
Parallel Performance Prediction for Multigrid

Codes on Distributed Memory Architectures

Giuseppe Romanazzi and Peter K. Jimack

School of Computing, University of Leeds, Leeds LS2 9JT, UK
{roman,pkj}@comp.leeds.ac.uk

Abstract. We propose a model for describing the parallel performance
of multigrid software on distributed memory architectures. The goal of
the model is to allow reliable predictions to be made as to the execution
time of a given code on a large number of processors, of a given parallel
system, by only benchmarking the code on small numbers of processors.
This has potential applications for the scheduling of jobs in a Grid com-
puting environment where reliable predictions as to execution times on
different systems will be valuable. The model is tested for two different
multigrid codes running on two different parallel architectures and the
results obtained are discussed.

1 Introduction

Multigrid is one of the most power numerical techniques to have been developed
over the last 30 years [1,2,13]. As such, state-of-the-art parallel numerical soft-
ware is now increasingly incorporating multigrid implementation in a variety of
application domains [6,9,11]. In this work we seek to model the performance of
two typical parallel multigrid codes on distributed memory architectures. The
goal is to be able to make accurate predictions of the performance of such codes
on large numbers of processors, without actually executing them on all of these
processors. This is of significant potential importance in an environment, such
as that provided by Grid computing, where a user may have access to a range
of shared resources, each with different costs and different levels of availability,
[4,7,10].

A vast literature on performance models exists, varying from analytical mod-
els designed for a single application through to general frameworks that can be
applied to many applications on a large range of HPC systems. This latter ap-
proach is typically based upon a convolution of an application trace with some
benchmarks of the HPC system used. Both approaches have been demonstrated
to be able to provide accurate and robust predictions, although each has its po-
tential drawbacks too. In the former, for example, significant expertise is needed
in deriving the analytic model, which is extremely code specific, whereas in the
latter approach, a large amount of computer time is typically required for tracing
the application.

Considering these limitations, the choice between these two approaches will
depend primarily on the goal of the predictions. For example, when it is most

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 647–658, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

648 G. Romanazzi and P.K. Jimack

important to predict the run-time of large-scale applications on a given system,
as opposed to just comparing their relative performance, it is preferable to build
and apply a detailed analytic model for the available set of HPC systems, as
in [8] for example. On the other hand, when it is more important to compare
the performance of some real applications on different machines, the latter ap-
proach is preferable: in which case different benchmarks metrics can be used and
convoluted with the application trace file, as in [3] or [5].

Our approach lies between these two extremes. We use relatively crude an-
alytic models that are applicable to a general class of algorithms (multigrid)
and through simulations of the application on a limited number of CPUs we at-
tempt to evaluate the parameters of these models. In comparison with the first
approach the sophistication of the analytic model is much less (but also much
less dependent on the specific code or implementation). In comparison with the
second approach, there is no need for tracing the application nor running large
numbers of HPC benchmarks on the HPC facility: our benchmarking is simply
based upon execution of the code on small numbers of processors of the HPC
system.

The layout of the remainder of the paper is as follows. In the next section
we provide a very brief introduction to parallel multigrid algorithms for the
solution of elliptic or parabolic partial differential equations (PDEs) in two space
dimensions. This is followed by an analysis of the performance of two such codes
on an abstract distributed memory architecture. The analysis is then used to
build a predictive model for this class of codes, that is designed to allow estimates
of run times to be obtained for large numbers of processors, based upon observed
performance on very small numbers of processors. The paper concludes with a
description of some numerical tests to assess the accuracy and robustness of
these predictions and a discussion of the outcomes obtained. Further extensions
of the work are also suggested.

2 Multigrid and Parallel Implementation

The general principal upon which multigrid is based is that when using many
iterative solvers for the systems of algebraic equations that result from the dis-
cretization of PDEs, the component of the error that is damped most quickly is
the high frequency part [2,13]. This observation leads to the development of an
algorithm which takes a very small number of iterations on the finite difference
or finite element grid upon which the solution is sought, and then restricts the
residual and equations to a coarse grid, to solve for an estimate of the error on
this grid. This error is then interpolated back onto the original grid before a
small number of further iterations are taken and the process repeated. When
the error equation is itself solved in the same manner, using a still coarser grid,
and these corrections are repeated recursively down to a very coarse base grid,
the resulting process is known as multigrid.

