UNIVERSITÀ DEGLI STUDI DI BARI
Dottorato di Ricerca in Matematica XVIII Ciclo - A.A. 2004-2005

Settore Scientifico Disciplinare:
Analisi Numerica - MAT/08

Numerical solution of Bordered Almost Block Diagonal linear systems arising from BVPs

Candidato:
Giuseppe ROMANAZZI
Supervisore della tesi:
Prof. Pierluigi AMODIO
Prof. Ian GLADWELL
Coordinatore del Dottorato di Ricerca:
Prof. Luciano LOPEZ

To Tanya, Marina, and Kwam

Contents

Introduction 1
1 Solution techniques for BVPs 7
1.1 Conditioning in IVPs and BVPs 8
1.1.1 Well-conditioned problem 8
1.1.2 Theoretical solution of a problem 9
1.1.3 Uniform asymptotic stability and dichotomy 11
1.2 Difference methods 15
1.3 The Mono-Implicit Runge Kutta formulae 16
1.3.1 The code MIRKDC 16
1.4 Multiple shooting method 17
1.5 Splines 18
1.6 Spline collocation at Gaussian points 19
1.7 B-spline and monomial spline collocation 20
1.7.1 B-splines 21
1.7.2 Monomial splines 24
2 Algorithms for ABD and BABD systems 27
2.1 The Wright example 27
2.2 Rewriting a BABD system as an ABD system 29
2.3 Gaussian elimination with partial pivoting 30
2.4 Alternating row and column elimination 31
2.5 Modified alternate row and column elimination 36
2.5.1 The ABDPACK algorithm 39
2.6 The RSCALE algorithm 40
3 An algorithm for the solution of BABD systems based on cyclic reduc- tion 45
3.1 The cyclic reduction algorithm 45
3.2 Computational cost and required memory 49
3.3 Stability 50
3.4 Solution of transposed BABD systems 51
3.5 Description of the software 55
3.6 Calling sequences 58
3.6.1 A new version of MIRKDC 60
3.7 Comparisons among the linear system solvers 60
3.8 Comparisons of the two versions of MIRKDC 62
4 Algorithms to solve general BABD linear systems 65
4.1 Introduction 65
4.2 Cyclic reduction approach for general BABD linear systems 68
4.3 An algorithm for BABD systems arising from OSC 72
4.4 GBABDCR: an optimized implementation of the cyclic reduction 74
4.4.1 Description of the software 76
4.5 Numerical comparisons 77
4.6 An approach to solve BABD systems in the monomial case 80
4.6.1 The algorithm $B A B D C R _M O N O$ 80
4.6.2 Description of the software 83
4.7 Comparisons in the monomial case 85
5 A parallel algorithm for the solution of BABD systems using MPI 87
5.1 The parallel algorithm 87
5.1.1 Factorization phase 89
5.1.2 Solution phase 90
5.1.3 A note about the startup 90
5.2 Code in a pseudo programming language 91
5.3 Speedup 95
6 Appendix of Numerical Analysis 99
6.1 Polynomials 99
6.2 Runge-Kutta formulae 100
6.3 MIRK/CMIRK schemes in the code MIRKDC 101
Acknowledgements 103
Bibliography 105

Introduction

We analyze the solution of Bordered Almost Block Diagonal linear systems using new algorithms which are introduced and described in detail. All these algorithms use a cyclic reduction approach with LU factorization. Cyclic reduction, despite other techniques, permits to obtain a parallelizable version of the code. Moreover, these algorithms are efficient even in serial version, we provide comparisons in timing and accuracy with respect to previous codes.

Almost Block Diagonal (ABD) [1, 18, 35] and Bordered Almost Block Diagonal (BABD) $[1,35]$ linear systems $A \mathbf{y}=\mathbf{f}$ arise in discretizations of Boundary Value Problems (BVPs) with, respectively, separated and non-separated boundary conditions, for ordinary and partial differential equations.

The ABD matrices associated to ABD linear systems are sparse matrices characterized by a very special pattern: the nonzero elements are grouped in block rows, there is no intersection between the nonzero columns of two non-consecutive block rows; finally, the main diagonal entries always lie inside the nonzero blocks. BABD matrices, associated to BABD linear systems, satisfy a further property, see Figure 1: the first (or the last) block row has an additional block in the right-upper (left-lower) corner whose nonzero columns only intersect some columns of the last (first) block row. In Figures 2 and 3, the most frequently occurring ABD and BABD structures arising in BVP solvers are shown. In these structures, the blocks S_{i} and R_{i} are square and have the same dimension.

In Chapter 1, we outline how BABD structures arise from Boundary Value Problem (BVP) techniques, as the Orthogonal Spline Collocation (OSC). In particular, we consider BVP for Ordinary Differential Equations (ODEs) with nonseparated boundary conditions.

In Chapter 2, we describe some numerical techniques and approaches for solving ABD and BABD linear systems. These techniques are compared to the proposed algorithms in the successive chapters. A list of codes using some of these techniques are listed in the following two sections.

In Chapter 3, we introduce the new sequential BABD algorithm $B A B D C R[3,4]$ which is based on the cyclic reduction. $B A B D C R$ has been written in Fortran 90. We compare it with respect to other codes on randomly generated systems and on systems arising from the BVP solver MIRKDC [34].

In Chapter 4 we concern with a general version of $B A B D C R$ in order to solve

Figure 1: General BABD structure

$$
\left(\begin{array}{ccccc}
D_{t o p} & & & & \\
S_{0} & R_{1} & & & \\
& S_{1} & R_{2} & & \\
& & \ddots & \ddots & \\
& & & S_{N-1} & R_{N} \\
& & & & D_{b o t}
\end{array}\right)\left(\begin{array}{c}
\mathbf{y}_{0} \\
\mathbf{y}_{1} \\
\vdots \\
\mathbf{y}_{N-1} \\
\mathbf{y}_{N}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{d}_{a} \\
\mathbf{f}_{1} \\
\vdots \\
\mathbf{f}_{N} \\
\mathbf{d}_{b}
\end{array}\right)
$$

Figure 2: An ABD linear system structure, $D_{\text {top }} \in \mathbb{R}^{m_{t o p} \times m}$, $D_{\text {bot }} \in$ $\mathbb{R}^{\left(m-m_{t o p}\right) \times m}, S_{i}, R_{i} \in \mathbb{R}^{m \times m}, \mathbf{y}_{i} \in \mathbb{R}^{m}, i=0, \ldots, N, \mathbf{f}_{j} \in \mathbb{R}^{m}, j=1, \ldots, N$, $\mathbf{d}_{a} \in \mathbb{R}^{m_{\text {top }}}, \mathbf{d}_{b} \in \mathbb{R}^{m-m_{\text {top }}}$.

$$
\left(\begin{array}{ccccc}
D_{a} & & & & D_{b} \\
S_{0} & R_{1} & & & \\
& S_{1} & R_{2} & & \\
& & \ddots & \ddots & \\
& & & S_{N-1} & R_{N}
\end{array}\right)\left(\begin{array}{c}
\mathbf{y}_{0} \\
\mathbf{y}_{1} \\
\vdots \\
\mathbf{y}_{N-1} \\
\mathbf{y}_{N}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{d} \\
\mathbf{f}_{1} \\
\vdots \\
\mathbf{f}_{N}
\end{array}\right)
$$

Figure 3: A BABD linear system structure, $D_{a}, D_{b}, S_{i}, R_{i} \in \mathbb{R}^{m \times m}, \mathbf{y}_{i} \in \mathbb{R}^{m}$, $i=0, \ldots, N, \mathbf{f}_{j} \in \mathbb{R}^{m}, j=1, \ldots, N, \mathbf{d} \in \mathbb{R}^{m}$.

BABD systems with blocks of different dimensions. We present many approaches and, in particular, we employ an algorithm for solving general BABD systems arising from OSC, and an algorithm for solving only BABD systems with the particular structure arising from OSC with monomial spline basis. Comparisons between the new codes presented and the well-known $\operatorname{COLROW}[28,29]$, based on a columnrow elimination technique described in Chapter 2, are provided.

Finally, in Chapter 5, we analyze a parallel version of $B A B D C R$ on distributed memory parallel architecture using MPI (Message Passing Interface). This algorithm has been implemented in Fortran 90 on a parallel architecture with 16 processors. The speed-up of this parallelized code with respect to the serial version confirms the great advantage that the cyclic reduction techniques have with respect to sequential techniques, as the elimination techniques described in Chapter 2, in order to solve very large BABD (or ABD) linear systems.

Serial solvers for ABD systems

Because of its relevance in BVP codes, the solution of ABD systems has been the subject of long-term research, and several codes have been proposed. In [1] and, more recently in [35], a very rich literature on this subject may be found. The first code for ABD systems was $\operatorname{SOLVEBLOK}[20,21]$; as for standard LU factorization applied to banded systems, it requires fill-in to ensure stability. The alternate row and column stable elimination, called Varah's procedure [74], exploited the sparsity structure of the ABD matrices to avoid fill-in. This procedure is also denoted by ARCE in the following chapters. The packages COLROW and ARCECO in $[28,29]$ are based on a modified version of Varah's procedure (MARCE), which leads to a reduction in the number of arithmetic operations. COLROW solves ABD linear systems with row blocks of the same dimensions and ARCECO solves general ABD linear systems with blocks of varying dimensions. Numerical experiments in $[29,40]$ demonstrate their efficiency and their superiority with respect to SOLVEBLOK, that is, less storage and execution time on systems arising from BVODEs and on randomly generated linear systems. When SOLVEBLOK is applied to ABD linear systems arising from B-spline discretization, as in the BVODE code COLSYS [6, 7, 8], it causes fill-in. In [29] it is proved that COLROW solves these linear systems without fill-in and saving of up to 50% in execution time over SOLVEBLOK.

The NAG library [69] contains the routine F01LHF [22], a variant of ARCECO using level 2 BLAS routines [31], which solves both the systems: with an ABD coefficient matrix, and with its transpose. A level 3 BLAS [30] version of ARCECO has also been developed in [41, 42]; the corresponding code is available in [27]. Two variants of COLROW have been developed by Patrick Keast. The first TRANSCOL$R O W$ [50], as F01LHF, solves linear systems with an ABD coefficient matrix and with its transpose; the second variant, COMPLEXCOLROW [53], solves complex ABD linear systems and can be used in Padé methods applied to parabolic initial-

BVP using Orthogonal Spline Collocation (OSC) for the spatial discretization. The algorithm implemented in LAMPAK [55] refers to the Lam's method [59], there row and column interchanges are used to avoid fill-in but only row elimination is performed throughout. This technique has been applied in the analysis of beam structures [14] and its numerical stability is discussed in [73]. Some finite difference methods $[37,56]$ yield linear systems with an almost block diagonal structure where the overlap is between two consecutive column blocks. Code ROWCOL [36] use alternate row and column elimination to solve directly these kind of systems. The solution of ABD systems arising from OSC with monomial spline basis [10], applied to a BVODE with separated boundary conditions, has also been considered. Since COLROW and ARCECO, as SOLVEBLOK, use fill-in to solve these systems, $[63,64]$ introduce the algorithm $A B D P A C K$. It uses an alternate row and column elimination that, exploiting the special pattern of these systems, avoids the unnecessary fill-in. The same authors have implemented $A B B P A C K[63,64]$, a special case of $A B D P A C K$, which solves ABD systems with an upper block diagonal with identity matrices arising, for example, in implicit Runge-Kutta methods, in multiple shooting methods [1] and from condensation [10] applied to the original ABD system solved by $A B D P A C K$.

Serial solvers for BABD systems

Due to the difficulty of treating boundary blocks, the solution of BABD systems has not received as much consideration. To our knowledge, the unique sequential algorithm designed specifically for BABD systems is the algorithm BABDCR [3, 4], described in Chapter 3. Other codes are written directly for parallel architectures, as RSCALE [49], that uses eigenvalue rescaling in order to ensure numerical stability for a wider class of BABD systems. In the sequential PASVAR codes [60, 61, 78], the routines DECOMP and SOLVE are used for the factorization and the back-substitution phase, respectively. These two routines have been written for ABD systems but they can handle even BABD systems. A detailed description of the various stable (and non) techniques for solving BABD systems is considered in [38]. One stable technique consists in writing the BABD system as ABD system of approximately twice the size, and then, in using ABD or banded matrix algorithms. This technique implies high computational cost due to doubling the dimension of the system and inefficiency, taking no account of the structure within the rewritten system. Alternative techniques consist in using algorithms for solving general bordered systems. As an example, BEMW [44] employes a recursive bordering technique to build up a solution of a bordered system from the solution of a much simpler system. Numerical tests $[38,79]$ prove the instability of such approach in some circumstances. Vice versa, a stable and efficient technique consists in using orthogonal factorization directly on the BABD matrix, storing Householder matrix in vector form to save memory. However, even this technique results in high computational cost.

ABD solvers in ODE and PDE packages

There are nonlinear boundary value ODE (BVODE) packages and nonlinear initialboundary value PDE packages that employ the solution of ABD systems.

As BVODE package, COLSYS [6, 7, 8] uses SOLVEBLOK for solving the ABD linear systems which arise from the application of the Orthogonal Spline Collocation (OSC) to the given BVODE at Gaussian points with a B-spline basis. COLNEW [13] and PCOLNEW [16] uses modified versions of SOLVEBLOK for solving the ABD linear systems which arise from OSC applied to the BVODE at Gaussian points with a monomial spline basis. Its NAG version, D02TKF, uses the ABD solver code F01LHF. If applied to linear systems generated from OSC with monomial basis, COLROW and SOLVEBLOK generate fill-in while ABDPACK no requires additional storage.

ABD linear systems can be solved in two manner. The first is to solve it directly using some variant of Gaussian elimination, the second is to condense it, in the sense described in [10], and then to solve directly a smallest ABD linear system with the common structure in Figure 2. In COLNEW it is implemented this last process, it uses codes from LINPACK [32] to perform the condensation and SOLVEBLOK to solve the condensed linear systems. If the condensed linear system is solved using $A B B P A C K$ no significant savings are obtained. It is preferable to use the condensation process on shared memory machines for its high parallel performance with respect to the direct solution. We discuss the condensation process for the serial code $G B A B D C R$ in Section 4.4.

The Mono Implicit Runge Kutta (MIRK) code with defect control MIRKDC $[33,34]$ uses the ABD solver COLROW. A modified version of MIRKDC is presented in Section 3.6.1, it handles BVODE problems with non-separated boundary condition using the BABD solver $B A B D C R$.

Three BVODE packages use modified versions of COLROW: TWPBVP [26], a deferred correction code; COLMOD [75], a modified version of COLNEW, and ACDC [25] that uses automatic continuation and OSC at Lobatto points to solve singularly perturbed BVODEs.

All the PDEs packages using ABD codes, solve systems of initial-boundary value PDEs in one space variable. They use a method of lines (MOL) where the OSC is used for the discretization of the spatial variable.

The codes PDECOL [62] and its variant EPDCOL [57], both using B-spline as basis functions for the spline collocation, solve the ABD systems resulting from the collocation, with SOLVEBLOK and COLROW, respectively. A MOL code, cited in [70], is based on spline collocation with monomial bases and uses ABDPACK for solving the resulting ABD systems. See [35] for a complete list of PDE packages using ABD solvers.

Chapter 1

Solution techniques for BVPs

We describe solution techniques for Two Point Boundary Value Problems which yield BABD linear systems. In the first section, we introduce the concept of well conditioning of Initial and Boundary Value Problems for Ordinary Differential Equations and we analyze necessary and sufficient conditions which guarantee well conditioning of the problem.

BABD linear systems arise from using various techniques, like Multiple Shooting $[9,48,58,71]$, and difference methods [1, 9, 23, 58], applied to a BVP for ODEs. A brief description of these approaches is given. We analyze, particularly, the Orthogonal Spline Collocation (OSC) method as an effective technique for approximating the solution of boundary value problems for ODE. This technique is also exceedingly efficient to approximate the solution of boundary value problems with time dependent PDEs, using the method of lines [70]. The BABD structure arising depends on the spline basis used. B-spline and monomial spline basis $[10,18]$ cases are considered.

