536 1 370.16 353.57 4.5
64 (2,32) 16,384 � 131,072 1 315.82 320.05 1.3
32 (8,4) 65,536 � 16,384 1 372.94 358.89 3.7
32 (4,8) 16,384 � 65,536 1 373.11 353.57 5.2

Table 8
Measurements and predictions for Cluster B (both quoted in seconds).

np (npa,npb) Size Mem. per
proc.
(GB)

Meas. Predict. jerrorj
(%)

128 (16,8) 131,072 � 65536 2 522.83 519.81 0.58
128 (8,16) 65,536 � 131072 2 493.71 506.43 2.6
128 (32,4) 262,144 � 32768 2 533.86 504.85 7.9
128 (4,32) 32,768 � 262144 2 512.18 507.28 0.96
64 (8,8) 65,536 � 65,536 2 510.59 506.43 0.81
64 (16,4) 131,072 � 32,768 2 478.07 519.81 8.7
64 (4,16) 32,768 � 131,072 2 507.28 474.76 6.4
64 (32,2) 262,144 � 16,384 2 564.54 533.86 5.4
64 (2,32) 16,384 � 262,144 2 534.80 496.75 7.1
32 (8,4) 65536 � 32,768 2 481.36 506.43 5.2
32 (4,8) 32768 � 65,536 2 507.28 495.66 2.3
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predicted times and the resulting errors are then listed in the last
three columns of the following tables (Tables 7 and 8 for runs on
Clusters A and B respectively).

These results show a very accurate and robust prediction with
respect to each of: the target problem size, the target number of
processors, the target partition and the parallel architecture used.
In fact the methodology can detect the performance of the multi-
grid code with an error below 10% for all the numerical tests con-
sidered. This level of accuracy is certainly sufficient to be able to
guide decisions as to the scheduling of parallel jobs on available re-
sources, although it may not always be sufficient to allow the opti-
mal decomposition to be predicted. Specifically, when there is little
to choose between the efficiency of different partitions, an error of
up to 10% could lead to slightly a sub-optimal partition being se-
lected. Highly inappropriate partitions will always come out worse
in the computational model however.
8. Conclusions

In this paper we have presented a simple and general method-
ology for the performance of parallel engineering software for
across a range of HPC resources. The simplicity of the approach
stems from the use of empirical models for the communication
overheads, which contain just a small number of parameters which
may be determined from, carefully selected, short runs on small
numbers of processors. The generality comes from the approach
of separating out the calculation of Tcomp from the extrapolated
estimate of Tcomm. Of course the precise manner in which Tcomp is
found must vary between applications (depending upon whether
they are pure multigrid, in which case the total work scales as
O(N), or whether there are components that scale less well than
this, as with the code considered in Section 6). This generality
has been illustrated by the application of the methodology to a
variety of multigrid-based software tools, two different data parti-
tioning strategies, and a selection of processor and communication
architectures. The results obtained show that the difference be-
tween predicted run times for the target problems (using large
numbers of processors) and the subsequent measured run times
are almost always within the range of variability of the execution
time on the shared systems that have been used (e.g. a difference
of less than 10%).

All of the examples considered so far have involved the use of
structured grids in two dimensions. There appear to be no reasons
why the extension to structured grids in three-dimensions, using
strip or block partitions such as those considered here, should
present any additional practical difficulties. As has already been
discussed, the use of geometrically simple domains such as squares
or cubes does not necessarily mean that the problem being simu-
lated is also geometrically simple. Nevertheless, there are likely
to be times where numerical methods involving more complex do-
mains, and the use of unstructured grids, may be of interest. We
believe that providing the partitioning strategy is based upon split-
ting the coarsest mesh across the parallel processors (e.g. [15,32])
then the approach described above can be extended to multigrid
implementations based upon uniform refinements of this base
grid. In particular, the use of partitioning strategies based upon
coordinate bisection, as illustrated in [32] for example, should al-
low the techniques considered here to be applied successfully.
One area where it will be difficult to extend this work however
would be in cases where multigrid is used in combination with lo-
cal mesh adaptivity and parallelism. This is because it would be
difficult to predict in advance precisely what the size of the target
problem would actually be, given that this would depend upon the
a posteriori error estimate that would not be known until the full
execution takes place. The work of [2] does appear to offer a pos-
sible approach to tackling this problem however considerable
additional research will be required.

There are many potential applications of the predictive capabil-
ity that has been developed here. Computational scientists and
engineers will be able to reserve computational resources that
are appropriate for the size of the computations that they wish
to undertake: avoiding the potential delays associated with
requesting excessive resources, or the need to resubmit jobs when
insufficient resources were requested. They will also be able to
make informed decisions regarding the additional costs and turn-
around times, and the potential lack of available resources, associ-
ated with increasing the resolution of a given computational sim-
ulation. Furthermore, both individuals and software that are
responsible for the scheduling of computational work across
shared resources, such as a computational Grid for example, can
benefit from having more reliable data as to the likely run times
of codes prior to them being executed.

The primary theoretical underpinning for this work is based
upon the scalability of multigrid algorithms with regard to the
number of unknowns on the finest mesh, and the separation of
the prediction of the computation and the communication costs.
The simplicity of the approach that is then used to estimate these
costs makes the technique widely applicable, however it is reason-
able to expect that less empirical approaches should be able to pro-
vide more accurate predictions for specific codes and particular
hardware architectures, albeit at the cost of some of this simplicity.
This is clearly a trade-off that should be considered when selecting
the most appropriate predictive tool for any given application.
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