Any parallel implementation of such an algorithm requires a number of com-
ponents to be implemented in parallel:

Parallel Performance Prediction 649

– application of the iterative solver at each grid level
– restriction of the residual to a coarse level
– exact solution at the coarsest level
– interpolation of the error to a fine level.
– a convergence test

There is also a variant of the algorithm (primarily designed with nonlinear prob-
lems in mind), known as FAS (full approximation scheme) [13], which requires
the solution as well as the residual to be restricted to the coarser grid at each
level.

In this work we consider the parallel implementation of two multigrid codes:
one is standard and the other uses the FAS approach. In both cases they partition
a two-dimensional finite difference grid across a set of parallel processors by
assigning blocks of rows to different processors. Note that if the coarsest mesh
is partitioned in this manner, then if all finer meshes are uniform refinements of
this they are automatically partitioned too: see Fig. 1 for an illustration.

p=0

p=3

p=1

p=2

Fig. 1. Partitioning of a coarse and a fine mesh across four processors by assigning a
block of rows to each processor

It is clear from inspection of the meshes in Fig. 1 that each stage of the parallel
multigrid process requires communication between neighbouring processes (iter-
ation, restriction, coarse grid solution, interpolation, converge test). The precise
way in which these are implemented will vary from code to code, however the
basic structure of the algorithm will remain the same. In this work we consider
two different implementations, referred to as m1 and m2.

2.1 The Algorithm m1

This algorithm solves the steady-state equation

−∇2u = f in Ω,
Ω = [0, 1]× [0, 1],
u|∂Ω = 0.

650 G. Romanazzi and P.K. Jimack

The discretization is based upon a centred finite difference scheme on each grid.
The iterative solver employed is the well-known Red-Black Gauss-Seidel (RBGS)
method [9], which is ideally suited to parallel implementation. The partitioning
of the grids is based upon Fig. 1 with both processors p and p+1 owning the row
of unknowns on the top of block p. Each processor also stores an extra, dummy,
row of unknowns above and below its own top and bottom row respectively (see
Figure 2): this is used to duplicate the contents of the corresponding row on each
neighbour. After each red and black sweep of RBGS there is an inter-processor
communication in which these dummy rows are updated. This is implemented
with a series of non-blocking sends and receives in MPI. Similar inter-processor
communication is required at the restriction step but the interpolation step does
not require any message passing. A global reduction operation is required to test
for convergence.

2.2 The Algorithm m2

This algorithm, described in more detail in [9], uses an unconditionally-stable
implicit time-stepping scheme to solve the transient problem

∂u

∂t
= ∇2u + f in (0, T] × Ω,

Ω = [0, 1]× [0, 1],
u|∂Ω = 0,
u|t=0 = u0.

As for m1, the discretization of the Laplacian is based upon the standard five
point finite difference stencil. Hence, at each time step it is necessary to solve an
algebraic system of equations for which multigrid is used. Again RBGS is selected
as the iterative scheme and so communications are required between neighbour
processors after each red and black sweep. Different from m1, here only processor
p owns the row of unknowns at the top of block p, see Fig. 2. This means that
the total memory requirement is slightly less than with algorithm m1 but that,
unlike m1, communications are also required at the interpolation phase, as well
as the restriction and convergence test phases. Also different from m1, the inter-
processor sends and receives are based upon a mixture of MPI blocking and
non-blocking functions. Finally, as mentioned above, m2 is implemented using
the FAS algorithm [13] and so the current solution must also be interpolated
from the fine to the coarser grid at each level.