All the above ODE techniques can be applied to a general m th order nonlinear ODE

$$
\begin{equation*}
D^{m} u(x)=F(x, \mathbf{z}(u(x))), \quad u(x) \in \mathbb{R}, x \in[a, b] \tag{1.1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
\mathbf{g}(\mathbf{z}(u(a)), \mathbf{z}(u(b)))=\mathbf{0} \tag{1.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbf{z}(u(x)):= & \left(u(x), D u(x), D^{2} u(x), \ldots, D^{m-1} u(x)\right)^{T} \\
& F(x, \mathbf{z}):[a, b] \times \mathbb{R}^{m} \rightarrow \mathbb{R},
\end{aligned}
$$

and

$$
\mathbf{g}(\mathbf{z}, \mathbf{w}): \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}
$$

While OSC is applied directly to (1.1)-(1.2), in the case of Multiple Shooting or Finite Difference Methods, it is convenient to consider an equivalent model

$$
\begin{align*}
& \mathbf{y}^{\prime}=\mathbf{f}(x, \mathbf{y}(x)) \tag{1.3}\\
& \mathbf{g}(\mathbf{y}(a), \mathbf{y}(b))=\mathbf{0}
\end{align*}
$$

where

$$
\mathbf{y}(x)=\left(y_{1}(x), \ldots, y_{m}(x)\right)^{T} \in \mathbb{R}^{m}, \quad y_{i}(x)=D^{i-1} u(x),
$$

that is $\mathbf{y}(x)=\mathbf{z}(u(x))$.
Using the above cited techniques, Boundary Value Problems (BVPs) with nonseparated boundary conditions, as in (1.3), produce BABD linear systems, whereas BVPs with separated boundary conditions,

$$
B_{a} \mathbf{y}(a)=\mathbf{d}_{a}, \quad B_{b} \mathbf{y}(b)=\mathbf{d}_{b},
$$

yield linear systems which have the ABD form shown in Figure 2.
For what concerns the numerical solution (see from Section 1.2 to the end of chapter), we can reduce the nonlinear problem (1.1)-(1.2), using a quasilinearization process [15, 71], to a sequence of m th order linear differential equations

$$
\begin{align*}
& L(u)(x):=D^{m} u(x)-\sum_{l=1}^{m} c_{l}(x) D^{l-1} u(x)=f(x), \tag{1.4}\\
& B_{a} \mathbf{z}(u(a))+B_{b} \mathbf{z}(u(b))=\mathbf{d} .
\end{align*}
$$

Moreover, quasilinearization approaches ${ }^{1}$ reduce any first order nonlinear system (1.3) to a sequence of linear differential systems in the form

$$
\begin{align*}
& \mathbf{y}^{\prime}=A(x) \mathbf{y}(x)+\mathbf{q}(x), \\
& B_{a} \mathbf{y}(a)+B_{b} \mathbf{y}(b)=\mathbf{d} \tag{1.5}
\end{align*}
$$

Thus in the next sections, we describe most of the discretization techniques for BVODEs in the linear form (1.4) or (1.5), this allows also a consistent analysis of the well-conditioning of the problem.

1.1 Conditioning in IVPs and BVPs

We discuss the conditioning of linear Initial and Boundary Value Problems for Ordinary Differential Equations in order to begin the numerical approximation.

1.1.1 Well-conditioned problem

We consider Initial Value Problem (IVP) and Boundary Value Problem (BVP) for ODEs, respectively, in the form

$$
\begin{align*}
& \mathbf{y}^{\prime}=A(x) \mathbf{y}(x)+\mathbf{q}(x), \quad a \leq x \leq b, \\
& \mathbf{y}(a)=\mathbf{d}_{a}, \tag{1.6}
\end{align*}
$$

[^0]and
\[

$$
\begin{align*}
& \mathbf{y}^{\prime}=A(x) \mathbf{y}(x)+\mathbf{q}(x), \quad a \leq x \leq b, \\
& B_{a} \mathbf{y}(a)+B_{b} \mathbf{y}(b)=\mathbf{d}, \tag{1.7}
\end{align*}
$$
\]

where $\mathbf{y}:[a, b] \longrightarrow \mathbb{R}^{n}, A(x), B_{a}, B_{b} \in \mathbb{R}^{n \times n}, \mathbf{q}(x), \mathbf{d}, \mathbf{d}_{a} \in \mathbb{R}^{n}$.
Definition 1.1.1. Considered as a BVP or an IVP, a problem is well-conditioned, if 'small' changes in the data produce 'small' changes in the solution and it is ill-conditioned otherwise.

1.1.2 Theoretical solution of a problem

In order to express analytically the solution of an ODE system with initial and boundary conditions, we introduce the basic concept of fundamental solution. We suppose that the functions $A(x)$ and $\mathbf{q}(x)$ in (1.6) are continuous, which guarantees the existence and uniqueness of the solution in $[a, b]$. In fact, the continuity of $A(x)$ and $\mathbf{q}(x)$ yields $\mathbf{f}(x, \mathbf{y}(x))=A(x) \mathbf{y}(x)+\mathbf{q}(x)$ is continuous and satisfies the Lipschitz conditions on \mathbf{y} : given a vector norm $\|$.$\| an M>0$ exists such that for any $\mathbf{y}_{1}, \mathbf{y}_{2} \in \mathbb{R}^{n}, x \in[a, b], i=1, \ldots, n$

$$
\left|f_{i}\left(x, \mathbf{y}_{1}\right)-f_{i}\left(x, \mathbf{y}_{2}\right)\right| \leq M\left\|\mathbf{y}_{1}-\mathbf{y}_{\mathbf{2}}\right\|,
$$

where $\mathbf{f}(x, \mathbf{y})=\left(f_{1}(x, \mathbf{y}), \ldots, f_{n}(x, \mathbf{y})\right)$, hence, see [72], existence and uniqueness of the solution are proved.

Definition 1.1.2. A fundamental solution of problem (1.6) (or (1.7)) is any matrix function $Y(x)$ solution of the homogeneous ODE

$$
\mathbf{y}^{\prime}=A(x) \mathbf{y}
$$

such that, for any $x \in[a, b], Y(x) \in \mathbb{R}^{n \times n}$ has n linear independent columns.
Therefore any fundamental solution $Y(x)$ satisfies $Y^{\prime}(x)=A(x) Y(x)$. If $\Phi(x)$ is another fundamental solution, a constant nonsingular $n \times n$ matrix R exists satisfying $\Phi(x)=Y(x) R$. In particular, if $\Phi(x)$ denotes the unique fundamental solution satisfying $\Phi(a)=I$, then $R=(Y(a))^{-1}$ and $\Phi(x)=e^{\int_{a}^{x} A(s) d s}$. Then in the constant coefficient case $A(x)=A$, we get $\Phi(x)=e^{(x-a) A 2}$.

Definition 1.1.3. A particular solution $\mathbf{y}_{p}(x)$ of problem (1.6) (or (1.7)) satisfies $\mathbf{y}_{p}^{\prime}=A(x) \mathbf{y}_{p}(x)+\mathbf{q}(x), \mathbf{y}_{p}(a)=0$.
${ }^{2} e^{t A}$ with $t \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}$, denotes the matrix exponential $e^{t A}=U D U^{-1}$ where $U=$ $\left[\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{n}}\right]$ is the eigenvector matrix associated to A and

$$
D=\left(\begin{array}{cccc}
e^{\lambda_{1} t} & 0 & \cdots & 0 \\
0 & e^{\lambda_{2} t} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & e^{\lambda_{n} t}
\end{array}\right)
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A.

Proposition 1.1.4. Suppose that $A(x)$ and $\mathbf{q}(x)$ are continuous, the unique solution of the Initial Value Problem (1.6) can be expressed in the form

$$
\mathbf{y}(x)=\Phi(x) \mathbf{d}_{a}+\Phi(x) \int_{a}^{x} \Phi^{-1}(t) \mathbf{q}(t) d t
$$

The existence of the unique solution of the BVP (1.7) is more difficult to obtain. In fact, it is easy to prove that, considering the IVP

$$
\begin{align*}
& \mathbf{w}^{\prime}=A(x) \mathbf{w}+\mathbf{q}(x), \quad a \leq x \leq b \tag{1.8}\\
& \mathbf{w}(a)=\mathbf{s}
\end{align*}
$$

the BVP

$$
\begin{align*}
& \mathbf{w}^{\prime}=A(x) \mathbf{w}+\mathbf{q}(x), \quad a \leq x \leq b, \tag{1.9}\\
& B_{a} \mathbf{w}(a)+B_{b} \mathbf{w}(b)=\mathbf{d}
\end{align*}
$$

admits as many solutions $\mathbf{w}(x)$ as the number of zeros of the equation

$$
\begin{equation*}
B_{a} \mathbf{s}+B_{b} \mathbf{w}(b)=\mathbf{d} \tag{1.10}
\end{equation*}
$$

That is, each solution of the BVP (1.9) is the solution $\mathbf{w}(x)$ of the IVP (1.8) with $\mathbf{s}=\mathbf{w}(a)$ that satisfies (1.10), where B_{a} can be singular. This approach is used in the Shooting methods presented in Section 1.4. We can express the unique solution (if it exists), by means of the following

Proposition 1.1.5. A solution $\mathbf{y}(x)$ of the $B V P(1.7)$ is unique if and only if, given a fundamental solution $Y(x)$ of the BVP, the matrix $Q=B_{a} Y(a)+B_{b} Y(b)$ is nonsingular. Moreover the solution is
$\mathbf{y}(x)=Y(x) Q^{-1}\left(\mathbf{d}-B_{b} Y(b) \int_{a}^{b} Y^{-1}(t) \mathbf{q}(t) d t\right)+Y(x) \int_{a}^{x} Y^{-1}(t) \mathbf{q}(t) d t$.
If $\tilde{\Phi}(x)$ is the fundamental solution such that $B_{a} \tilde{\Phi}(a)+B_{b} \tilde{\Phi}(b)=I$, we have

$$
\begin{equation*}
\mathbf{y}(x)=\tilde{\Phi}(x) \mathbf{d}+\int_{a}^{b} G(x, t) \mathbf{q}(t) d t \tag{1.11}
\end{equation*}
$$

where

$$
G(x, t)=\left\{\begin{array}{cl}
\tilde{\Phi}(x) B_{a} \tilde{\Phi}(a) \tilde{\Phi}^{-1}(t), & t \leq x \\
-\tilde{\Phi}(x) B_{b} \tilde{\Phi}(b) \tilde{\Phi}^{-1}(t), & t>x
\end{array}\right.
$$

If $\Phi(x)$ is the fundamental solution such that $\Phi(a)=I$ and $Q \equiv B_{a} \Phi(a)+B_{b} \Phi(b)$ then

$$
\begin{equation*}
\mathbf{y}(x)=\Phi(x) Q^{-1} \mathbf{d}+\int_{a}^{b} G(x, t) \mathbf{q}(t) d t \tag{1.12}
\end{equation*}
$$

with

$$
G(x, t)=\left\{\begin{array}{cl}
\Phi(x) Q^{-1} B_{a} \Phi(a) \Phi^{-1}(t), & t \leq x \\
-\Phi(x) Q^{-1} B_{b} \Phi(b) \Phi^{-1}(t), & t>x
\end{array}\right.
$$

Let $p \in \mathbb{N}$, $\mathbf{u}:[a, b] \rightarrow \mathbb{R}^{n}$ we define $\|\mathbf{u}\|_{p} \equiv\left(\int_{a}^{b}\|\mathbf{u}(t)\|_{2}^{p} d t\right)^{\frac{1}{p}}$. The equation (1.12) allows us to determine that any solution \mathbf{y} of the BVP (1.7) satisfies

Proposition 1.1.6.

$$
\begin{equation*}
\|\mathbf{y}\|_{\infty} \leq k_{1}\|\mathbf{d}\|_{\infty}+k_{2}\|\mathbf{q}\|_{p} \tag{1.13}
\end{equation*}
$$

where $\frac{1}{p}+\frac{1}{q}=1, k_{1}=\left\|Y(x) Q^{-1}\right\|_{\infty}$ and $k_{2}=\max _{a \leq x \leq b}\|G(x, \cdot)\|_{q}$.
Proof. Given $p, q \in \mathbb{N}$, for the Cauchy-Schwartz inequality we have

$$
\max _{a \leq x \leq b} \int_{a}^{b}\|G(x, t) \mathbf{q}(t)\|_{2} d t \leq \max _{a \leq x \leq b}\|G(x, \cdot)\|_{q}\|\mathbf{q}\|_{p}
$$

then from (1.12),

$$
\|\mathbf{y}\|_{\infty} \leq\left\|Y(x) Q^{-1}\right\|_{\infty}\|\mathbf{d}\|_{\infty}+\|G(x, \cdot)\|_{q}\|\mathbf{q}\|_{p}
$$

This inequality will be used to prove in the next paragraph the well-conditioning of the problem.

1.1.3 Uniform asymptotic stability and dichotomy

In the case of the Initial Value Problem (1.6) we have a well-conditioned problem with $\|\mathbf{q}\|$ limited if and only if the null solution of the homogeneous equation $\mathbf{y}^{\prime}=A(x) \mathbf{y}$ is uniformly asymptotically stable, that is for any $\epsilon>0$ and $x_{0} \in[a, b]$ there exists $\delta=\delta(\epsilon)>0$ such that for all $\mathbf{y}_{\mathbf{0}} \in B_{\delta}=\left\{\mathbf{y} \in \mathbb{R}^{n} \mid\|\mathbf{y}\|<\delta\right\}$ the solution $\mathbf{y}(x)$ of the homogeneous equation, with $\mathbf{y}\left(x_{0}\right)=\mathbf{y}_{\mathbf{0}}$, satisfies $\mathbf{y}(x) \in B_{\epsilon}$ with $x \geq x_{0}$.

In fact, let $\tilde{\mathbf{y}}$ the solution of the perturbed IVP

$$
\begin{aligned}
& \mathbf{z}^{\prime}=(A(x)+\delta A(x)) \mathbf{z}+\mathbf{q}(x)+\delta \mathbf{q}(x) \\
& \mathbf{z}(a)=\mathbf{d}_{a}+\delta \mathbf{d}_{a}
\end{aligned}
$$

with $\delta A(x), \delta \mathbf{q}(x)$ and $\delta \mathbf{d}_{a}$ small perturbations in norm, and let $\mathbf{y}(x)$ be the solution of the non-perturbed IVP, we have that $\mathbf{e}(x)=\tilde{\mathbf{y}}(x)-\mathbf{y}(x)$ satisfies the equation $\mathbf{e}^{\prime}(x)=A(x) \mathbf{e}(x)+\delta \mathbf{q}(x)+\delta A(x) \mathbf{z}(x)$, with $\mathbf{e}(a)=\delta \mathbf{d}_{a}$; thus, for the Proposition 1.1.4, it follows that

$$
\mathbf{e}(x)=\Phi(x) \delta \mathbf{d}_{a}+\int_{a}^{x} \Phi(x) \Phi(t)^{-1}(\delta \mathbf{q}(t)+\delta A(t) \mathbf{z}(t)) d t
$$

Since the null solution is uniformly and asymptotically stable, it can be proven that the norm $\left\|\Phi(x)(\Phi(t))^{-1}\right\|$ tends to zero as $x \rightarrow+\infty$ for all $t \geq a$, see [9]. For example, if $A(x)=A$ is a constant matrix, it implies that $\left\|\Phi(x)(\Phi(t))^{-1}\right\|=$ $\left\|e^{(x-t) A}\right\|$ and if A has eigenvalues λ with $\operatorname{Re}(\lambda)<0$, then $\mathbf{e}(x)$ is bounded by a small perturbation on data and in particular $\mathbf{e}(x) \rightarrow 0$ for $x \rightarrow+\infty$.

Let us consider well-conditioning in the case of BVP (1.7). The exponential dichotomy for a BVP plays the same role of uniform asymptotic stability for an IVP; that is, exponential dichotomy is equivalent to well-conditioning.

