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Abstract

We consider the solution of linear systems whose coefficient matrices having a Bor-
dered ABD structure. This kind of system arises in the discretization of BVPs for
ordinary and partial differential equations with non-separated boundary conditions.
The aim of this paper is to test the Fortran 90 package BABDCR, based on a cyclic
reduction algorithm, within the BVP code MIRKDC. Actually, this code uses COL-

ROW which is designed to solve ABD systems, and hence MIRKDC only deals with
separated boundary conditions. Comparisons between the two implementations are
performed. Finally, BABDCR is implemented on parallel architectures for an even-
tual test in PMIRKDC.

Key words: Boundary Value Problems, Linear systems solution, Bordered Almost
Block Diagonal matrices, Cyclic Reduction

1 Introduction

Almost Block Diagonal (ABD) and Bordered Almost Block Diagonal (BABD)
[1] linear systems arise in discretizations of Boundary Value Problems (BVPs)
with, respectively, separated and non-separated boundary conditions, for ordi-
nary and partial differential equations. The coefficient matrices associated with
ABD linear systems are sparse and characterized by as follows: the nonzero el-
ements are grouped in block rows, there is no intersection between the nonzero
columns of two nonconsecutive block rows; and, the main diagonal entries al-
ways lie inside the nonzero blocks. BABD matrices also satisfy: the first (or
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the last) block row has an additional block in the right-upper (left-lower) cor-
ner whose columns only intersect the nonzero columns of the last (first) block
row. In Figs. 1 and 2 we show the ABD and BABD linear system structures
most frequently arising in BVP solvers.
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Fig. 1. ABD linear system with blocks Si, Ri ∈ R
m×m, Btop ∈ R

m0×m and
Bbot ∈ R

(m−m0)×m, and vectors fi, xi ∈ R
m, da ∈ R

m0 and db ∈ R
m−m0 .
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Fig. 2. BABD linear system with blocks Si, Ri, Ba, Bb ∈ R
m×m, and vectors

xi, fi, d ∈ R
m.

1.1 Solvers for ABD and BABD systems

Because of its relevance in BVP codes, the solution of ABD systems has been
the subject of long-term research, see [1,11]. The first ABD code was SOLVE-

BLOK [8]; as for standard LU factorization applied to banded systems, it
requires fill-in to ensure stability. The alternate row and column stable elim-
ination, called Varah’s procedure [16], exploited the structure of the ABD
matrices to avoid fill-in. The packages COLROW and ARCECO in [9] are
based on a modified version of Varah’s procedure. COLROW solves ABD
linear systems with row blocks of the same dimension (Fig. 1) and ARCECO

solves general ABD linear systems with blocks of varying dimensions. Numeri-
cal experiments in [9] demonstrate their effectiveness and their superiority over
SOLVEBLOK, that is less storage and execution time, on systems arising from
BVPs. Successively, several modifications have been proposed to these pack-
ages to deal with more specific structures of the coefficient matrix (see [1] and
the references therein).
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In what follows, bear in mind that BABD systems can be recast as ABD sys-
tems of double size (see Section 4). In Section 2 we briefly show the BABDCR

package [3]. Other packages solving BABD systems, as for example RSCALE

[13], are designed for systems arising from BVPs and are contained in such
codes (see [14]).

1.2 ABD and BABD solvers in BVODE packages

Some nonlinear BVP packages employ ABD packages. The BVP code COL-

SYS [4] uses SOLVEBLOK to solve ABD linear systems arising from using
OSC at Gauss points with B-spline bases. COLNEW [5] uses a modified ver-
sion of SOLVEBLOK to solve ABD linear systems arising from using OSC at
Gauss points with monomial spline bases. The Mono Implicit Runge Kutta
(MIRK) code with defect control MIRKDC [10] uses COLROW as a solver
for ABD systems. Modified versions of COLROW are used in TWPBVP [7], a
deferred correction code, in COLMOD [15], a modified version of COLNEW,
and in ACDC [6], which uses automatic continuation and OSC at Lobatto
points to solve singularly perturbed BVODEs. The code PMIRKDC, a paral-
lel version of MIRKDC, uses the package RSCALE which has a good parallel
implementation.