3 The Predictive Model

The goal of most parallel numerical implementations is to be able to solve larger
problems than would be otherwise possible. For the numerical solution of PDEs
this means solving problems on finer grids, so as to be able to achieve higher
accuracy. Ideally, when increasing the size of a problem by a factor of np and
solving it using np processors (instead of a single processor), the solution time

Parallel Performance Prediction 651

p−1

p

p+1

n

0
1
2

n

1
0

n+2 n+1
n+1

m1 partition m2 partition

Fig. 2. Domain partitions for algorithms m1 and m2. The dummy rows of processor p
have indexes 0, n + 2 and 0, n + 1 for m1 and m2, respectively

should be unchanged. This would represent a perfect efficiency and is rarely
achieved due to the parallel overheads such as inter-processor communications
and any computations that are repeated on more than one processor. In this
research our aim is to be able to predict these overheads in the situation where
the size of the problem (the number of discrete unknowns, N2, on the finest
mesh) scales in proportion to the number of processors. Consequently, the basic
assumption that we make is that the parallel solution time (on np processors)
may be represented as

Tparallel = Tcomp + Tcomm. (1)

In (1), Tcomp represents the computational time for a problem of size N2/np
(= N(1)2, say) on a single processor, and Tcomm represents all of the parallel
overheads (primarily due to inter-processor communications).

The calculation of Tcomp is straightforward since this simply requires execution
of a problem of size N(1)2 on a single processor. One of the major attractions of
the multigrid approach is that this time should be proportional to the size of the
problem on the single processor. As demonstrated in [12] this is indeed the case
for both of the implementations, m1 and m2, considered in this paper. The key
consequence of this property is that in situations where we scale the problem
size with the number of processors, np, then Tcomp remains independent of np.

The more challenging task that we have, therefore, is to model Tcomm in a
manner that will allow predictions to be made for large values of np. Note that
any additional work that is undertaken when computing in parallel is associated
with the dummy rows that are stored on each processor, as is the communication
overhead. When solving on a fine mesh of size N2 the value of Tcomm may be
estimated, to leading order, as

Tcomm ∝ Tstart + kN. (2)

Here Tstart relates to the start-up cost for the communications whilst kN repre-
sents the number of tasks of size N at each multigrid cycle (which will depend
upon the number of communications and the number of additional iterative
solves on duplicated rows). Furthermore, it is important to note that k itself

652 G. Romanazzi and P.K. Jimack

may not necessarily be independent of N . In fact, slightly more than np times
the work is undertaken by the parallel multigrid algorithm on an N2 fine mesh
than by the sequential multigrid solver on an N2/np fine mesh. This is because in
the former case either there are more mesh levels, or else the coarsest grid must
be finer. In all of the examples discussed in this paper we consider each prob-
lem using the same coarse level N2

0 (with N0 a power of 2) and the same work
per processor at the finest level (N2 on np processors, where N =

√
npN(1)).

Therefore, the number of grid levels used, nlevels, depends on the number of
processors np, that is

nlevels = log2(N/N0) + 1. (3)

We consider two different models for Tcomm, based upon (2). In the first of these
we do assume that k is approximately constant to obtain

Tcomm = a + bN. (4)

In the second model we add a quadratic term γN(1)2 that allows a nonlinear
growth of the overhead time

Tcomm = α + βN + γN(1)2. (5)

The quadratic term introduced in (5) is designed to allow a degree of nonlinear-
ity to the overhead model, reflecting the fact that k in (2) may not necessarily
be a constant. As will be demonstrated below, the importance (or otherwise)
of this nonlinear effect depends upon the specific characteristics of the proces-
sor and communication hardware that are present on each particular parallel
architecture. In particular, the effects of caching and of a multicore architecture
appear to require such a nonlinear model.

In order to obtain values for (a, b) and (α, β, γ) in (4) and (5) respectively, the
parallel performance of a given code must be assessed on each target architec-
ture. Note from Fig. 1 that the communication pattern is identical regardless of
np: requiring only neighbour to neighbour communications. Hence our next as-
sumption is that (a, b) or (α, β, γ) may be determined using just a small number
of processors. In this work we choose np = 4 in order to approximate (a, b) or
(α, β, γ) by fitting (4) or (5) respectively to a plot of (Tparallel − Tcomp) against
N . Note that, from (1), Tcomm = Tparallel −Tcomp and Tcomp is known from the
data collected on a single processor.