Definition 1.1.7. Let $Y(x)$ be a fundamental solution for the ODE $\mathbf{y}^{\prime}=A(x) \mathbf{y}$, with $A(x)$ continuous in $[a, b]$. The ODE has an exponential dichotomy if there exists a constant orthogonal projection matrix P (that is P is an orthogonal matrix and $P^{2}=P$) of rank $p, 0 \leq p \leq n$ and $K, \lambda, \mu>0$ with K not too large such that

$$
\begin{array}{ll}
\left\|Y(x) P Y^{-1}(t)\right\| \leq K e^{-\lambda(x-t)}, & x \geq t \tag{1.14}\\
\left\|Y(x)(I-P) Y^{-1}(t)\right\| \leq K e^{-\mu(t-x)}, & x<t
\end{array}
$$

for any $a \leq x, t \leq b$.
We observe that exponential dichotomy, if exists, it is satisfied for any fundamental solution. This property allows to separate the space of solutions of the homogeneous ODE into two subspaces, one containing the decreasing solutions (decreasing modes) and the other containing the increasing solutions (increasing modes). Indeed, given a fundamental solution $Y(x)$ of the ODE, if

$$
S=\left\{Y(x) \mathbf{c} \mid \mathbf{c} \in \mathbb{R}^{n}\right\}
$$

is the set of the solutions then

$$
S=S_{1}+S_{2}
$$

where

$$
S_{1}=\left\{Y(x) P \mathbf{c} \mid \mathbf{c} \in \mathbb{R}^{n}\right\}
$$

and

$$
S_{2}=\left\{Y(x)(I-P) \mathbf{c} \mid \mathbf{c} \in \mathbb{R}^{n}\right\}
$$

for the exponential dichotomy, it follows that for any $\mathbf{u}(x) \in S_{1}$ and $\mathbf{w}(x) \in S_{2}$ we get ${ }^{3}$

$$
\begin{aligned}
& \frac{\|\mathbf{u}(x)\|}{\|\mathbf{u}(t)\|} \leq K e^{-\lambda(x-t)}, \quad x \geq t \quad(\mathbf{u}(x) \text { is a decreasing mode }) \\
& \frac{\|\mathbf{w}(x)\|}{\|\mathbf{w}(t)\|} \leq K e^{-\mu(t-x)}, \quad x<t \quad(\mathbf{w}(x) \text { is an increasing mode })
\end{aligned}
$$

It is possible determine a fundamental solution with the decreasing modes separated by the increasing modes.

Proposition 1.1.8. If the $O D E$ has an exponential dichotomy with $0 \leq p \leq n$, then there exists a fundamental solution $Z(x)=\left(Z_{1}(x) Z_{2}(x)\right) \in \mathbb{R}^{n \times n}$ of the ODE with $Z_{1}(x) \in \mathbb{R}^{n \times p}$ and $Z_{2}(x) \in \mathbb{R}^{n \times(n-p)}$ such that

$$
\begin{array}{ll}
\left\|Z_{1}(x) P Z_{1}^{-1}(t)\right\| \leq K e^{-\lambda(x-t)}, & x \geq t \\
\left\|Z_{2}(x)(I-P) Z_{2}^{-1}(t)\right\| \leq K e^{-\mu(t-x)}, & x<t
\end{array}
$$

$$
\begin{aligned}
& { }^{3} \text { Since } P^{2}=P \text { we have, } \\
& \frac{\|\mathbf{u}(x)\|}{\|\mathbf{u}(t)\|}=\frac{\|Y(x) P P c\|}{\|Y(t) P c\|}=\frac{\left\|Y(x) P Y^{-1}(t) Y(t) P c\right\|}{\|Y(t) P c\|} \leq\left\|Y(x) P Y^{-1}(t)\right\| \leq K e^{-\lambda(x-t)} .
\end{aligned}
$$

The second inequality follows in a similar manner because $(I-P)^{2}=(I-P)$.
with $P=\left(\begin{array}{cc}0 & 0 \\ 0 & I_{p}\end{array}\right)$ where I_{p} is the $p \times p$ identity matrix.
In the constant coefficient case, $A(x)=A$, we can characterize the exponential dichotomy as a function of the eigenvalues of A.

Proposition 1.1.9. The $O D E \mathbf{y}^{\prime}=A \mathrm{y}$ has an exponential dichotomy if and only if A has eigenvalues with nonnull real parts. Moreover the orthogonal projection $P=\left(\begin{array}{cc}0 & 0 \\ 0 & I_{p}\end{array}\right)$ is of rank p where

$$
p=\operatorname{card}\{\lambda \in \mathbb{C} \mid \operatorname{Re}(\lambda)<0\} \quad \text { and } n-p=\operatorname{card}\{\lambda \in \mathbb{C} \mid \operatorname{Re}(\lambda)>0\} .
$$

Now we prove that, for any BVP, exponential dichotomy of the homogeneous equation implies well-conditioning of the problem.

Theorem 1.1.10. If the homogeneous equation $\mathbf{y}^{\prime}=A(x) \mathbf{y}$ has an exponential dichotomy, then the corresponding BVP (1.7) is well-conditioned.

Proof. Let K be the positive bounded constant used in Definition 1.1.7 concerning the exponential dichotomy and $k_{1}=\left\|Y(x) Q^{-1}\right\|_{\infty}, k_{2}=\max _{a \leq x \leq b}\|G(x, \cdot)\|_{\infty}$ be the constants used in Proposition 1.1.6, for $q=+\infty$. We first prove that

$$
k_{2} \leq K\left(2 k_{1}+1\right) .
$$

For any $x \leq t$, the function $G(x, t)$ and the fundamental solution $\Phi(x)$ in (1.12) satisfy

$$
\begin{aligned}
\|G(x, t)\|= & \left\|\Phi(x) Q^{-1} B_{b} \Phi(b) \Phi^{-1}(t)\right\| \\
\leq & \left\|\Phi(x) Q^{-1} B_{b} \Phi(b) P \Phi^{-1}(t)\right\| \\
& +\left\|\Phi(x) Q^{-1} B_{b} \Phi(b)(I-P) \Phi^{-1}(t)\right\|,
\end{aligned}
$$

where P is the orthogonal projection matrix of rank p. Without any loss of generality, we suppose that $\max \left\{\left\|B_{a}\right\|,\left\|B_{b}\right\|\right\}=1$. Since $Q^{-1} B_{b} \Phi(b)=I-Q^{-1} B_{a} \Phi(a)$ and $\left\|\Phi(x) P \Phi^{-1}(t)\right\| \leq K e^{-\lambda(x-t)}$, it follows that

$$
\begin{aligned}
\|G(x, t)\| & \leq K\left\|\Phi(x) Q^{-1}\right\|\left(\left\|B_{b}\right\| e^{-\lambda(b-t)}+\left\|B_{a}\right\| e^{-\mu(t-a)}\right)+K e^{-\mu(t-x)} \\
& \leq k_{1} K\left(e^{-\lambda(b-t)}+e^{-\mu(t-a)}\right)+K e^{-\mu(t-x)}
\end{aligned}
$$

Alternatively, since $x>t$ then

$$
\|G(x, t)\|_{\infty} \leq k_{1} K\left(e^{-\lambda(b-t)}+e^{-\mu(t-a)}\right)+K e^{-\lambda(x-t)},
$$

then $k_{2}=\max _{a \leq x, t \leq b}\|G(x, t)\|_{\infty} \leq K\left(2 k_{1}+1\right)$. Therefore, for the inequality (1.13) with $q=+\infty$ we get

$$
\|\mathbf{y}\|_{\infty} \leq k_{1}\|\mathbf{d}\|_{\infty}+K\left(2 k_{1}+1\right)\|\mathbf{q}\|_{\infty},
$$

and the BVP is well-conditioned.

Conversely, if we suppose that the BVP is well-conditioned, it has a dichotomy which results from the boundary conditions. For example, in the case of separated boundary conditions

$$
\begin{aligned}
& \mathbf{y}^{\prime}=A(x) \mathbf{y}+\mathbf{q}(x) \\
& B_{a} \mathbf{y}(a)=\mathbf{d}_{a}, B_{b} \mathbf{y}(b)=\mathbf{d}_{b}
\end{aligned}
$$

with $B_{a} \in \mathbb{R}^{p \times n}, B_{b} \in \mathbb{R}^{(n-p) \times n}$ the problem has an exponential dichotomy with an orthogonal projection of rank p.
Definition 1.1.11. Let $C, D \in \mathbb{R}^{m \times m}$, we denote with $\operatorname{rank}[\mathrm{C} \mid \mathrm{D}]$ the rank of the matrix $\left(\begin{array}{cc}C & D\end{array}\right)$ of size $m \times 2 m$.

In the BVP case (1.7), the next proposition is satisfied
Proposition 1.1.12. If $\operatorname{rank}\left[\mathrm{B}_{\mathrm{a}} \mid \mathrm{B}_{\mathrm{b}}\right]=\mathrm{n}$, then there exist $p \in \mathbb{N}, 0 \leq p \leq n$ and a nonsingular matrix S such that $B_{a}=S D_{1} Q_{1}$ and $B_{b}=S D_{2} Q_{2}$, where Q_{1}, Q_{2} are orthogonal matrices, and

$$
D_{1}=\left(\begin{array}{cc}
D_{11} & 0 \\
0 & I_{p}
\end{array}\right), \quad D_{2}=\left(\begin{array}{cc}
I_{n-p} & 0 \\
0 & D_{22}
\end{array}\right)
$$

with $D_{11} \in \mathbb{R}^{(n-p) \times(n-p)}, D_{22} \in \mathbb{R}^{p \times p}$ containing only elements 0 or 1 .
The hypothesis of unique solution of the BVP requires that

$$
\operatorname{rank}\left[\mathrm{B}_{\mathrm{a}} \mid \mathrm{B}_{\mathrm{b}}\right]=\mathrm{n}
$$

In fact, if the BVP (1.7) has a unique solution, from proposition 1.1.5 it follows that $\operatorname{rank}(Q)=n$, and therefore, since $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$, if we $\operatorname{suppose} \operatorname{rank}\left[\mathrm{B}_{\mathrm{a}} \mid \mathrm{B}_{\mathrm{b}}\right]<\mathrm{n}$ we get $\operatorname{rank}\left(\mathrm{B}_{\mathrm{a}}\right)+\operatorname{rank}\left(\mathrm{B}_{\mathrm{b}}\right) \leq \operatorname{rank}\left[\mathrm{B}_{\mathrm{a}} \mid \mathrm{B}_{\mathrm{b}}\right]<\mathrm{n}$ and $n=\operatorname{rank}(\mathrm{Q}) \leq \operatorname{rank}\left(\mathrm{B}_{\mathrm{a}} \mathrm{Y}(\mathrm{a})\right)+\operatorname{rank}\left(\mathrm{B}_{\mathrm{b}} \mathrm{Y}(\mathrm{b})\right)=\operatorname{rank}\left(\mathrm{B}_{\mathrm{a}}\right)+\operatorname{rank}\left(\mathrm{B}_{\mathrm{b}}\right)<\mathrm{n}$.

Theorem 1.1.13. If the BVP (1.7) is well-conditioned and $\operatorname{rank}\left[\mathrm{B}_{\mathrm{a}} \mid \mathrm{B}_{\mathrm{b}}\right]=\mathrm{n}$, then it has an exponential dichotomy with projection matrix of rank p, where p is determined as in the previous Proposition.

As a corollary, we have the following
Proposition 1.1.14. Suppose that the BVP has boundary conditions $B_{\text {top }} y(a)=$ d_{a} and $B_{b o t} y(b)=d_{b}$, where $B_{\text {top }} \in \mathbb{R}^{m \times n}$ and $B_{\text {bot }} \in \mathbb{R}^{(n-m) \times n}$ with $\operatorname{rank}\left(\mathrm{B}_{\mathrm{top}}\right)=$ m and $\operatorname{rank}\left(\mathrm{B}_{\mathrm{bot}}\right)=\mathrm{n}-\mathrm{m}$. Then, well-conditioning implies an exponential dichotomy with rank $p=m$.

Proof. Let $B_{a}=\binom{B_{t o p}}{0}$ and $B_{b}=\binom{0}{B_{b o t}}$; then we have $B_{a} y(a)+$ $B_{b} y(b)=\binom{d_{a}}{d_{b}}$, with $\operatorname{rank}\left[\mathrm{B}_{\mathrm{a}} \mid \mathrm{B}_{\mathrm{b}}\right]=\mathrm{n}$. Therefore, from the previous theorem, the problem has the exponential dichotomy with $\operatorname{rank} p=m$.

1.2 Difference methods

Linear multistep difference schemes

$$
\sum_{l=0}^{k} \alpha_{l} y_{i+l}=h \Phi\left(x_{i} ; y_{i}, \ldots, y_{i+k} ; h\right)
$$

can be used to get high order accuracy in the approximation of solutions of BVODEs. The most popular and simplest methods are the (implicit) Midpoint rule and the Trapezoidal rule which have both highest order (second) in the class of linear onestep difference schemes $[45,58]$. We show that, considering the linear BVODE (1.5) on $[a, b]$, both schemes give BABD systems. Let

$$
\begin{equation*}
\Delta: a=x_{0}<x_{1}<\cdots<x_{N-1}<x_{N}=b \tag{1.15}
\end{equation*}
$$

be a partition of $[a, b]$ with stepsize $h_{i}=x_{i+1}-x_{i}$ and $x_{i+\frac{1}{2}}=\frac{x_{i}+x_{i+1}}{2}$. Using the (implicit) Midpoint rule we have

$$
\mathbf{y}_{i+1}=\mathbf{y}_{i}+h_{i} A\left(x_{i+\frac{1}{2}}\right) \frac{\mathbf{y}_{i}+\mathbf{y}_{i+1}}{2}+h_{i} \mathbf{q}\left(x_{i+\frac{1}{2}}\right), \quad i=0, \ldots, N-1
$$

that is, we obtain

$$
S_{i} \mathbf{y}_{i}+R_{i+1} \mathbf{y}_{i+1}=\mathbf{f}_{i+1}, \quad i=0, \ldots, N-1
$$

with

$$
\begin{aligned}
& S_{i}=-I-\frac{h_{i}}{2} A\left(x_{i+\frac{1}{2}}\right), R_{i+1}=I-\frac{h_{i}}{2} A\left(x_{i+\frac{1}{2}}\right), \quad \text { and } \\
& \mathbf{f}_{i+1}=h_{i} \mathbf{q}\left(x_{i+\frac{1}{2}}\right)
\end{aligned}
$$

Using the trapezoidal rule, we have for $i=0, \ldots, N-1$,

$$
\mathbf{y}_{i+1}=\mathbf{y}_{i}+\frac{h_{i}}{2}\left(A\left(x_{i+1}\right) \mathbf{y}_{i+1}+\mathbf{q}\left(x_{i+1}\right)+A\left(x_{i}\right) \mathbf{y}_{i}+\mathbf{q}\left(x_{i}\right)\right)
$$

that is, we obtain the linear equations

$$
S_{i} \mathbf{y}_{i}+R_{i+1} \mathbf{y}_{i+1}=\mathbf{f}_{i+1}, \quad i=0, \ldots, N-1
$$

with

$$
\begin{aligned}
& S_{i}=-I-\frac{h_{i}}{2} A\left(x_{i}\right), R_{i+1}=I-\frac{h_{i}}{2} A\left(x_{i+1}\right), \quad \text { and } \\
& \mathbf{f}_{i+1}=\frac{h_{i}}{2}\left(\mathbf{q}\left(x_{i+1}\right)+\mathbf{q}\left(x_{i}\right)\right)
\end{aligned}
$$

In both cases, the linear system obtained has the following structure

$$
\left(\begin{array}{ccccc}
B_{a} & & & & B_{b} \\
S_{0} & R_{1} & & & \\
& S_{1} & R_{2} & & \\
& & \ddots & \ddots & \\
& & & S_{N-1} & R_{N}
\end{array}\right)\left(\begin{array}{c}
\mathbf{y}_{0} \\
\mathbf{y}_{1} \\
\vdots \\
\mathbf{y}_{N-1} \\
\mathbf{y}_{N}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{d} \\
\mathbf{f}_{1} \\
\vdots \\
\mathbf{f}_{N}
\end{array}\right)
$$

1.3 The Mono-Implicit Runge Kutta formulae

Runge Kutta schemes, presented in Appendix, have been considered for the numerical solution of IVODE. In particular some recent works have focused on a subclass of implicit RK schemes called Mono Implicit Runge Kutta (MIRK) schemes [23], see [66] for a complete reference, which are also used for the numerical solution of BVODE.