In this paper we propose BABDCR as an alternative to COLROW in the
solution of BABD systems and RSCALE in a parallel environment. In Sec-
tion 3 we derive a modified version of MIRKDC which is effective to solve
BVPs with non-separated boundary conditions. Numerical tests are presented
in Section 4. In Section 5 we analyze some numerical results obtained on a
distributed memory machine.

2 The BABDCR package

Based on an idea in [2], the BABDCR package (see [3]) solves BABD systems
with the special structure in Fig. 2. The underlying algorithm cyclically re-
duces the coefficient matrix to derive systems of lower dimension with the same
BABD structure. Suppose that the coefficient matrix in Fig. 2 is nonsingular;
we reduce each pair of block row equations, for i = 2j, j = 1, 2, . . . , ⌊N/2⌋,
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into one block row equation involving only the unknowns xi−1 and xi+1

S ′

i−1xi−1 + R′

ixi+1 = f ′

i . (2)

Since the columns overlapped by the 2m × m matrix
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independent, we use a partial pivoting LU factorization
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and premultiply (1) by the permutation matrix Pi and the inverse of the lower
triangular matrix in (3) to obtain
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where S ′

i−1, R′

i and f ′

i are the blocks of the reduced equation (2). After k
steps of reduction, the coefficient matrix obtained is of size ⌈N/s⌉ + 1 where
s = 2k, and it can be further on reduced by combining two successive block
row equations (for each i = (2j − 1)s + 1, with j = 1, 2, . . . , ⌊N/(2s)⌋)







S
(k)
i−s R

(k)
i−1

S
(k)
i R

(k)
i+s−1





















xi−s

xi

xi+s















=







f
(k)
i−1

f
(k)
i+s−1







to give S
(k+1)
i−s xi−s+R

(k+1)
i+s−1xi+s = f

(k+1)
i+s−1. The reduction ends after p = ⌈log2 N⌉

steps when the 2 × 2 block linear system
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is obtained. The algorithm proceeds with the solution of (5) and the back-
substitution phase where the unknowns x2, . . . , xN are computed.

The presence of null blocks in the equations (4) allows us to reduce the memory
requirement and the number of computations. In order to complete the reduc-
tion, we save, after k +1 steps of reduction, the matrices S

(k+1)
i−s and R

(k+1)
i+s−1 in
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place of S
(k)
i−s and R

(k)
i+s−1 respectively, the product TiL

−1
i in place of S

(k)
i and

the vector f
(k+1)
i+s−1 in place of f

(k)
i+s−1. Moreover, for the back-substitution phase,

we save the first m elements of P
(k)
i
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ory requirement is m×m for each of the N − 1 reductions and corresponds to

the first m rows of P
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i
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 used in the back-substitution phase. The

computational cost of the factorization is 14
3
m3N and of the back-substitution

phase is 6m2N to leading order in powers of m and N . Since N ≫ m and
the BABDCR algorithm can reduce successive pairs of block row equations
independently, the algorithm can be efficiently parallelized.

3 BVPs and the MIRKDC code

The code MIRKDC [10] solves BVPs

y′ = f(t,y(t)), t ∈ [a, b] (6)

where y ∈ R
m and f : R × R

m → R
m, with separated BCs

g(y(a),y(b)) =







g0(y(a))

g1(y(b))





 = 0. (7)

It uses Mono-Implicit Runge Kutta (MIRK) formulae to discretize (6) on a
given subdivision {ti}

N
i=0 of [a, b]. A continuous solution approximation is ob-

tained using a Continuous MIRK (CMIRK) scheme, to provide defect control
and mesh selection capabilities. The MIRK scheme applied to the BVP system
(6)-(7) on N subintervals, yields the nonlinear system

Φ(Y) = (Φ0(Y)T , . . . ,ΦN (Y)T )T = 0, where Φi : R
m(N+1) −→ R

m

and Y = (yT
0 , . . . ,yT

N
)T , yj ∈ R

m, which is solved using the Newton iteration
Y(q+1) = Y(q) + ∆Y(q), for q = 0, 1, . . . , where

[

∂Φ(Y(q))

∂Y

]

∆Y(q) = −Φ(Y(q)) (8)
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given Y(0). For the separated boundary conditions (7) these linear systems
have an ABD structure as in Fig. 1 with

Si = −I − hiKi,i, Ri = I − hiKi+1,i,

where blocks Ki,j depend on the used Runge-Kutta formulae.