A summary of the overall predictive methodology is provided by the following
steps. In the following notation np is the target number of processors and N2

is the largest problem that can be solved on these processors without swapping
effects causing performance to be diminished. Similarly, N(1)2 = N2/np is the
largest such problem that can fit onto a single processor.

1. For � = 1 to m

Runthecodeonasingleprocessorwithafinegridofdimension(21−�N(1))2.
In each case collect Tcomp based upon average timings over at least 5 runs.

2. For � = 1 to m

Parallel Performance Prediction 653

Run the code on 4 [or 8] processors, with a fine grid of dimension
(22−�N(1))2 [or (22−�N(1) × 23−�N(1))].

In each case collect Tparallel based upon average timings over at least 5 runs.
3. Fit a straight line of the form (4) through the data collected in steps 1 and

2 to estimate a and b, or fit a quadratic curve through the data collected to
estimate α, β and γ in (5).

4. Use either model (4) or model (5) to estimate the value of Tcomm for larger
choices of np and combine this with Tcomp (determined in step 1) to estimate
Tparallel as in (1).

4 Numerical Results

The approach derived in the previous section is now used to predict the perfor-
mance of the two multigrid codes, m1 and m2, on the two parallel architectures
WRG2 and WRG3. These computers form part of the University of Leeds’ con-
tribution to the White Rose Grid [4]

– WRG2 (White Rose Grid Node 2) is a cluster of 128 dual processor nodes,
each based around 2.2 or 2.4GHz Intel Xeon processors with 2GBytes of
memory and 512 KB of L2 cache. Myrinet switching is used to connect the
nodes and Sun Grid Engine Enterprise Edition provides resource manage-
ment.

– WRG3 (White Rose Grid Node 3) is a cluster of 87 Sun microsystem dual
processor AMD nodes, each formed by two dual core 2.0GHz processors.
Each of the 87 × 4 = 348 batched processors has L2 cache memory of size
512KB and 2GBytes of physical memory. Again, both Myrinet switching
and Sun Grid Engine are used for communication and resource management
respectively.

Table 1 shows values of (a, b) and (α, β, γ) obtained by following steps 1 to
4 described above, using N(1) = 2048 and m = 4. Each of the codes is run on
each of the selected parallel architectures. Clearly the precise values obtained
for (a, b) and (α, β, γ) depend upon a number of factors.

– Because users of WRG2 and WRG3 do not get exclusive access to the ma-
chines, or the Myrinet switches, there is always some variation in the solution
times obtained in steps 1 and 2.

– On WRG2 there are (75) 2.4GHz and (53) 2.2GHz processor nodes, hence
the parameters will depend on which processors are used to collect execution
times in steps 1 and 2.

– On WRG3 the situation is made more complex by the fact that each node
consists of two processors and 4 cores. Users may therefore have access to a
core on a node where other users are running jobs or else they may have an
entire node to themselves. This creates significant variations in the timings
for both sequential and small parallel runs.

654 G. Romanazzi and P.K. Jimack

As outlined in steps 1 and 2 above, a simple way to reduce the effects of these
variations is simply to take average timings over five runs (say). Such a crude ap-
proach, whilst accounting for the the relatively minor effects of sharing resources
such as access to the communications technology, are not generally sufficient on
their own however. For example, for a heterogeneous architecture such as WRG2,
which has processors of two different speeds, it should also be recognised that
a parallel job using a large number of processors will typically make at least
some use of the slower 2.2GHz nodes. It is therefore essential to ensure that
in step 1 a slower processor is used to compute the sequential timings, and in
step 2 at least one slower processor should be used in the parallel runs. If only
the faster processors are used in steps 1 and 2 above then the resulting model
will inevitably under-predict solution times on large numbers of processors when
any of these processors are 2.2GHz rather than 2.4GHz. This use of the slower
processors has been imposed for the two WRG2 columns of Table 1.