The Mono Implicit Runge Kutta formulae (MIRK) are determined choosing a Runge Kutta scheme with an ulterior coefficient vector $\mathbf{v}:=\left\{v_{r}\right\}_{r=1}^{s}$ and the associated scheme is

$$
\mathbf{y}_{i+1}=\mathbf{y}_{i}+h_{i} \sum_{r=1}^{s} b_{r} K_{i, r},
$$

with the stages

$$
\begin{equation*}
\mathbf{K}_{i, r}=\mathbf{f}\left(t_{i}+c_{r} h_{i},\left(1-v_{r}\right) \mathbf{y}_{i}+v_{r} \mathbf{y}_{i+1}+h_{i} \sum_{j=1}^{r-1} x_{r j} \mathbf{K}_{i, j}\right), \quad r=1, \ldots, s \tag{1.16}
\end{equation*}
$$

Thus, the corresponding Butcher array is

$$
\begin{array}{c|c|c}
\mathbf{c} & \mathbf{v} & \mathbf{X} \tag{1.17}\\
\hline & & \mathbf{b}
\end{array}
$$

In order to describe how BABD systems arise from MIRK formulae, we discuss their application in the code MIRKDC.

1.3.1 The code MIRKDC

The code [34] solves BVPs

$$
\begin{equation*}
\mathbf{y}^{\prime}=\mathbf{f}(t, \mathbf{y}(t)), \quad t \in[a, b] \tag{1.18}
\end{equation*}
$$

where $\mathbf{y} \in \mathbb{R}^{m}$ and $\mathbf{f}: \mathbb{R} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, with separated BCs

$$
\begin{equation*}
\mathbf{g}(\mathbf{y}(a), \mathbf{y}(b))=\binom{\mathbf{g}_{0}(\mathbf{y}(a))}{\mathbf{g}_{1}(\mathbf{y}(b))}=0 \tag{1.19}
\end{equation*}
$$

where $\mathbf{g}: \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}, \mathbf{g}_{0}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m_{0}}, \mathbf{g}_{1}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m_{1}}$ and $m_{0}+m_{1}=m$.
It uses MIRK formulae to discretize (1.18) on a given subdivision $\left\{t_{i}\right\}_{i=0}^{N}$ of $[a, b]$. A continuous solution approximation $\mathbf{u}=\mathbf{u}(t)$ is obtained using a Continuous MIRK (CMIRK) scheme [67], to provide defect control and mesh selection capabilitie, see the Appendix where the scheme MIRK/CMIRK employed in $M I R K D C$ is described in detail.

The MIRK scheme yields the nonlinear system

$$
\mathbf{\Phi}(\mathbf{Y})=0
$$

which is solved using the Newton iteration

$$
\mathbf{Y}^{(q+1)}=\mathbf{Y}^{(q)}+\Delta \mathbf{Y}^{(q)}, \quad q=0,1, \ldots
$$

where

$$
\begin{equation*}
\left[\frac{\partial \mathbf{\Phi}\left(\mathbf{Y}^{(q)}\right)}{\partial \mathbf{Y}}\right] \Delta \mathbf{Y}^{(q)}=-\boldsymbol{\Phi}\left(\mathbf{Y}^{(q)}\right) \tag{1.20}
\end{equation*}
$$

given $\mathbf{Y}^{(0)}$.
If the boundary conditions are separated, the Jacobian matrix in (1.20) has the ABD form

$$
\frac{\partial \Phi\left(\mathbf{Y}^{(q)}\right)}{\partial \mathbf{Y}}=\left(\begin{array}{ccccc}
B_{t o p} & & & & \\
S_{0} & R_{1} & & & \\
& S_{1} & R_{2} & & \\
& & \ddots & \ddots & \\
& & & S_{N-1} & R_{N} \\
& & & & B_{b o t}
\end{array}\right)
$$

with $B_{t o p}=\frac{d \mathbf{g}_{0}\left(\mathbf{y}_{0}^{(q)}\right)}{d \mathbf{y}_{0}}$ and $B_{b o t}=\frac{d \mathbf{g}_{1}\left(\mathbf{y}_{N}^{(q)}\right)}{d \mathbf{y}_{N}}$, on the contrary, if the boundary conditions are non-separated, it has the BABD form

$$
\frac{\partial \Phi\left(\mathbf{Y}^{(q)}\right)}{\partial \mathbf{Y}}=\left(\begin{array}{ccccc}
B_{a} & & & & B_{b} \\
S_{0} & R_{1} & & & \\
& S_{1} & R_{2} & & \\
& & \ddots & \ddots & \\
& & & S_{N-1} & R_{N}
\end{array}\right)
$$

with $B_{a}=\frac{\partial \mathbf{g}\left(\mathbf{y}_{0}^{(q)}, \mathbf{y}_{N}^{(q)}\right)}{\partial \mathbf{y}_{0}}$ and $B_{b}=\frac{\partial \mathbf{g}_{1}\left(\mathbf{y}_{0}^{(q)}, \mathbf{y}_{N}^{(q)}\right)}{\partial \mathbf{y}_{N}}$ and in both cases for $i=0, \ldots, N-$ 1,

$$
S_{i}=-I-h_{i} \sum_{r=1}^{s} b_{r}\left(\frac{\partial \mathbf{K}_{r, i}}{\partial \mathbf{y}_{i}}\right) \quad \text { and } \quad R_{i+1}=I-h_{i} \sum_{r=1}^{s} b_{r}\left(\frac{\partial \mathbf{K}_{r, i}}{\partial \mathbf{y}_{i+1}}\right)
$$

MIRKDC employees COLROW to solve systems (1.20). The paralle version PMIRKDC [68] of the MIRKDC code uses the RSCALE algorithm for solving linear systems (1.20).

1.4 Multiple shooting method

Given a partition (1.15) of the time interval $[a, b]$ of the BVP (1.5), the multiple shooting method solves the BVP using a fundamental solution $Y_{i}(x) \in \mathbb{R}^{m \times m}$ and a particular solution $\mathbf{y}_{p, i}(x) \in \mathbb{R}^{m}$ (see definitions 1.1.2 and 1.1.3) on each
subinterval $\left[x_{i}, x_{i+1}\right]$, for $i=0, \ldots, N-1$. Therefore, $Y_{i}(x)$ and $\mathbf{y}_{p, i}(x)$ satisfy, for any $x \in\left[x_{i}, x_{i+1}\right]$

$$
\begin{aligned}
& Y_{i}^{\prime}=A(x) Y_{i}(x), Y_{i}\left(x_{i}\right)=I, \\
& \mathbf{y}_{p, i}^{\prime}=A(x) \mathbf{y}_{p, i}(x)+\mathbf{q}(x), \mathbf{y}_{p, i}\left(x_{i}\right)=0 .
\end{aligned}
$$

Then, in order to obtain a solution of the BVP (1.5) in $[a, b]$, the method find $\mathbf{s}_{i}=\mathbf{y}\left(x_{i}\right) \in \mathbb{R}^{m}$ such that the solution

$$
\mathbf{y}(x)=Y_{i}(x) \mathbf{s}_{i}+\mathbf{y}_{p, i}(x), \quad x \in\left[x_{i}, x_{i+1}\right],
$$

of the ODE

$$
\mathbf{y}^{\prime}=A(x) \mathbf{y}(x)+\mathbf{q}(x),
$$

satisfies the boundary conditions

$$
B_{a} \mathbf{s}_{0}+B_{b} \mathbf{s}_{N}=\mathbf{d}
$$

and preserves the continuity in the internal points x_{1}, \ldots, x_{N-1}, which means

$$
\mathbf{s}_{i+1}=Y_{i}\left(x_{i+1}\right) \mathbf{s}_{i}+y_{p, i}\left(x_{i+1}\right) .
$$

We obtain the following BABD linear system with $\left\{\mathbf{s}_{i}\right\}_{i=0}^{N}$ as unknowns

$$
\left(\begin{array}{ccccc}
B_{a} & & & & B_{b} \tag{1.21}\\
-Y_{0}\left(x_{1}\right) & I & & & \\
& -Y_{1}\left(x_{2}\right) & I & & \\
& & \ddots & \ddots & \\
& & & -Y_{N-1}\left(x_{N}\right) & I
\end{array}\right)\left(\begin{array}{c}
\mathbf{s}_{0} \\
\mathbf{s}_{1} \\
\vdots \\
\mathbf{s}_{N-1} \\
\mathbf{s}_{N}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{d} \\
\mathbf{f}_{1} \\
\vdots \\
\mathbf{f}_{N}
\end{array}\right)
$$

with $\mathbf{f}_{i+1}:=\mathbf{y}_{p, i}\left(x_{i+1}\right)$, for $i=0, \ldots, N-1$.
From the properties of fundamental solutions presented in Section 1.1.2, we obtain, in the constant coefficient case $A(x)=A$,

$$
Y_{i}(x)=e^{\left(x-x_{i}\right) A} .
$$

Hence, if $h_{i}=x_{i+1}-x_{i}$ is constant through the partition, a constant lower diagonal appears in (1.21) with

$$
Y_{i}\left(x_{i+1}\right)=e^{h_{i} A}, \quad i=0, \ldots, N-1 .
$$

1.5 Splines

The approximation of a function $u(x)$, in a finite interval $[a, b]$, by an interpolating polynomial $p(x)$, gives an approximation error $\|u-p\|$, which can be controlled
by choosing the degree of the approximating polynomial sufficiently large and particular interpolating nodes, see [39]. In this case, the approximating function is generated by a polynomial basis.

Another way to approximate $u(x)$ is to use a function generated by a spline function basis. We start by considering the partition $\Delta=\left\{x_{i}\right\}_{i=0}^{N}$ in (1.15), upon the interval of approximation $[a, b]$ and by using low-degree polynomials on each subinterval $\left[x_{i}, x_{i+1}\right]$, called splines. Let $\mathbb{S}_{\Delta}^{k+m, m-1}$, also briefly denoted as \mathbb{S}_{Δ}, be the set of \mathcal{C}^{m-1} splines of order $k+m$, see appendix, defined on partition Δ

$$
\mathbb{S}_{\Delta}^{k+m, m-1}:=\left\{s(x) \in \mathcal{C}^{m-1}[a, b]:\left.s(x)\right|_{\left[x_{i}, x_{i+1}\right]} \in \mathcal{P}_{k+m}, i=0, \ldots, N-1\right\}
$$

we find, in the approximation using splines, a function $s(x) \in \mathbb{S}_{\Delta}$ which reduces the approximation error $\|u-s\|$ by decreasing the fineness h of the partition Δ where

$$
\begin{align*}
h & :=\max _{i=0, \ldots, N-1} h_{i} \tag{1.22}\\
h_{i} & :=x_{i+1}-x_{i}, i=0, \ldots, N-1
\end{align*}
$$

The expression of the approximation error depends on the choice of the spline basis. Splines, as piecewise polynomials, permit us to approximate a function with varying behavior over its domain, better than using a single polynomial. Moreover, since splines $s(x)$ have a certain number of continuous derivatives in $[a, b]$ (i.e. $m-1$, for $s(x) \in \mathbb{S}_{\Delta}$), this choice is preferable to other less smooth piecewise polynomials in the solution of Boundary Value Problems for ODEs of order m. We note that the dimension of \mathbb{S}_{Δ} is $k N+m$ [18], because the set of the piecewise polynomials, see appendix, $\mathcal{P}_{k+m, \Delta}$ (of order $k+m$) is of dimension $(k+m) N$ and we impose $m(N-1)$ continuity conditions on the internal points x_{1}, \ldots, x_{N-1}.

1.6 Spline collocation at Gaussian points

Collocation is a technique for approximating a function $u(x)$ on an interval $[a, b]$, where $u(x)$ is given (implicitly) as the solution of a general m th ordinary linear differential equation (1.4) with m non-separated boundary conditions.

It is assumed that, a sufficiently smooth, unique solution $u(x)$ exists and satisfies for some $c>0$

$$
\max _{a \leq x \leq b}\left|D^{i} u(x)\right| \leq c, \quad i=0, \ldots, m
$$

Spline collocation, applied to (1.4), determines a spline approximation $u_{\Delta}(x) \in$ $\mathbb{S}_{\Delta}^{k+m, m-1}$ to the exact solution $u(x)$ on the given mesh Δ, defined in (1.15), which satisfies the boundary conditions and the differential equation (1.4) on the given $k N$ interior collocation points

$$
\left\{\xi_{i, j}\right\}_{1 \leq i \leq N,} 1 \leq j \leq k
$$

That is, $u_{\Delta}(x)$ satisfies the collocation equations

$$
\begin{equation*}
L\left(u_{\Delta}\right)\left(\xi_{i, j}\right)=f\left(\xi_{i, j}\right), \quad 1 \leq i \leq N \text { and } 1 \leq j \leq k \tag{1.23}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{a} \mathbf{z}\left(u_{\Delta}(a)\right)+B_{b} \mathbf{z}\left(u_{\Delta}(b)\right)=\mathbf{d} \tag{1.24}
\end{equation*}
$$

We choose the collocation equally distributed in each subinterval with k points per subinterval, that is, given

$$
\begin{equation*}
0 \leq \rho_{1}<\cdots<\rho_{k} \leq 1 \tag{1.25}
\end{equation*}
$$

we set the collocation points

$$
\begin{equation*}
\xi_{i, j}=x_{i-1}+\rho_{j}\left(x_{i}-x_{i-1}\right), \quad 1 \leq i \leq N \text { and } 1 \leq j \leq k \tag{1.26}
\end{equation*}
$$

We note that usually k is chosen such that $k \geq m$, see the examples in [10]. As proved in [19] and mentioned in [10, 18], if $\left\{\rho_{j}\right\}_{j=1}^{k}$ are chosen such that any polynomial $p(x) \in \mathcal{P}_{n}$, with $m \leq n \leq k$, satisfies

$$
\begin{equation*}
\int_{0}^{1} p(x) \prod_{j=1}^{k}\left(x-\rho_{j}\right) d x=0 \tag{1.27}
\end{equation*}
$$

then $D^{i} u_{\Delta}(x)$ approximates $D^{i} u(x)$ to optimal order

$$
\left\|D^{i}\left(u-u_{\Delta}\right)\right\| \leq c h^{k+m-i}, \quad 0 \leq i \leq m
$$

and the approximation is of order better than optimal order (super-convergent)

$$
\left|D^{i}\left(u-u_{\Delta}\right)\left(x_{j}\right)\right| \leq c h^{k+n}, \quad 0 \leq i \leq m-1 \text { and } 0 \leq j \leq N
$$

at the mesh points x_{j}, where h is the fineness of the partition Δ, defined in (1.22). Note that the zeros $\left\{\rho_{i}\right\}_{i=1, \ldots, k}$ of the k th orthogonal polynomial in $[0,1]$, i.e. the k th Legendre polynomial, called Gaussian points, satisfy the orthogonality relation (1.27). Thus, if we choose $n=k$ and an orthogonal polynomial $p_{n}(x)$ in (1.27), we obtain the maximum order of convergence

$$
\left|D^{i}\left(u-u_{\Delta}\right)\left(x_{j}\right)\right| \leq c h^{2 k}, \quad 0 \leq i \leq m-1 \text { and } 0 \leq j \leq N
$$

1.7 B-spline and monomial spline collocation

We derive the BABD structures which arise from spline collocation using a Bspline basis and a monomial spline basis, applied to the differential equation of order m on $[a, b]$ with non-separated boundary conditions (1.4). Given k Gaussian points (1.25), this approximation is defined by requiring:
(C1) $u_{\Delta}(x)$ is a polynomial of order $k+m$,
(C2) $u_{\Delta}(x) \in \mathcal{C}^{m-1}[a, b]$,
(C3) $u_{\Delta}(x)$ satisfies (1.23) at the $k N$ collocation points (1.26),
(C4) $u_{\Delta}(x)$ satisfies the m boundary conditions (1.24).
Depending on the choice of the spline basis, these conditions impose a linear system of particular dimension and structure in the coefficients α_{l}, where $u_{\Delta}(x)=$ $\sum \alpha_{l} \Phi_{l}(x)$ and the $\Phi_{l}(x)$ are basis functions.