MIRKDC uses the following variable names: neqns and Nsub are, respectively,
the order m of the system (6) and the number N of subintervals of the current
mesh, leftbc is the number of boundary conditions at the point a and MxNsub

is the user defined maximum number of subintervals of [a, b]. It employes
COLROW to solve systems (8).

We have written a variant of MIRKDC, called MIRKDC NOSEP, which solves
the system of BVPs (6) with general non-separated boundary conditions. The
algorithm uses the discretizations of MIRKDC resulting in linear systems (8)
with the BABD form, as in Fig. 2, that are solved using the BABD solver
BABDCR. Therefore, MIRKDC NOSEP essentially replaces COLROW with
BABDCR. To do this, we make some modifications inside the MIRKDC code:

• the permutation vector array, of length neqns*(MxNsub+1) is replaced by a
vector array of length 2*neqns*MxNsub

• the fill-in described in section 2, adds (Nsub-1)*(neqns**2) locations in
the array blocks which contain also the blocks Si, Ri, as represented in
Fig. 2, of the current BABD Jacobian in (8)

• the arrays top and bop contain the blocks Ba and Bb of the Jacobian in
(8), represented in Fig. 2, which are of dimension neqns×neqns instead of
leftbc×neqns and (neqns-leftbc)×neqns, respectively

• in BABDCR the right hand side associated with the linear system is over-
written by the solution, while COLROW doesn’t overwrite the solution.
Therefore, before the call to BABDCR the right hand side occupies the
same locations as for the solution

4 Comparisons among the linear system solvers

We compare BABDCR with COLROW and RSCALE on the ABD and BABD
linear systems generated by the codes MIRKDC and MIRKDC NOSEP. First,
we discuss the ABD linear systems generated by MIRKDC applied to a linear
BVP y′ = My(t) with M ∈ R

m×m and linear boundary conditions Btopy(a) =
da ∈ R

m0 and Bboty(b) = db ∈ R
m−m0 . Here we fix m = 20 and m0 = 10.

Both Btop, Bbot and M are randomly generated full matrices and such that
the BVP is well-conditioned. BABDCR and RSCALE requires the simple
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transformation
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 ∈ R
m×m, Bb =







0

Bbot





 ∈ R
m×m and d =







da

db





 ∈ R
m ,

in order to be applied to a system with the BABD structure in Fig. 2. The
timings and errors, in Table 1, lead us to prefer COLROW over the other
algorithms. Indeed, COLROW is more than 2 times faster than BABDCR

and more than 4 times faster than RSCALE. Moreover, the errors for COL-

ROW and BABDCR are similar, but RSCALE is less accurate. These results
essentially agree with the theoretical computational costs of the three solvers.
In fact, applied to the ABD linear system in Fig. 1, to leading order in m,
COLROW requires

(

5
3
m3 + mm2

0

)

N operations and RSCALE
(

20
3
m3

)

N .

Table 1
ABD systems generated by MIRKDC applied to a linear problem.

time error

N=256 N=512 N=1024 N=256 N=512 N=1024

BABDCR 3.71e-02 7.12e-02 0.152 1.65e-13 2.88e-13 3.46e-13

COLROW 1.46e-02 2.83e-02 6.34e-02 1.55e-13 2.05e-13 7.08e-13

RSCALE 6.83e-02 0.136 0.274 2.54e-12 6.02e-12 3.01e-11

For the comparison on BABD linear systems, we apply MIRKDC NOSEP to
a linear BVP y′ = My(t) with non-separated boundary conditions Bay(a) +
Bby(b) = d ∈ R

m. Again, the size of the problem m = 20. For what concerns
M , we investigate two cases:

(1) M is a well-conditioned matrix with eigenvalues -102, -10, -7, -4, -3, -2.5,
-1.3, -1, -0.5, -0.4, 0.2, 0.3, 1, 1, 2, 2.5, 3, 4, 11, 25;

(2) M has eigenvalues -9, -3.5, -3, -2, -2, -1.5, -1.5, -1.25, -0.5, -1e-08, 0.25,
0.5, 0.5 , 1, 3, 4, 5, 7, 8, 1e+08.