Table 1. Parameters (a, b) and (α, β, γ) of the Tcomm models (4) and (5) respectively,
obtained for np = 4 and for N(4) = 512, . . . , 4096 with coarse grid of size 32

m2-WRG2 m2-WRG3 m1-WRG2 m1-WRG3

1 node
a =
b =

0.1540
6.616e − 05

−0.1658
5.139e − 04

−7.957e − 02
1.261e − 04

−0.2250
2.943e − 04

2 nodes
a =
b =

−8.518e − 03
4.083e − 04

−0.2316
3.191e − 04

1 node
α =
β =
γ =

−0.3825
7.863e − 04
−6.075e − 07

−0.2079
5.704e − 04
−4.765e − 08

−9.245e − 02
1.434e − 04
−1.458e − 08

6.012e − 02
−8.833e − 05
3.228e − 07

2 nodes
α =
β =
γ =

−0.4211
9.621e − 04
−4.671e − 07

−1.698e − 02
3.106e − 05
2.430e − 07

Furthermore, in order to better control the effects of multiple cores on WRG3,
we have chosen to undertake all of the sequential runs using four copies of the
same code: all running on the same node. Again, this decision is made bearing
in mind the situation that will exist for a large parallel run in which all of the
available cores will be used. In addition to this, for WRG3, two sets of predictive
timings are produced. The first of these is obtained by running the 4 process
parallel job on a single (four core) node, whilst the second is obtained by running
an 8 process parallel job across two (four core) nodes. The latter is designed to
allow both intra-communication (communication between processes on the same
node) and inter-communication (communication between processors on different
nodes) overheads to be captured by our model (the former will only capture
intra-communication costs). These two situations are denoted by “1 node” and
“2 nodes” respectively in Table 1.

There are a number of interesting observations to make about the parameters
shown in Table 1. As indicated in step 3 above, these are obtained by fitting

Parallel Performance Prediction 655

curves (either linear or quadratic) through the averaged data collected in steps
1 and 2 (using (4) or (5) respectively, with Tcomm = Tparallel − Tcomp). For the
linear model it is important to state that the fit to the data is not particularly
good which provides a clear indication that the model may be deficient. For the
quadratic cases the fits to the data are, perhaps not surprisingly, a lot better.
For WRG3, the effect of undertaking the small parallel runs (step 2) using cores
on two nodes rather than one is not particularly significant for the linear model
but is much more noticeable for the quadratic model. This might suggest that
other inaccuracies are dominant in the former case.

0.5 1 1.5

x 10
4

0

10

20

30

N(np)

T
im

e

m2−WRG2, np=64

Tmeasured
Tpredicted

0.5 1 1.5

x 10
4

0

10

20

30

N(np)

T
im

e

m2−WRG3, np=64

Tmeasured
Tpredicted1
Tpredicted2

0.5 1 1.5

x 10
4

0

2

4

6

N(np)

T
im

e

m1−WRG2, np=64

Tmeasured
Tpredicted

0.5 1 1.5

x 10
4

0

2

4

6

8

N(np)

T
im

e

m1−WRG3, np=64

Tmeasured
Tpredicted1
Tpredicted2

Fig. 3. Linear model T = Tcomp + a + bN for Time predicted, and Time measured
(both in seconds) on np = 64 processors, N(64) = 2048, . . . , 16384

Given the values shown in Table 1, it is now possible to make predictions for
the performance of the multigrid codes on greater numbers of processors. In this
paper, we consider executing the codes on np = 64 processors (the maximum
queue size available to us), with the grids scaled in size in proportion to np.
Figure 3 shows results using the linear model, (4), whilst Figure 4 shows similar
results based upon the quadratic model (5). In each case all four combinations of
algorithms (m1,m2) and computer systems (WRG2,WRG3) are presented. Note
that for the runs on WRG3, following Table 1, two predictions are presented
(Tpredict1 and Tpredict2): these are based upon the best-fit parameters (α, β
and γ) obtained when 1 node (4 cores) or 2 nodes (8 cores) are used in step 2
respectively.