1.7.1 B-splines

The choice of B-splines satisfies the demand to construct a basis for \mathbb{S}_{Δ} with the smallest possible support [65]. This is effective in approximation problems as surface fitting and curve design [18]. A possible basis $\left\{\Phi_{i, j}(x)\right\}$ has the truncation power functions [18, 65],

$$
\Phi_{i, j}(x):=\left(x-x_{i-1}\right)_{+}^{j}, \quad i=1, \ldots, N \text { and } j=\mu_{i}, \ldots, k+m-1
$$

where

$$
\mu_{i}= \begin{cases}0 & \text { if } i=1 \\ m & \text { elsewhere }\end{cases}
$$

Each $\Phi_{i, j}(x)$ has support $\left[x_{i-1},+\infty\left[\right.\right.$. The B-spline basis $\left\{B_{l}(x)\right\}_{l=1}^{k N+m}$ of \mathbb{S}_{Δ} derives from the truncation power basis

$$
B_{l}(x):=\left(t_{l+k+m}-t_{l}\right)\left[t_{l}, t_{l+1}, \ldots, t_{l+k+m}\right](\cdot-x)_{+}^{k+m-1}, l=1, \ldots, k N+m
$$

see Appendix, where $(\cdot-x)_{+}^{k+m-1}$ is a function f such that $f(y)=(y-x)_{+}^{k+m-1}$; $\left\{t_{l}\right\}_{l=1}^{(k N+m)+k+m}$ is a nondecreasing sequence which contains $(k+m)$ times $x_{0}=$ $a, x_{N}=b$, and k times each interior point x_{1}, \ldots, x_{N-1}. This means

$$
t_{l}:= \begin{cases}x_{0} & \text { if } l=1, \ldots, k+m \\ x_{j} & \text { if } l=j k+m+1, \ldots,(j+1) k+m, \text { for } j=1, \ldots, N-1 \\ x_{N} & \text { if } l=k N+m+1, \ldots,(k+1) N+2 m\end{cases}
$$

We note that $B_{l}(x)$ has small support, $\operatorname{supp}\left(B_{l}\right)=\left[t_{l}, t_{k+m+l}\right]$. Indeed, since the function $(\cdot-x)_{+}^{k+m-1}$ is a polynomial of order $k+m$, using a property of the $(k+m)$ th divided difference, we have

$$
\left[t_{l}, t_{l+1}, \ldots, t_{l+k+m}\right](\cdot-x)_{+}^{k+m-1}=0
$$

It follows that in each interval $\left[t_{l}, t_{l+1}\right]$, for $l=1, \ldots, N$, only $k+m$ B-splines $\left\{B_{i}(x)\right\}_{i=l-(k+m)+1}^{l}$ might be nonzero, which implies that in each interval $\left[x_{i}, x_{i+1}\right]$ only $k+m$ B-splines might be nonzero. Thus, let $u_{\Delta}(x) \in \mathbb{S}_{\Delta}$, then there exists some $\left\{y_{l}\right\}_{l=1}^{k N+m}$ [18] such that for any $i=1, \ldots, N$

$$
\begin{equation*}
u_{\Delta}(x)=\sum_{l=(i-1) k+1}^{i k+m} y_{l} B_{l}(x), \quad x \in\left[x_{i-1}, x_{i}\right] . \tag{1.28}
\end{equation*}
$$

Concerning the collocation, since the spline space has dimension $k N+m$ and each combination

$$
\begin{equation*}
u_{\Delta}(x)=\sum_{l=1}^{k N+m} y_{l} B_{l}(x), \quad x \in[a, b] \tag{1.29}
\end{equation*}
$$

satisfies implicitly the continuity conditions (C2) in $[a, b]$, then each spline $u_{\Delta}(x)$ has $k N+m$ free parameters which can be determined by imposing the conditions (C3)-(C4). As shown in [18, 19], the equations associated to the conditions (C3)-(C4) can be solved using a Newton's iteration, which determines a sequence $\left\{u_{r, \Delta}(x)\right\}$ with

$$
u_{r, \Delta}(x)=\sum_{l=1}^{k N+m} y_{r, l} B_{l}(x)
$$

that converges to the solution $u_{\Delta}(x)$, for an initial guess $u_{0, \Delta}(x)$ sufficiently close to $u_{\Delta}(x)$. The Newton iteration is

$$
\begin{align*}
& L\left(u_{r+1, \Delta}\right)\left(\xi_{i, j}\right)=f\left(\xi_{i, j}\right)-\sum_{l=1}^{m} c_{l}(x) D^{l-1} u_{r, \Delta}(x), \tag{1.30}\\
& B_{a} \mathbf{z}\left(u_{r+1, \Delta}(a)\right)+B_{b} \mathbf{z}\left(u_{r+1, \Delta}(b)\right)=\mathbf{d},
\end{align*}
$$

where $i=1, \ldots, N$ and $j=1, \ldots, k$. An efficient implementation of B-splines in the collocation code $C O L S Y S$, described in [5, 8], imposes directly the conditions (C3)-(C4) on (1.29), that yields

$$
\begin{align*}
& L\left(u_{\Delta}\right)\left(\xi_{i, j}\right)=\sum_{l=1}^{k N+m} y_{l} L\left(B_{l}\right)\left(\xi_{i, j}\right)=f\left(\xi_{i, j}\right), \quad 1 \leq j \leq k \text { and } 1 \leq i \leq N \\
& B_{a} \mathbf{z}\left(u_{\Delta}(a)\right)+B_{b} \mathbf{z}\left(u_{\Delta}(b)\right)=\mathbf{d} \tag{1.31}
\end{align*}
$$

Both the equations (1.30) and (1.31) correspond to a BABD linear system

$$
A \mathbf{y}=\mathbf{f}
$$

with the structure

$$
A=\left(\begin{array}{cccccccc}
D_{a} & & & & & & & D_{b} \tag{1.32}\\
W_{1,1} & W_{1,2} & W_{1,3} & & & & & \\
& & W_{2,1} & W_{2,2} & W_{2,3} & & & \\
& & & & \ddots & & & \\
& & & & & W_{N, 1} & W_{N, 2} & W_{N, 3}
\end{array}\right)
$$

where for any $i=1, \ldots, N$, the i th row block

$$
V_{i}=\left(W_{i, 1} W_{i, 2} W_{i, 3}\right)
$$

is of size $k \times(k+m)$, with $W_{i, 1}, W_{i, 3} \in \mathbb{R}^{k \times m}$ and $W_{i, 2} \in \mathbb{R}^{k \times(k-m)}$. The i th row block corresponds to the k collocation equations (1.31) in $\xi_{i, j} \in\left[x_{i-1}, x_{i}\right]$, $j=1, \ldots, k$. Since, $\left.u_{\Delta}(x)\right|_{\left[x_{i-1}, x_{i}\right]}$ depends only on the $k+m$ coefficients $\left\{y_{l}\right\}_{l=(i-1) k+1}^{i k+m}$, see (1.28), and the corresponding row block equation is

$$
W_{i, 1} \mathbf{z}_{i, 1}+W_{i, 2} \mathbf{z}_{i, 2}+W_{i, 3} \mathbf{z}_{i+1,1}=\mathbf{f}_{i}
$$

for $i=1, \ldots, N$, where

$$
\begin{aligned}
& \mathbf{z}_{i, 1}^{T}=\left(y_{(i-1) k+1}, \ldots, y_{(i-1) k+m}\right)^{T} \in \mathbb{R}^{m} \\
& \mathbf{z}_{i, 2}^{T}=\left(y_{(i-1) k+m+1}, \ldots, y_{i k}\right)^{T} \in \mathbb{R}^{k-m}
\end{aligned}
$$

and

$$
\mathbf{f}^{T}=\left(\mathbf{d}, \mathbf{f}_{1}^{T}, \ldots, \mathbf{f}_{N}^{T}\right)^{T}
$$

with $\mathbf{f}_{i}^{T}=\left(f\left(\xi_{i, 1}\right), f\left(\xi_{i, 2}\right), \ldots, f\left(\xi_{i, k}\right)\right)$. In COLSYS, this results in

$$
\begin{gathered}
W_{i, 1}:=\left(W_{i, 1}^{j, r}\right)_{1 \leq j \leq k, 1 \leq r \leq m}, \quad W_{i, 2}:=\left(W_{i, 2}^{j, r}\right)_{1 \leq j \leq k, 1 \leq r \leq k-m} \\
\text { and } W_{i, 3}:=\left(W_{i, 3}^{j, r}\right)_{1 \leq j \leq k, 1 \leq r \leq m}
\end{gathered}
$$

where for any $j=1, \ldots, k$ and $r=1, \ldots, m$,

$$
W_{i, 1}^{j, r}=L\left(B_{(i-1) k+r}\right)\left(\xi_{i, j}\right), \quad W_{i, 3}^{j, r}=L\left(B_{i k+r}\right)\left(\xi_{i, j}\right)
$$

and for any $j=1, \ldots, k$ and $r=1, \ldots, k-m$,

$$
W_{i, 2}^{j, r}=L\left(B_{(i-1) k+m+r}\right)\left(\xi_{i, j}\right)
$$

Therefore, $W_{i, 3}$ overlaps exactly the columns of $W_{i+1,1}$ corresponding to the unknowns $\mathbf{z}_{i+1,1}$. The blocks D_{a} and D_{b} in (1.32) correspond to the boundary conditions in (1.31),

$$
D_{a}=B_{a}\left(\begin{array}{ccc}
B_{1}(a) & \cdots & B_{k+m}(a) \\
D B_{1}(a) & \cdots & D B_{k+m}(a) \\
\vdots & & \vdots \\
D^{m-1} B_{1}(a) & \cdots & D^{m-1} B_{k+m}(a)
\end{array}\right)
$$

and

$$
D_{b}=B_{b}\left(\begin{array}{ccc}
B_{(k-1) N+1}(b) & \cdots & B_{k N+m}(b) \\
D B_{(k-1) N+1}(b) & \cdots & D B_{k N+m}(b) \\
\vdots & & \vdots \\
D^{m-1} B_{(k-1) N+1}(b) & \cdots & D^{m-1} B_{k N+m}(b)
\end{array}\right)
$$

1.7.2 Monomial splines

Until the 1980s, the most popular approach in spline collocation was to use a Bspline basis, anyway recently in [10], it has been shown that the B-spline basis is inferior, in the computational cost and conditioning, with respect to a monomial basis when low continuity piecewise polynomials are used. We determine a monomial spline basis for the set \mathbb{S}_{Δ} using a monomial basis of the piecewise polynomials set \mathcal{P}_{k+m}. A monomial basis for \mathcal{P}_{k+m} has $(k+m) N$ polynomials

$$
\left\{\Phi_{j}\left(x-x_{i-1}\right)\right\}_{1 \leq i \leq N, 1 \leq j \leq m}, \quad\left\{h_{i}^{m} \Psi_{j}\left(\frac{x-x_{i-1}}{h_{i}}\right)\right\}_{1 \leq i \leq N, 1 \leq j \leq k}
$$

each with support over only one subinterval $\left[x_{i-1}, x_{i}\right]$ with amplitude $h_{i}:=x_{i}-$ $x_{i-1}, i=1, \ldots, N$. The first m polynomials are monomials locally

$$
\Phi_{j}\left(x-x_{i-1}\right)=\frac{\left(x-x_{i-1}\right)^{j-1}}{(j-1)!}, \quad i=1, \ldots, N \text { and } j=1, \ldots, m,
$$

with each $\Phi_{j}(x)$ defined on $[0,1]$. The other k polynomials $\left\{\Psi_{j}(x)\right\}_{j=1}^{k}$ are chosen to satisfy the conditions

- $\Psi_{j}(x)$ is a polynomial of order $k+m$ defined on $[0,1]$,
- $\frac{d \Psi_{j}^{l-1}}{d x^{l-1}}(0)=0, \quad l=1, \ldots, m$ and $j=1, \ldots, k$.

One choice is to use monomials

$$
\begin{equation*}
\Psi_{j}(x)=\frac{x^{m+j-1}}{(m+j-1)!}, \quad j=1, \ldots, k . \tag{1.33}
\end{equation*}
$$

Other choices can define completely $\left\{\Psi_{j}(x)\right\}_{j=1}^{k}$, by specifying the other k conditions, for example,

$$
\frac{d^{m} \Psi_{j}\left(\rho_{r}\right)}{d x^{m}}=\delta_{j, r} \quad r=1, \ldots, k,
$$

where $\delta_{j, r}$ is the Kronecker delta. This last choice, used in [70], yields a collocation scheme that is equivalent to using an implicit Runge Kutta method [12]. Its benefits over the choice (1.33) have been shown in [9]. To construct the corresponding monomial basis of \mathbb{S}_{Δ}, we impose m continuity conditions on each internal x_{i}, for $i=1, \ldots, N-1$. Thus, let $u_{\Delta}(x) \in \mathbb{S}_{\Delta}$, then there exists some $\left\{z_{i, j}\right\}_{1 \leq i \leq N, 1 \leq j \leq m}$ and $\left\{w_{i, j}\right\}_{1 \leq i \leq N, 1 \leq j \leq k}$ such that for any $x \in\left[x_{i-1}, x_{i}\right]$, $i=1, \ldots, N$, we get $u_{\Delta}(x)=u_{i, \Delta}(x)$ where

$$
\begin{equation*}
u_{i, \Delta}(x):=\sum_{j=1}^{m} z_{i, j} \Phi_{j}\left(x-x_{i-1}\right)+h_{i}^{m} \sum_{j=1}^{k} w_{i, j} \Psi_{j}\left(\frac{x-x_{i-1}}{h_{i}}\right), \tag{1.34}
\end{equation*}
$$

and where $\left\{z_{i, j}\right\}_{1 \leq i \leq N, 1 \leq j \leq m}$ and $\left\{w_{i, j}\right\}_{1 \leq i \leq N, 1 \leq j \leq k}$ are chosen such that the $m(N-1)$ continuity conditions

$$
\begin{equation*}
\frac{d^{l-1} u_{i, \Delta}}{d x^{l-1}}\left(x_{i}\right)=\frac{d^{l-1} u_{i+1, \Delta}}{d x^{l-1}}\left(x_{i}\right), \quad i=1, \ldots, N-1 \text { and } l=1, \ldots, m \tag{1.35}
\end{equation*}
$$

are satisfied. This yields

$$
z_{i, r}=D^{r-1} u_{\Delta}\left(x_{i-1}\right), \quad i=2, \ldots, N \text { and } r=1, \ldots, m
$$

The remaining

$$
(k+m) N-m(N-1)=k N+m
$$

free parameters in the representation (1.34) are determined by imposing on $u_{\Delta}(x)$ the conditions (C3)-(C4). To obtain a linear system with BABD structure, we choose m new variables

$$
z_{N+1, r}:=D^{r-1} u_{\Delta}\left(x_{N}\right), \quad r=1, \ldots, m
$$

Thus, the boundary conditions (C 4) are equivalent to

$$
\begin{equation*}
B_{a} \mathbf{z}_{1}+B_{b} \mathbf{z}_{N+1}=\mathbf{d} \tag{1.36}
\end{equation*}
$$

and the $k N$ collocation conditions (C3) on the points $\xi_{i, j}$ are equivalent to

$$
H_{i} \mathbf{z}_{i}+G_{i} \mathbf{w}_{i}=\mathbf{f}_{i}
$$

where $H_{i}=\left(H_{i}^{j, r}\right), G_{i}=\left(G_{i}^{j, r}\right)$ with

$$
\begin{array}{ll}
H_{i}^{j, r}=L\left(\Phi_{r}\right)\left(h_{i} \rho_{j}\right), & j=1, \ldots, k \text { and } \quad r=1, \ldots, m \\
G_{i}^{j, r}=h_{i}^{m} L\left(\Psi_{r}\right)\left(\rho_{j}\right), \quad j=1, \ldots, k \text { and } \quad r=1, \ldots, k
\end{array}
$$

and

$$
\begin{gathered}
\mathbf{f}_{i}^{T}=\left(f\left(\xi_{i, 1}\right), \ldots, f\left(\xi_{i, k}\right)\right)^{T} \\
\mathbf{z}_{i}^{T}=\left(z_{i, 1}, \ldots, z_{i, m}\right)^{T} \\
\mathbf{w}_{i}^{T}=\left(w_{i, 1}, \ldots, w_{i, k}\right)^{T}
\end{gathered}
$$

The $(N-1) m$ continuity equations (1.35) are equivalent to

$$
-E_{i} \mathbf{z}_{i}-F_{i} \mathbf{y}_{i}+\mathbf{z}_{i+1}=0, \quad i=1, \ldots, N
$$

For the definition of \mathbf{z}_{N+1} we have

$$
-E_{N} \mathbf{z}_{N}-F_{N} \mathbf{y}_{N}+\mathbf{z}_{N+1}=0
$$

where $E_{i}=\left(E_{i}^{j, r}\right), F_{i}=\left(F_{i}^{j, r}\right)$ with

$$
\begin{array}{lll}
E_{i}^{j, r}=D^{j-1} \Phi_{r}\left(h_{i}\right)=\frac{h_{i}^{r-j}}{(r-j)!}, & j=1, \ldots, m \text { and } & r=1, \ldots, m \\
F_{i}^{j, r}=h_{i}^{m+1-j} D^{j-1} \Psi_{r}(1), & j=1, \ldots, m \text { and } & r=1, \ldots, k .
\end{array}
$$

Note that E_{i} is an upper triangular matrix. The resulting BABD linear system has the structure

$$
\left(\begin{array}{ccccccc}
B_{a} & & & & & & B_{b} \tag{1.37}\\
H_{1} & G_{1} & & & & & \\
-E_{1} & -F_{1} & I & & & & \\
& & & & & & \\
& & \ddots & \ddots & \ddots & & \\
& & & & & & \\
& & & & H_{N} & G_{N} & \\
& & & & -E_{N} & -F_{N} & I
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{1} \\
\mathbf{w}_{1} \\
\mathbf{z}_{2} \\
\vdots \\
\vdots \\
\mathbf{z}_{N} \\
\mathbf{w}_{N} \\
\mathbf{z}_{N+1}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{d} \\
\mathbf{f}_{1} \\
0 \\
\vdots \\
\mathbf{f}_{N} \\
0
\end{array}\right)
$$

with the i th row block

$$
V_{i}=\left(\begin{array}{ccc}
H_{i} & G_{i} & \\
-E_{i} & -F_{i} & I
\end{array}\right)
$$

Chapter 2

Algorithms for ABD and BABD systems

We discuss the most important numerical techniques for solving ABD systems and BABD systems. We consider ABD and BABD coefficient matrices in the form shown in Figure 2 and 3, respectively, except in paragraph 2.5.1. We measure and compare the computational cost of these techniques in terms of the total number of flops, where each flop represents one of the four arithmetic floating point operations.