For COLROW we re-write the BABD system as an equivalent ABD linear
system of double the size, see Fig. 3. Then, the computational cost of this
solver becomes

(

46
3
m3

)

N . This means that theoretically BABDCR is more
than three times faster. In Tables 2-3 we compare the errors and timings of the
three linear solvers. From the results in Table 2 on the cases (1)-(2), BABDCR

is approximately 3 times faster than COLROW and more than 1.5 times faster
than RSCALE. Timing associated to COLROW includes converting the linear
system from the BABD structure to the ABD structure in Fig. 3. The errors
associated with BABDCR and COLROW are similar, and RSCALE is the
least accurate algorithm. The errors of the three methods, applied in case (2),
are given in Table 3. Note that these errors are large, because the BVP is ill-
conditioned. Finally, observe that BABDCR and COLROW are significantly
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Fig. 3. ABD system of doubled size equivalent to the BABD system in Fig. 2.
zi, i = 1, . . . , N + 1 are the new unknowns, zN+1 = zN = . . . = z1 = x1.
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more accurate than RSCALE.

Table 2
Times for the solution of BABD systems generated by MIRKDC NOSEP applied
to a linear 20 × 20 BVP.

N=256 N=512 N=1024

BABDCR 3.61e-02 7.03e-02 0.151

COLROW 0.102 0.224 0.464

RSCALE 6.83e-02 0.136 0.287

Table 3
Errors for the solution of BABD systems generated by MIRKDC NOSEP applied
to a linear 20 × 20 BVP.

case (1) case (2)

N=256 N=512 N=1024 N=256 N=512 N=1024

BABDCR 7.62e-13 1.22e-12 1.19e-12 6.28e-04 2.22e-04 8.00e-05

COLROW 7.53e-13 4.10e-13 1.25e-12 2.80e-04 2.16e-04 9.25e-05

RSCALE 5.17e-12 2.90e-11 6.02e-11 1.90e-02 8.55e-03 1.08 e-02

In order to better emphasize the advantages of using BABDCR, Tables 4-5
give statistics for calls to MIRKDC NOSEP (that uses BABDCR) and to
MIRKDC applied to the BVP of double size y′ = My(t), z′ = 0 with sepa-
rated boundary conditions y(a) − z(a) = 0 and Baz(b) + Bby(b) = d. Both
codes are applied to the problem with M having eigenvalues as in case (1)
using the MIRK/CMIRK scheme of order 4 [10]. From Tables 4 and 5, BAB-

DCR in MIRKDC NOSEP saves more than one half of the linear algebra time
with respect to using COLROW. Though this result is valid for the problem
considered, results in Table 2 show that, for a general BVP with non-separated
boundary conditions, BABDCR in MIRKDC runs faster than COLROW.
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Table 4
MIRKDC NOSEP (using BABDCR) for the linear problem in case (1) with an
initial mesh of 256 points and tolerance 1e-07

MESH ♯FACTs time ♯SOLVEs time

256 1 0.32e-01 2 0.98e-02

224 1 0.25e-01 2 0.78e-02

246 1 0.29e-01 2 0.78e-02

Total: 3 0.87e-01 6 0.25e-01

Total monitored Linear Algebra time: 0.11 secs.

Total monitored Nonlinear Algebra time: 0.12 secs.

Table 5
MIRKDC (using COLROW ) for the linear problem of double size in case (1) with
an initial mesh of 256 points and tolerance 1e-07.

MESH ♯FACTs time ♯SOLVEs time

256 1 0.11 2 0.16e-01

224 1 0.75e-01 2 0.12e-01

246 1 0.82e-01 2 0.14e-01

Total: 3 0.27 6 0.41e-01

Total monitored Linear Algebra time: 0.31 secs.

Total monitored Nonlinear Algebra time: 0.12 secs.

5 Parallel implementation of BABDCR

We consider a distributed memory parallel implementation of BABDCR called
PARABABDCR. This implementation has good speed-up when applied to a
random BABD linear system, even on 8 processors (see Table 6). So, BABDCR

could give a faster MIRKDC package on distributed parallel architectures than
PMIRKDC [14] using RSCALE. Direct comparisons with PMIRKDC are not
possible since it is for shared memory architectures.

Table 6
Speedup for the PARABABDCR algorithm with N=1024.

NPROCS=2 NPROCS=4 NPROCS=8

m=64 1.976 3.473 5.977

m=16 1.529 2.806 3.343

m=4 1.227 1.424 1.057
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