656 G. Romanazzi and P.K. Jimack

0.5 1 1.5

x 10
4

0

10

20

30

N(np)

T
im

e
m2−WRG2, np=64

Tmeasured
Tpredicted

0.5 1 1.5

x 10
4

0

10

20

30

N(np)

T
im

e

m2−WRG3, np=64

Tmeasured
Tpredicted1
Tpredicted2

0.5 1 1.5

x 10
4

0

2

4

6

N(np)

T
im

e

m1−WRG2, np=64

Tmeasured
Tpredicted

0.5 1 1.5

x 10
4

0

1

2

3

4

N(np)

T
im

e

m1−WRG3, np=64

Tmeasured
Tpredicted1
Tpredicted2

Fig. 4. Quadratic model T = Tcomp + α + βN + γN(1)2 for Time predicted, and Time
measured (both in seconds) on np = 64 processors, N(64) = 2048, . . . , 16384

It is clear from Fig. 3 that the linear model provides disappointing predictions
in almost all cases. It is noticeable that this model under-predicts the solution
times for algorithm m2 (which includes blocking as well as non-blocking com-
munication) whilst it tends to over-predict the solution times for algorithm m1.
It is hard to discern any obvious pattern from these results other than the fact
that the qualitative behaviour seems to have been captured in each case, even
though the quantitative predictions are unreliable. This suggests that nonlinear
effects are important in the parallelization, either due to communication patterns
(e.g. switch performance and/or the effects of non-blocking communication) or
nonlinear cache effects (with multi-core processors for example).

From Fig. 4 it is apparent that using the quadratic model to capture the pre-
dicted nonlinear effects can be highly effective. This model provides significantly
better predictions for both multigrid implementations and on both parallel archi-
tectures (provided that Tpredict2 is used on WRG3). In the case of the results
obtained on WRG2 it is important to emphasize again that steps 1 and 2 of
the algorithm were undertaken using at least one slower processor in each run.
Without this restriction the predictions were of a much poorer quality: providing
significant under-estimations of the parallel run times on 64 processors (see [12]
for further details). In the case of WRG3 recall that Tpredict2 is based upon
the use of 8 cores in step 2 of the methodology described in the previous section
(as opposed to 4 cores for Tpredict1). This clearly demonstrates that, since the
large parallel jobs typically use all of the available cores on each node, both

Parallel Performance Prediction 657

intra- and inter-communication costs must be captured by the predictive model.
Perhaps not surprisingly, when this model fails to capture all of the communi-
cation patterns present in the full parallel code the resulting predictions (Tpre-
dicted1) become unreliable.

5 Conclusion and Future Work

In this paper we have proposed a simple methodology for predicting the per-
formance of parallel multigrid codes based upon their characteristics when ex-
ecuted on small numbers of processors. The initial results presented are very
encouraging, demonstrating that remarkably accurate and reliable predictions
are possible provided that sufficient care is taken with the construction of the
model and the evaluation of its parameters. In particular, it has been possible to
demonstrate that the effects of both heterogeneous and multicore architectures
can be captured, and that the models proposed can be applied to two quite
different multigrid codes.

It is clear from the results presented in the previous section that, despite the
communication costs being O(N) and the O(N) complexity of the multigrid
approach (as illustrated in [12]), the simple linear model for the growth in the
parallel overhead is not sufficient to capture the practical details of scalability to
large numbers of processors. There are numerous possible causes of this (e.g. non-
linear communication patterns, caching effects, etc.) however it is demonstrated
that the addition of a quadratic term to the model, to capture the nonlinear
effects to leading order, improves its predictive properties substantially. Unsur-
prisingly, care must be taken to deal with non-homogeneous architectures or
multicore architectures in an appropriate manner. If these effects are ignored
then even the quadratic model fails to yield realistic predictions.