Most of the algorithms are effective and stable only for the solution of ABD systems, because the effect of the right-upper block in the BABD structures could result in instability, high computational cost and fill-in. For this reason, codes, like SOLVEBLOK, COLROW and ABDPACK are written for solving only ABD linear systems. Since there were no stable serial available algorithms designed specifically for BABD systems, we transform BABD systems into equivalent ABD systems, see Section 2.2, which can be solved stably with a stable existing ABD solver.

Instability for BABD systems can arise for techniques based on LU factorization, as results in the following example.

2.1 The Wright example

The Wright example [77] shows how a simple well conditioned BABD matrix

$$
\bar{A}=\left(\begin{array}{ccccc}
I & & & & I \tag{2.1}\\
-C & I & & & \\
& -C & I & & \\
& & \ddots & \ddots & \\
& & & -C & I
\end{array}\right),
$$

may give rise to instability when it is factored by means of the LU factorization
with row partial pivoting. If all the elements of C have modulus less than 1 then no permutation is ever performed in the partial pivoting algorithm and the right-upper corner block implies fill-in in the last block column of the matrix U, with elements C, C^{2}, C^{3}, \ldots

$$
L=\left(\begin{array}{ccccc}
I & & & & \tag{2.2}\\
-C & I & & & \\
& -C & I & & \\
& & \ddots & \ddots & \\
& & & -C & I
\end{array}\right) \quad U=\left(\begin{array}{ccccc}
I & & & & I \\
& I & & & C \\
& & \ddots & & \vdots \\
& & & I & C^{N-1} \\
& & & & I+C^{N}
\end{array}\right)
$$

The resulting fill-in is of size $N m^{2}$. If at least one of the eigenvalues of C has modulus greater than 1 , then there is an exponential growth in the elements of the last block column of U, and the solution becomes incorrect even if a moderate number of meshpoints $(N+1)$ is used.

As an example, the matrix (2.1) can arise from the numerical solution of the well conditioned BVODE with non-separated BCs

$$
\begin{align*}
& y^{\prime}(x)=A y(x)+r(x), \quad x \in[0,60] \\
& y(0)+y(60)=\eta \tag{2.3}\\
& A=\left(\begin{array}{rr}
-\frac{1}{6} & 1 \\
1 & -\frac{1}{6}
\end{array}\right),
\end{align*}
$$

by means of multiple shooting, discussed in Section 1.4. Hence, C becomes the fundamental solution $e^{h A}$, see Section 1.1.2, where h is the stepsize of each of N subintervals used to discretize the ODE problem. Also, the matrix \bar{A} has a condition number in the infinity norm $\operatorname{cond}_{\infty}(\bar{A})$ which satisfies

$$
\begin{equation*}
\operatorname{cond}_{\infty}(\bar{A}) \leq\left(\left\|e^{h A}\right\|+1\right)(1+N) \tag{2.4}
\end{equation*}
$$

If $h=0.3\left(\right.$ and $\left.N=\frac{60}{h}=200\right)$ then

$$
C=e^{h A}=\left(\begin{array}{ll}
0.99436 & 0.28967 \\
0.28967 & 0.99436
\end{array}\right)
$$

and matrix \bar{A} in (2.1) is well conditioned because the bound in (2.4) is equal to 459. Since the elements of C have modulus less than 1, the LU factorization with row partial pivoting in (2.2) is obtained. We note that A in (2.3) has eigenvalues $\lambda_{1}=-\frac{7}{6}, \lambda_{2}=\frac{5}{6}$ with respectively eigenvectors $\mathbf{v}_{1}=\binom{0.7071}{-0.7071}$ and $\mathbf{v}_{2}=$ $\binom{0.7071}{0.7071}$. Therefore, C has eigenvalues $e^{h \lambda_{1}}=0.7047$, and $e^{h \lambda_{2}}=1.284$.

Since one of the eigenvalues is greater than 1, the LU factorization becomes an unstable procedure. In fact, we note that the elements of C^{N} are very large

$$
\begin{gathered}
C^{N}=V\left(\begin{array}{cc}
e^{h \lambda_{1} N} & \\
& e^{h \lambda_{2} N}
\end{array}\right) V^{T}=V\left(\begin{array}{cc}
4 \cdot 10^{-31} & \\
=10^{21}\left(\begin{array}{cc}
-2.6 & 2.6 \\
-2.6 & 2.6
\end{array}\right)
\end{array}, V^{T}\right.
\end{gathered}
$$

where V is the matrix $\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right)$ having the eigenvectors of A as columns.
The same drawback appears when (2.3) is approximated by means of the trapezoidal rule, thus obtaining a BABD coefficient matrix (2.1) with $C=(I-h A / 2)^{-1}(I+$ $h A / 2)$.

For this reason, Garrett and Gladwell in [38] suggest solving BABD systems by means of an orthogonal factorization, thus obtaining a stable factorization but with a larger computational cost and memory requirement. In fact, $Q R$ is much more expensive than LU factorization and, in addition, since this algorithm is not specifically designed for BABD matrices, it implies fill-in on the last block column and on a further upper diagonal of the matrix R of the factorization. In such a case, a block scaling of the coefficient matrix (in order to obtain some blocks equal to the identity) before computing the QR factorization, reduces the number of operations but may be dangerous if performed on ill conditioned blocks.

2.2 Rewriting a BABD system as an ABD system

The techniques, that will be described in this chapter, except for RSCALE presented in Section 2.6, have been designed for solving ABD linear systems directly. However, they can be also used for BABD systems by rewriting them as ABD systems of approximately twice the size. Thus, if we use a stable ABD algorithm, it is possible to solve a BABD linear system through the solution of an equivalent ABD linear system.

This transformation is based on a BVODE technique, cited in [11], that converts nonseparated boundary conditions into separated form. In fact, we start by supposing that the BABD linear system (in Figure 3) arises from the discretization of a nonlinear BVP

$$
\begin{align*}
& \mathbf{y}^{\prime}=\mathbf{f}(x, \mathbf{y}(x)), \quad x \in[a, b], \tag{2.5}\\
& D_{a} \mathbf{y}(a)+D_{b} \mathbf{y}(b)=\mathbf{d} .
\end{align*}
$$

We add trivial differential equation with associated initial condition:

$$
\begin{equation*}
\mathbf{z}^{\prime}=\mathbf{0}, \quad \mathbf{z}(a)=\mathbf{y}(a) \tag{2.6}
\end{equation*}
$$

Let $\Delta=\left\{x_{i}\right\}_{i=0}^{N}$ be the partition (1.15) of $[a, b]$ associated with (2.5), and $x_{0}:=a$, we get from (2.6)

$$
\begin{aligned}
& \mathbf{z}\left(x_{i}\right)-\mathbf{z}\left(x_{i-1}\right)=0, \quad i=1, \ldots, N-1 \\
& \mathbf{z}\left(x_{0}\right)=\mathbf{y}\left(x_{0}\right)
\end{aligned}
$$

Then, from $\mathbf{z}_{i}:=\mathbf{z}\left(x_{i}\right)$ the boundary conditions $D_{a} \mathbf{y}_{0}+D_{b} \mathbf{y}_{N}=\mathbf{d}$ can be set in the form

$$
D_{a} \mathbf{z}_{N}+D_{b} \mathbf{y}_{N}=\mathbf{d}
$$

and the resulting ABD linear system is

$$
\left(\begin{array}{cccccccc}
-I & I & & & & & \tag{2.7}\\
S_{0} & 0 & R_{1} & & & & & \\
& -I & 0 & I & & & & \\
& & & & & & & \\
& & \ddots & \ddots & \ddots & & & \\
& & & & & & & \\
& & & & S_{N-1} & 0 & R_{N} & \\
& & & & & -I & 0 & I \\
& & & & & & D_{b} & D_{a}
\end{array}\right)\left(\begin{array}{c}
\mathbf{y}_{0} \\
\mathbf{z}_{0} \\
\mathbf{y}_{1} \\
\mathbf{z}_{1} \\
\vdots \\
\mathbf{y}_{N} \\
\mathbf{z}_{N}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\mathbf{f}_{1} \\
0 \\
\vdots \\
\mathbf{f}_{N} \\
0 \\
\mathbf{d}
\end{array}\right) .
$$

This block tridiagonal system may be solved using standard, stable linear algebra algorithms either for banded systems or for ABD systems.

2.3 Gaussian elimination with partial pivoting

The algorithm applies Gaussian elimination with row partial pivoting (in the following, referred to as conventional elimination) to an ABD linear system, represented in Figure 2. It is implemented in $\operatorname{SOLVEBLOK}[20,21]$. Similar results can be obtained with column partial pivoting. The package requires $(2 N+$ 1) $m^{2}+2 N m_{\text {top }} m$ memory allocations $A_{1}, A_{2}, \ldots, A_{N} \in \mathbb{R}^{\left(m+m_{\text {top }}\right) \times 2 m}$, and $A_{N+1} \in \mathbb{R}^{m \times m}$

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{cc}
\left.\begin{array}{|c|}
\hline D_{\text {top }} \\
V_{1} \\
\hline
\end{array}\right), ~
\end{array}\right. \\
& A_{i}=\binom{*}{V_{i}}, \quad i=2, \ldots, N, \\
& A_{N+1}=\binom{*}{\hline D_{b o t}},
\end{aligned}
$$

which store the block rows

$$
\begin{aligned}
& V_{i}=\left(\begin{array}{cc}
S_{i-1} & R_{i}
\end{array}\right) \in \mathbb{R}^{m \times 2 m}, \quad i=1, \ldots, N \\
& D_{t o p} \in \mathbb{R}^{m_{t o p} \times m}, \quad D_{b o t} \in \mathbb{R}^{\left(m-m_{t o p}\right) \times m}
\end{aligned}
$$

of the given ABD linear systems, represented in Figure 2. The resulting fill-in (that is, the extra memory requirement) is of size $2 N m_{t o p} m$. In fact, in each A_{i}, $i=2, \ldots, N$, there are $2 m_{t o p} m$ extra allocations, represented by $(* *)$, over
each block V_{i}, and in A_{1}, A_{N+1} there are arrays $(*)$ of size $m_{t o p} \times m$, which are filled by the resulting factorization of the algorithm.

In SOLVEBLOK, the $N+1$ blocks A_{i} are stored consecutively in a vector of length $(2 N+1) m^{2}+2 N m_{\text {top }} m$, containing first all the elements of A_{1} followed by those of A_{2} and so on.

The elimination phase in SOLVEBLOK has the following algorithm:

1. Apply m steps of conventional elimination to A_{1};
2. for $i=2, \ldots, N$
a) Take the $m_{t o p}$ rows not yet used in the factorization of A_{i-1} followed by the first $m-m_{\text {top }}$ (non-null) rows of A_{i} and shift them into the first $m \times m$ memory allocations of A_{i},
b) Apply m steps of conventional elimination to A_{i},
end;
3.

a) Take the $m_{t o p}$ rows not yet used in the factorization of A_{N} followed by the first $m-m_{\text {top }}$ (non-null) rows of A_{N+1} and shift them into the $m \times m$ memory allocations of A_{N+1},
b) Apply $m-1$ steps of conventional elimination to A_{N+1},

The computational cost of the elimination phase is

$$
N\left(\frac{5}{3} m^{3}+3 m_{t o p} m^{2}-\frac{3}{2} m^{2}-\frac{1}{6} m\right)+\left(\frac{2}{3} m^{3}-\frac{1}{2} m^{2}-\frac{1}{6} m\right)
$$

and the computational cost of the back-substitution phase is

$$
N\left(4 m^{2}+2 m_{t o p} m-m\right)
$$

2.4 Alternating row and column elimination

Based on an approach of Varah [74], alternating row and column elimination, also denoted by ARCE, generates no fill-in for ABD linear systems. We consider an

ABD coefficient matrix with the structure:

In contrast of conventional elimination described as in the previous section, we generate no fill-in alternating row eliminations with column eliminations. First, $m_{t o p}$ column eliminations with column interchanges are performed in the first $m_{t o p}$ columns of the ABD matrix. Then, we obtain the matrix $A^{(1)} \in \mathbb{R}^{m \times\left(2 m-m_{t o p}\right)}$ in V_{1}, and the matrix $\binom{C^{(0)}}{M^{(1)}} \in \mathbb{R}^{\left(m_{t o p}+m\right) \times m_{t o p}}$ with $C^{(0)} \in \mathbb{R}^{m_{t o p} \times m_{t o p}}$ a lower triangular matrix and $M^{(1)} \in \mathbb{R}^{m \times m_{t o p}}$, see Figure 2.1. As in conventional

Figure 2.1: First $m_{t o p}$ column eliminations, the shaded area represents potentially nonzero elements and the dotted lines represents the profile of the original row blocks
column elimination ${ }^{2}$ procedure, the multipliers associated are stored in the first $m_{t o p}$ rows of $U^{(0)} \in \mathbb{R}^{m \times m}$ a unit upper triangular matrix placed in the first $m_{t o p}$ columns of the ABD matrix, see Figure 2.1. Thus, no fill-in is generated.

[^1]The algorithm proceeds with $m-m_{t o p}$ row eliminations with row interchanges, that eliminates rows in $A^{(1)}$ without any fill-in. In fact, the rows of the adjacent block V_{2} are not affected by these row interchanges. This is a major benefit with respect to conventional elimination described in Section 2.3.

This step is applied to the row block $\left(\begin{array}{ll}M^{(1)} & \left.A^{(1)}\right) \text { and generates: the matrix }\end{array}\right.$ $A^{(2)} \in \mathbb{R}^{m_{t o p} \times m}$ and $\left(\begin{array}{cc}R^{(1)} & \left.N^{(1)}\right)\end{array}\right)$ (corresponding to the $m-m_{t o p}$ eliminated rows in $A^{(1)}$) with $R^{(1)} \in \mathbb{R}^{\left(m-m_{t o p}\right) \times\left(m-m_{t o p}\right)}$ an upper triangular matrix and $N^{(1)} \in \mathbb{R}^{\left(m-m_{t o p}\right) \times m}$, see Figure 2.2.

Since the row eliminations are applied to $M^{(1)}$, this block is modified and will be denoted by $\tilde{M}^{(1)}$, for future reference. The multipliers associated with the $m_{t o p}$ row eliminations are stored in the first $m-m_{t o p}$ columns of the unit lower triangular matrix $L^{(1)} \in \mathbb{R}^{m \times\left(m-m_{t o p}\right)}$.

Figure 2.2: $m-m_{t o p}$ row eliminations, the shaded area represents potentially nonzero elements and the dotted lines represent the profile of the original row block

We repeat this process:

1. $m_{t o p}$ column eliminations with column interchanges,
2. $m-m_{t o p}$ row eliminations with row interchanges,
until elimination takes place in the block $D_{b o t}$, at this point $m-m_{t o p}$ row eliminations with row interchanges are performed. These row eliminations determine the blocks: $\tilde{M}^{(N)}$ of size $\left(m-m_{t o p}\right) \times m_{t o p}, R^{(N+1)}$ of size $\left(m-m_{t o p}\right) \times\left(m-m_{t o p}\right)$ and $L^{(b o t)} \in \mathbb{R}^{\left(m-m_{t o p}\right) \times\left(m-m_{t o p}\right)}$ a unit lower triangular matrix. We note that, the i th column elimination step modifies also the coefficients of the block $N^{(i-1)}$ that will be denoted by $\tilde{N}^{(i-1)}$.

In matrix form, this strategy leads to a decomposition

$$
\begin{equation*}
A=P L \tilde{\mathcal{B}} U Q \tag{2.9}
\end{equation*}
$$

where

- P is a permutation matrix recording the row interchanges, with the following structure

$$
P=\left(\begin{array}{ccccc}
I & & & & \\
& P^{(1)} & & & \\
& & \ddots & & \\
& & & P^{(N)} & \\
& & & & P^{(b o t)}
\end{array}\right)
$$

with I is the identity matrix of dimension $m_{t o p}, P^{(i)} \in \mathbb{R}^{m \times m}$ and $P^{(b o t)} \in$ $\mathbb{R}^{\left(m-m_{t o p}\right) \times\left(m-m_{t o p}\right)}$.

- L is the unit lower triangular matrix

$$
L=\left(\begin{array}{ccccc}
I & & & & \\
& L^{(1)} & & & \\
& & \ddots & & \\
& & & L^{(N)} & \\
& & & & L^{(b o t)}
\end{array}\right)
$$

containing the row elimination multipliers. Each $L^{(i)}$ is a square unit lower triangular matrix of dimension m, see Figure 2.2, and $L^{(b o t)}$ is a square unit lower triangular matrix of dimension $m-m_{t o p}$. The identity matrix I is of dimension $m_{t o p}$.

- $\tilde{\mathcal{B}}$ is the reduced matrix

$$
\tilde{\mathcal{B}}=\left(\begin{array}{cccccc}
\tilde{B}_{t o p} & & & & & \tag{2.10}\\
\tilde{B}_{1,1} & \tilde{B}_{1,2} & & & & \\
& \tilde{B}_{2,1} & \tilde{B}_{2,2} & & & \\
& & & \ddots & & \\
& & & & \tilde{B}_{N, 1} & \tilde{B}_{N, 2} \\
& & & & & \tilde{B}_{b o t}
\end{array}\right) \text {, }
$$

where

$$
\begin{aligned}
& \tilde{B}_{i, 1}=\left(\begin{array}{|c|c}
\begin{array}{|c|}
\tilde{M}^{(i)} \\
\hline
\end{array} \\
R^{(i)} \\
O
\end{array}\right), \quad M^{(i)} \in \mathbb{R}^{m \times m_{t o p}}, R^{(i)} \in \mathbb{R}^{\left(m-m_{t o p}\right) \times\left(m-m_{t o p}\right)}, \\
& \tilde{B}_{i, 2}=\left(\begin{array}{|c}
\tilde{N}^{(i)} \\
\hline C^{(i)} \\
O
\end{array}\right), \quad \tilde{N}^{(i)} \in \mathbb{R}^{\left(m-m_{t o p}\right) \times m}, C^{(i)} \in \mathbb{R}^{m_{t o p} \times m_{t o p}},
\end{aligned}
$$

and

$$
\tilde{B}_{t o p}=\left(\begin{array}{cc}
C^{(0)} & O
\end{array}\right), \quad \tilde{B}_{b o t}=\left(\begin{array}{cc}
\tilde{M}^{(N+1)} & R^{(b o t)}
\end{array}\right)
$$

- U is a unit upper triangular matrix

$$
U=\left(\begin{array}{cccc}
U^{(0)} & & & \\
& U^{(1)} & & \\
& & \ddots & \\
& & & U^{(N)}
\end{array}\right)
$$

which contains the column elimination multipliers. Each $U^{(i)}$ is a square unit upper triangular matrix of dimension m, see Figure 2.1.

- Q is a permutation matrix recording the column interchanges, with the following structure

$$
Q=\left(\begin{array}{cccc}
Q^{(0)} & & & \\
& Q^{(1)} & & \\
& & \ddots & \\
& & & Q^{(N)}
\end{array}\right)
$$

with $Q^{(i)} \in \mathbb{R}^{m \times m}$, for $i=0, \ldots, N$.
The solution of $A \mathbf{y}=\mathbf{f}$ with the ABD coefficient matrix A of dimension $(N+1) m$ decomposed as in (2.9) consists in five steps:

1) $\quad P \mathbf{y}^{(1)}=\mathbf{f}$,
2) $\quad L \mathbf{y}^{(2)}=\mathbf{y}^{(1)}$,
3) $\quad \tilde{\mathcal{B}} \mathbf{y}^{(3)}=\mathbf{y}^{(2)}$,
4) $\quad U \mathbf{y}^{(4)}=\mathbf{y}^{(3)}$,
5) $\quad Q \mathbf{y}=\mathbf{y}^{(4)}$.

The system in step 3) is solved using a forward recursion for some unknowns and a backward recursion for the others. In the forward recursion, the lower triangular linear systems in $\tilde{\mathcal{B}} \mathbf{y}^{(3)}=\mathbf{y}^{(2)}$ involving the coefficient matrices $C^{(i)}$ are solved, starting at $i=0$. In the backward recursion, upper triangular linear systems associated with the coefficient matrices $R^{(i)}$ are solved, starting by the use of $R^{(b o t)}$ in the last row of $\tilde{\mathcal{B}}$, see (2.10).

The computational cost of the elimination phase is

$$
\begin{aligned}
& N\left(\frac{5}{3} m^{3}+4 m^{2} m_{t o p}-4 m m_{t o p}^{2}-\frac{3}{2} m^{2}-m m_{t o p}+m_{t o p}^{2}-\frac{1}{6} m\right) \\
& +\frac{2}{3} m^{3}+m^{2} m_{t o p}-\frac{1}{2} m^{2}-m m_{t o p}-\frac{1}{6} m
\end{aligned}
$$

and the computational cost of the solution phase (the five steps 1-5) is

$$
N\left(4 m^{2}-m\right)+2 m^{2}-m
$$

2.5 Modified alternate row and column elimination

A modification of ARCE has been developed and implemented in the code COL$R O W$ for ABD linear systems with block rows of the same size and in ARCECO for general ABD linear systems with block rows of different size. This modification, called MARCE, reduces the computational cost with respect to ARCE by applying the eliminations only to part of the matrix obtained with ARCE as in the previous section.

For example, considering the first $m_{t o p}$ column eliminations, the resulting matrix has the form

$$
\mathcal{B}_{1}=A Q_{1} U_{1}=\left(\begin{array}{c|c}
C^{(0)} & O \tag{2.12}\\
\hline M^{(1)} & \\
O & A_{1}
\end{array}\right)
$$

where the blocks $C^{(0)}, M^{(1)}$ are defined in Section 2.4. The matrix A_{1} is square of dimension $(N+1) m-m_{t o p}$ and is almost block diagonal. Q_{1} is a permutation matrix (of size $(N+1) m \times(N+1) m$), associated with the column interchanges. The matrix

$$
U_{1}=\left(\begin{array}{cc}
U^{(0)^{-1}} & \\
& I
\end{array}\right) \in \mathbb{R}^{(N+1) m \times(N+1) m}
$$

contains the multipliers associated with the column eliminations. This procedure applies the successive $m-m_{\text {top }}$ row eliminations only to the submatrix A_{1} and therefore with respect to ARCE, we save the computations used there for modifying $M^{(1)}$. The second step yields

$$
L_{1} P_{1} A_{1}=\left(\begin{array}{c|cc}
R^{(1)} & N^{(1)} & O \\
\hline O & & A_{2}
\end{array}\right)
$$

where the blocks $R^{(1)}, N^{(1)}$ are defined in Section 2.4. The matrix A_{2} is square and almost block diagonal. Q_{1} is a permutation matrix associated with the row interchanges, the matrix

$$
L_{1}=\left(\begin{array}{cc}
L^{(1)^{-1}} & \\
& I
\end{array}\right)
$$

contains the multiplier associated with the row eliminations.

Analogously, when in the next step, $m_{\text {top }}$ column eliminations are used, they are applied only to A_{2} and therefore $N^{(1)}$ is not changed. Finally, after N successive steps, each formed by with $m_{t o p}$ column eliminations and $m-m_{t o p}$ row eliminations, the following reduced matrix \mathcal{B} is obtained

$$
\mathcal{B}=\left(\begin{array}{cccccc}
B_{\text {top }} & & & & & \tag{2.13}\\
B_{1,1} & B_{1,2} & & & & \\
& B_{2,1} & B_{2,2} & & & \\
& & & \ddots & & \\
& & & & B_{N, 1} & B_{N, 2} \\
& & & & & B_{b o t}
\end{array}\right)
$$

where $B_{i, 1}=\left(\begin{array}{|c|c}M^{(i)} & R^{(i)} \\ O \\ \hline\end{array}\right), \quad B_{i, 2}=\left(\begin{array}{|c}N^{(i)} \\ \hline C^{(i)} \mathrm{O} \\ \hline\end{array}\right), \quad i=1, \ldots, N$,

$$
B_{t o p}=\left(\begin{array}{cc}
C^{(0)} & O
\end{array}\right), \quad B_{b o t}=\left(\begin{array}{cc}
M^{(N+1)} & R^{(b o t)}
\end{array}\right)
$$

This structure corresponds to that of $\tilde{\mathcal{B}}$ in (2.13), with $M^{(i)}$ and $N^{(i)}$ in place of $\tilde{M}^{(i)}$ and $\tilde{N}^{(i)}$, respectively.

The decomposition of the ABD coefficient matrix A, obtained with this procedure, cannot be written in the form (2.9) since eliminations involve only parts of the rows or columns. Therefore, the system

$$
A \mathbf{y}=\mathbf{f}
$$

with

$$
\mathbf{y}=\left(\begin{array}{c}
\mathbf{y}_{0} \\
\mathbf{y}_{1} \\
\vdots \\
\mathbf{y}_{N}
\end{array}\right), \quad \mathbf{f}=\left(\begin{array}{c}
\mathbf{d}_{a} \\
\mathbf{f}_{1} \\
\vdots \\
\mathbf{f}_{N} \\
\mathbf{d}_{b}
\end{array}\right)
$$

is solved with a different procedure to that used for ARCE in Section 2.4. The steps $1)-5)$ in (2.11) are performed with the operations summarized in the algorithm in Figure 2.3.

The computational cost of the elimination phase is:

$$
\begin{aligned}
& N\left(\frac{5}{3} m^{3}+m^{2} m_{t o p}-m m_{t o p}^{2}+-\frac{3}{2} m^{2}+m m_{t o p}-m_{t o p}^{2}-\frac{1}{6} m\right) \\
& +\frac{2}{3} m^{3}+2 m m_{t o p}^{2}-m_{t o p}^{3}-\frac{1}{2} m^{2}-m_{t o p}^{2}-\frac{1}{6} m
\end{aligned}
$$

We save with respect to ARCE
$N\left(3 m m_{t o p}\left(m-m_{t o p}\right)-2 m_{t o p}\left(m-m_{t o p}\right)\right)+m_{t o p}\left(m-m_{t o p}\right)\left(m-m_{t o p}-1\right)$

```
\% Solution phase
let \(\mathbf{y}_{i}=\binom{\mathbf{y}_{22, i}}{\mathbf{y}_{3, i}}\)
    \% Forward recursion
        solve \(C^{(0)} \mathbf{x}_{1}^{(0)}=\mathbf{d}_{a}\)
        for \(i=1, \ldots, N\)
            compute \(\mathbf{c}^{(i)}=\mathbf{f}_{i}-M^{(i-1)} \mathbf{x}_{1}^{(i-1)}\)
            solve \(P^{(i)} L^{(i)} \mathbf{d}^{(i)}=\mathbf{c}^{(i)}\)
            solve \(C^{(i)} \mathbf{x}_{1}^{(i)}=\mathbf{d}_{2}^{(i)}\), where \(\mathbf{d}^{(i)}=\binom{\mathbf{d}_{1}^{(i)}}{\mathbf{d}_{2}^{(i)}}\)
    end
    compute \(\mathbf{c}^{(b o t)}=\mathbf{d}_{b}-M^{(N)} \mathbf{x}_{1}^{(N)}\)
    solve \(P^{(b o t)} L^{(b o t)} \mathbf{d}^{(b o t)}=\mathbf{c}^{(b o t)}\)
    \% Backward recursion
    solve \(R^{(b o t)} \mathbf{x}_{2}^{(N)}=\mathbf{d}^{(b o t)}\)
    for \(i=N, \ldots, 1\)
        solve \(U^{(i)} Q^{(i)} \mathbf{y}_{3, i}=\mathbf{x}^{(i)}\), where \(\mathbf{x}^{(i)}=\binom{\mathbf{x}_{1}^{(i)}}{\mathbf{x}_{2}^{(i)}}\)
        compute \(\mathbf{e}^{(i)}=\mathbf{d}_{1}^{(i)}-N^{(i)} \mathbf{y}_{3, i}\)
        solve \(R^{(i)} \mathbf{y}_{2, i}=\mathbf{e}^{(i)}\), where \(\mathbf{y}_{2, i}=\binom{\mathbf{x}_{2}^{(i-1)}}{\mathbf{y}_{22, i}}\)
        end
        solve \(U^{(0)} Q^{(0)} \mathbf{y}_{0}=\binom{\mathbf{x}_{1}^{(0)}}{\mathbf{x}_{2}^{(0)}}\)
```

Figure 2.3: Solution phase for the technique MARCE
flops. This number of flops is greater than zero because $m>m_{t o p}$.
The computational cost of the solution phase, described in the algorithm in Figure 2.3, is the same of that described for ARCE, that is

$$
N\left(4 m^{2}-m\right)+2 m^{2}-m
$$

2.5.1 The ABDPACK algorithm

The techniques described above can be applied to ABD linear systems arising from spline collocation with the structure in (1.32). For this system, COLROW does not introduce any fill-in, in contrast SOLVEBLOK does. See [29], where the MARCE technique used in COLROW and applied to systems with structure (1.32) is described in more detail.

Now, let

$$
\left(\begin{array}{ccccccc}
D_{t o p} & & & & & & \tag{2.14}\\
H_{1} & G_{1} & & & & & \\
-E_{1} & -F_{1} & I & & & & \\
& & \ddots & \ddots & \ddots & & \\
& & & & & & \\
& & & & H_{N} & G_{N} & \\
& & & & -E_{N} & -F_{N} & I \\
& & & & & & D_{b o t}
\end{array}\right) \text {, }
$$

be the coefficient matrix associated with to linear systems arising from spline collocation using a monomial spline basis, see Section 1.7.2. The blocks in (2.14) have the following sizes: $D_{\text {top }} \in \mathbb{R}^{m_{t o p} \times m}, D_{b o t} \in \mathbb{R}^{\left(m-m_{t o p}\right) \times m}, H_{i} \in \mathbb{R}^{k \times m}$, $G_{i} \in \mathbb{R}^{k \times k}, E_{i} \in \mathbb{R}^{m \times m}, F_{i} \in \mathbb{R}^{m \times k}$ and I is the unitary matrix of dimension m. The code $S O L V E B L O K$ for the structure in (2.14), requires an extra memory of length $(N-1)\left(m_{t o p}(k+2 m)+k m\right)+m_{t o p} m$, see [64]. In contrast, COLROW needs $N k m$ memory locations more than the necessary storage for the matrix (2.14). This fill-in corresponds to the null blocks of size $k \times m$ over each identity matrix I in (2.14).