It has been observed in this work that the quality of the best fit that is made
in order to determine the values of the parameters in Table 1 appears to provide
a useful indication as to the reliability of the resulting model. For example, the
linear fits in the top half of the table are relatively poor, as are the predictions
in Fig. 3. In future work it would be interesting to investigate this phenomenon
further in order to attempt to produce a reliability metric for the predictions
that are made. Recall that one of the primary motivations for this work is to
provide information on expected run-times on different numbers of processors
on different architectures in order to allow optimal (or improved) scheduling
of jobs in a Grid-type environment where a variety of potential resources may
be available. Clearly, providing additional information, such as error bounds for
these expected run times, will further assist this process. An additional factor
that should also be included in this modelling process is the ability to consider
different domain decomposition strategies (e.g. partitioning the data into blocks
rather than strips, [6]) and predict their relative performance for a given problem
on a given architecture.

Finally, we observe that, in addition to deciding which single computational
resource to use in order to complete a given computational task, there will be

658 G. Romanazzi and P.K. Jimack

occasions when multiple Grid resources are available and might be used together.
Consequently, in future work we also intend to extend our models to provide
predictions that will allow decisions to be made on how best to split the work
across more than one resource and to determine the likely efficiency (and cost-
effectiveness) of so doing.

References

1. Brandt, A.: Multi-level adaptive solutions to boundary value problems. Mathemat-
ics of Computation 31, 333–390 (1977)

2. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial. SIAM (2000)
3. Carrington, L., Laurenzano, M., Snavely, A., Campbell, R., Davis, L.P.: How well

can simple metrics represent the performance of HPC applications? In: Proceedings
of SC 2005 (2005)

4. Dew, P.M., Schmidt, J.G., Thompson, M., Morris, P.: The White Rose Grid: prac-
tice and experience. In: Cox, S.J. (ed.) Proceedings of the 2nd UK All Hands
e-Science Meeting. EPSRC (2003)

5. DIMEMAS, http://www.cepba.upc.es/dimemas/
6. Goodyer, C.E., Berzins, M.: Parallelization and scalability issues of a multilevel

ellastohydrodynamic lubrication solver. Concurrency and Computation: Practice
and Experience 19, 369–396 (2007)

7. Huedo, E., Montero, R.S., Llorente, I.M.A.: module architecture for interfacing Pre-
WS and WS Grid resource management services. Future Generation Computing
Systems 23, 252–261 (2007)

8. Kerbyson, D.J., Alme, H.J., Hoisie, A., Petrini, F., Wasserman, H.J., Gittings, M.:
Predictive Performance and Scalability Modeling of a Large-Scale Application. In:
Reich, S., Tzagarakis, M.M., De Bra, P.M.E. (eds.) Hypermedia: Openness, Struc-
tural Awareness, and Adaptivity. LNCS, vol. 2266, Springer, Heidelberg (2002)

9. Koh, Y.Y.: Efficient Numerical Solution of Droplet Spreading Flows. Ph.D. Thesis,
University of Leeds (2007)

10. Krauter, K., Buyya, R., Maheswaran, M.A.: taxonomy and survey of Grid resource
management systems. Int. J. of Software: Practice and Experience 32, 135–164
(2002)

11. Lang, S., Wittum, G.: Large-scale density-driven flow simulations using parallel
unstructured grid adaptation and local multigrid methods. Concurrency and Com-
putation: Practice and Experience 17, 1415–1440 (2005)

12. Romanazzi, G., Jimack, P.K.: Performance prediction for parallel numerical soft-
ware on the White Rose Grid. In: Proceedings of UK e-Science All Hands Meeting
(2007)

13. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press, London
(2003)

http://www.cepba.upc.es/dimemas/

	Parallel Performance Prediction for Multigrid Codes on Distributed Memory Architectures
	Introduction
	Multigrid and Parallel Implementation
	The Algorithm m1
	The Algorithm m2

	The Predictive Model
	Numerical Results
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