In 1992, the papers [63, 64] introduce a code, $A B D P A C K$, which uses the MARCE technique that, exploiting the special pattern of systems with coefficient matrices (2.14), does not generate fill-in.

The technique has the following phases:

1. perform $m_{t o p}$ column eliminations with column interchanges in $D_{t o p}$
2. in each block row $\left(\begin{array}{ccc}H_{i} & G_{i} & \\ -E_{i} & -F_{i} & I,\end{array}\right)$ perform

- k column eliminations with column interchanges,
- $m-m_{t o p}$ row eliminations with row interchanges,
- row interchanges to preserve the lower triangular form of the block corresponding to the identity matrix in the row block,
- $m_{t o p}$ column eliminations with column interchanges,

3. $m-m_{t o p}-1$ row eliminations on the bottom block $D_{b o t}$.

The computational cost of the elimination phase is:

$$
\begin{aligned}
& N\left(\frac{2}{3} k^{3}+2 k^{2} m+2 k m^{2}+\frac{5}{3} m^{3}-m m_{t o p}^{2}-k^{2} m_{t o p}-k m_{t o p}^{2}+m^{2} m_{t o p}-\frac{1}{2} k^{2}-k m\right. \\
& \left.\quad-\frac{3}{2} m^{2}-k m_{\text {top }}+m m_{t o p}-m_{\text {top }}^{2}-\frac{1}{6} k-\frac{1}{6} m\right) \\
& +2 k m m_{t o p}+\frac{2}{3} m^{3}-k m_{\text {top }}^{2}+2 m m_{\text {top }}^{2}-m_{\text {top }}^{3} \\
& -k m_{t o p}-\frac{1}{2} m^{2}-m_{t o p}^{2}-\frac{1}{6} m .
\end{aligned}
$$

The computational cost for the solution phase is

$$
\begin{aligned}
& N\left(m^{2}+2 k m+2 m m_{t o p}-k^{2}+2 m_{t o p}^{2}+2 m_{t o p} k-k-m\right) \\
& +2 k m-2 m_{t o p} k-m_{t o p}^{2}-3 m^{2}-m
\end{aligned}
$$

2.6 The RSCALE algorithm

The parallel code PMIRKDC [68] uses the parallel RSCALE algorithm [49] for solving the Jacobian linear systems which are generated by the use of the Mono Implicit Runge Kutta formulae described in Section 1.3. RSCALE is based on block eigenvalue rescaling applied to the a BABD linear system with coefficient matrix and right hand side:

$$
\left[\begin{array}{ccccc|c}
D_{a} & & & & D_{b} & \mathbf{d} \tag{2.15}\\
S_{0} & R_{1} & & & & \mathbf{f}_{1} \\
& S_{1} & R_{2} & & & \mathbf{f}_{2} \\
& & \ddots & \ddots & & \vdots \\
& & & S_{N-1} & R_{N} & \mathbf{f}_{N}
\end{array}\right]
$$

where the blocks D_{a}, D_{b}, S_{i} and R_{i} are of size $m \times m$.
We describe the serial version of the algorithm RSCALE, as it is presented in [49]. Numerical tests of RSCALE in Section 3.7 are relative to this serial version.

The factorization phase is divided into two levels. In the first level, local transformations are applied to the linear system. These transformations do not modify the dimension of the linear system. When there are row transformations, the right hand side associated with the coefficient matrix is modified consequently.

The first step modifies all the block rows of the coefficient matrix through the matrix multiplication

$$
\left(\begin{array}{ccccc}
D_{a} & & & & D_{b} \\
S_{0} & R_{1} & & & \\
& S_{1} & R_{2} & & \\
& & \ddots & \ddots & \\
& & & S_{N-1} & R_{N}
\end{array}\right)\left(\begin{array}{ccccc}
I & -I & & & \\
& I & -I & & \\
& & \ddots & \ddots & \\
& & & I & -I \\
& & & & I
\end{array}\right)=
$$

$$
\left(\begin{array}{lllllr}
D_{a} & -D_{a} & & & & D_{b} \tag{2.16}\\
S_{0} & R_{1}-S_{0} & -R_{1} & & & \\
& & \ddots & \ddots & \ddots & \\
& & & & & \\
& & & S_{N-2} & R_{N-1}-S_{N-2} & -R_{N-1} \\
& & & & & S_{N-1} \\
& & & & R_{N}-S_{N-1}
\end{array}\right)
$$

This step can be summarized by the sequence of operations

```
for i=N,\ldots,0
    column}(i+1)=\mp@subsup{\operatorname{column}}{(i+1)}{}-\mp@subsup{\operatorname{column}}{(i)}{
end
```

where column (i) is the i th block-column of the coefficient matrix in (2.15). Also, we indicate by $\operatorname{row}_{(i)}$ the i th block-row of the coefficient matrix in (2.15). Let

$$
\mathbf{y}=\left(\begin{array}{c}
\mathbf{y}_{0} \\
\vdots \\
\mathbf{y}_{N}
\end{array}\right) \in \mathbb{R}^{m(N+1)}
$$

be the vector of unknowns associated with the initial BABD linear system (2.15), then the linear system associated with the coefficient matrix (2.16) has

$$
\tilde{\mathbf{y}}=\left(\begin{array}{cccc}
I & I & \ldots & I \tag{2.17}\\
& I & \ldots & I \\
& & \ddots & \vdots \\
& & & I
\end{array}\right) \mathbf{y}
$$

as vector of unknowns.
The next two block-operation steps modify only the last two block rows

$$
\left[\begin{array}{ccc|c}
S_{N-2} & R_{N-1}-S_{N-2} & -R_{N-1} & \mathbf{f}_{N-1} \\
& S_{N-1} & R_{N}-S_{N-1} & \mathbf{f}_{N}
\end{array}\right]
$$

of the linear system with coefficient matrix (2.16):

1. $\operatorname{row}_{(N+1)}=\left(R_{N}-S_{N-1}\right)^{-1} \operatorname{row}_{(N+1)}$,
this operation transforms the block $R_{N}-S_{N-1}$ (of row ${ }_{(N+1)}$) into the identity matrix I

$$
\left[\begin{array}{ccc|c}
S_{N-2} & R_{N-1}-S_{N-2} & -R_{N-1} & \mathbf{f}_{N-1} \\
& \tilde{S}_{N-1} & I & \tilde{\mathbf{f}}_{N}
\end{array}\right]
$$

where $\tilde{S}_{N-1}=\left(R_{N}-S_{N-1}\right)^{-1} S_{N-1}, \quad \tilde{\mathbf{f}}_{N}=\left(R_{N}-S_{N-1}\right)^{-1} \mathbf{f}_{N}$.
2. $\operatorname{row}_{(N)}=\operatorname{row}_{(N)}+R_{N-1} \operatorname{row}_{(N+1)}$,
this operation annihilates $-R_{N-1}$ in $\operatorname{row}_{(N)}$

$$
\left[\begin{array}{ccc|c}
S_{N-2} & R_{N-1}\left(I+\underset{S_{N-1}}{\tilde{S}_{N-2}}\right)-S_{N-2} & & \tilde{\mathbf{f}}_{N-1} \\
\tilde{S}_{N-1} & I & \tilde{\mathbf{f}_{N}}
\end{array}\right]
$$

where $\tilde{\mathbf{f}}_{N-1}=\mathbf{f}_{N-1}+R_{N-1} \tilde{\mathbf{f}_{N}}$.
The algorithm proceeds by performing the operations of the two steps described above, for each pair of block rows $\left(\operatorname{row}_{(i)}{\left.\text {, } \operatorname{row}_{(i+1)}\right) \text { moving upward with }}\right.$ i running from $N-1$ to 1 .

These operations can be summarized by the sequence

$$
\begin{aligned}
& \text { for } i=N-1, \ldots, 0 \\
& \text { let the pair of block rows }\left(\operatorname{row}_{(i)} \operatorname{row}_{(i+1)}\right) \text { be in the form } \\
& {\left[\begin{array}{ccc|c}
S_{i-2} & R_{i-1}-S_{i-2} & -R_{i-1} & \mathbf{f}_{i-1} \\
& S_{i-1} & \tilde{R}_{i} & \tilde{\mathbf{f}}_{i}
\end{array}\right]} \\
& \text { scale } \operatorname{row}_{(\underset{\sim}{i}+1)} \text { with respect to } \tilde{R}_{i} \text { through the operation } \\
& \operatorname{row}_{(i+1)}=\left(\tilde{R}_{i}\right)^{-1} \operatorname{row}_{(i+1)} \\
& \text { annihilate }-R_{i-1} \text { through the operation } \\
& \operatorname{row}_{(i)}=\operatorname{row}_{(i)}+R_{i-1 \operatorname{row}_{(i+1)}} \\
& \text { end }
\end{aligned}
$$

The final row operation in this first level is

$$
\operatorname{row}_{(1)}=\operatorname{row}_{(1)}+D_{a} \operatorname{row}_{(2)}
$$

which annihilates $-D_{a}$ in the first row.
The resulting linear system has now the form

$$
\left[\begin{array}{ccccc|c}
\tilde{D}_{a} & & & & D_{b} & \tilde{\mathbf{d}} \tag{2.18}\\
\tilde{S}_{0} & I & & & & \tilde{\mathbf{f}}_{1} \\
& \tilde{S}_{1} & I & & & \tilde{\mathbf{f}}_{2} \\
& & \ddots & \ddots & & \vdots \\
& & & \tilde{S}_{N-1} & I & \mathbf{f}_{N}
\end{array}\right]
$$

As mentioned in [49], numerical experiments and preliminary analysis indicate that the blocks \tilde{S}_{i} in (2.18) have bounded eigenvalues and norms satisfying

$$
\begin{align*}
& \text { 1. } \quad\left|\lambda_{i}\right| \leq 1+\epsilon_{1}, \quad \forall \lambda_{i} \text { eigenvalue of } \tilde{S}_{i} \\
& \text { 2. } \quad\left\|\tilde{S}_{i}\right\| \in\left(1-\epsilon_{2}, 1+\epsilon_{3}\right) \tag{2.19}
\end{align*}
$$

where $i=1, \ldots, N$, and $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}$ are positive constants which can be reduced arbitrarily using a suitable choice of parameter during the rescaling phase. In fact,
in the first level of factorization (2.16), the user can choose a suitable parameter σ such that the matrix to multiply to the input BABD coefficient matrix is

$$
\left(\begin{array}{ccccc}
I & -\sigma I & & & \\
& I & -\sigma I & & \\
& & \ddots & \ddots & \\
& & & I & -\sigma I \\
& & & & I
\end{array}\right)
$$

instead of that resulting from the case $\sigma=1$ used above.
From properties 1-2 of \tilde{S}_{i}, see (2.19), the system (2.18) can be solved stably using the successive cyclic reduction steps, assumed N is a power of 2 :

1. each $\operatorname{row}_{(i)}$ of (2.18), with i even, is premultiplied by \tilde{S}_{i+1} and then it is subtracted from the $\operatorname{row}_{(i+1)}$, obtaining a reduced linear system with a coefficient matrix of size $\left(\frac{N}{2}+1\right) m \times\left(\frac{N}{2}+1\right) m$

$$
\left(\begin{array}{ccccc}
\tilde{D}_{a} & & & & B_{b} \tag{2.20}\\
-\tilde{S}_{1} \tilde{S}_{0} & I & & & \\
& -\tilde{S}_{3} \tilde{S}_{2} & I & & \\
& & \ddots & \ddots & \\
& & & -\tilde{S}_{N-1} \tilde{S}_{N-2} & I
\end{array}\right)
$$

2. step (1) is applied to the linear system with coefficient matrix (2.20) obtaining a coefficient matrix of size $\left(\frac{N}{4}+1\right) m \times\left(\frac{N}{4}+1\right) m$; this step is repeated cyclically $\log _{2}(N)$ times. This yields a $2 m \times 2 m$ linear system with coefficient matrix

$$
\left(\begin{array}{cc}
\tilde{D}_{a} & D_{b} \tag{2.21}\\
(-1)^{N} \prod_{i=1}^{N} \tilde{S}_{N-i} & I
\end{array}\right) .
$$

In the solution phase, we compute the solutions of the $\log _{2}(N)$ linear systems starting with the $2 m \times 2 m$ linear system with coefficient matrix (2.21), thus, finally determining the solution $\tilde{\mathbf{y}}$, see (2.17), of the linear system (2.18). For more details about back-substitution phase, see Chapter 3.

Finally, the solution y of the initial linear system (2.15) is determined through the matrix vector product

$$
\mathbf{y}=\left(\begin{array}{ccccc}
I & -I & & & \tag{2.22}\\
& I & -I & & \\
& & \ddots & \ddots & \\
& & & I & -I \\
& & & & I
\end{array}\right) \tilde{\mathbf{y}} .
$$

The cost of the first level of factorization phase, not involving the operation on the right hand side is $N\left(\frac{14}{3} m^{3}\right)+2 m^{3}$, for the second level (the cyclic reduction) is $(N-1)\left(2 m^{3}-m^{2}\right)$, thus the total cost of the factorization phase is

$$
N\left(\frac{20}{3} m^{3}-m^{2}\right)+m^{2}
$$

The cost for the transformation of the right hand side during the first level of the factorization phase is $N\left(4 m^{2}-m\right)+2 m^{2}$. The cost of the reduction of the right hand side during the second level of the factorization is $(N-1)\left(2 m^{2}-m\right)$ and of the multiplication (2.22) is $N m$, thus the total cost of the solution phase is

$$
N\left(6 m^{2}-m\right)+m
$$

Chapter 3

An algorithm for the solution of BABD systems based on cyclic reduction

We describe the use of the new sequential computing package $B A B D C R[3]$, [4] for the solution of BABD systems $A \mathbf{y}=\mathbf{f}$ with the following structure

$$
\left(\begin{array}{ccccc}
D_{a} & & & & D_{b} \tag{3.1}\\
S_{0} & R_{1} & & & \\
& S_{1} & R_{2} & & \\
& & \ddots & \ddots & \\
& & & S_{N-1} & R_{N}
\end{array}\right)\left(\begin{array}{c}
\mathbf{y}_{0} \\
\mathbf{y}_{1} \\
\mathbf{y}_{2} \\
\vdots \\
\mathbf{y}_{N}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{d} \\
\mathbf{f}_{1} \\
\mathbf{f}_{2} \\
\vdots \\
\mathbf{f}_{N}
\end{array}\right) .
$$

This package is based on the cyclic reduction algorithm, originally proposed in [2] to be implemented on a parallel computer. LU factorization is used to reduce the system. It is well known that cyclic reduction applied to block tridiagonal (or ABD) systems is extremely competitive only on parallel computers. However, since the presence of the right-upper block D_{b} implies fill-in and a higher computational cost in all direct methods, we show that the cyclic reduction algorithm can also be effective on a sequential computer. A parallel version of the package $B A B D C R$ has also been implemented, see Chapter 5 .

Note that, as we have shown in Chapter 1, the BABD structure (3.1), with blocks S_{i}, R_{i}, D_{a} and D_{b} of the same size, arises frequently in BVP solvers.

3.1 The cyclic reduction algorithm

The idea of this code is to reduce (3.1) cyclically in order to derive systems of lower dimension (involving less unknowns) with the same BABD structure. We suppose that each block in the BABD matrix is of size $m \times m$. Since operations involving the boundary block D_{b} would create fill-in, all the reduced systems always keep \mathbf{y}_{0}
and \mathbf{y}_{N} among the unknowns, and leave unchanged the first row of (3.1). For this reason, the first reduction produces the linear system of dimension $\lceil N / 2\rceil+1$:

$$
\left(\begin{array}{ccccc}
D_{a} & & & & D_{b} \\
S_{0}^{\prime} & R_{2}^{\prime} & & & \\
& S_{2}^{\prime} & R_{4}^{\prime} & & \\
& & \ddots & \ddots & \\
& & & S_{N-2}^{\prime} & R_{N}^{\prime}
\end{array}\right)\left(\begin{array}{c}
\mathbf{y}_{0} \\
\mathbf{y}_{2} \\
\mathbf{y}_{4} \\
\vdots \\
\mathbf{y}_{N}
\end{array}\right)\left(\begin{array}{c}
\mathbf{d} \\
\mathbf{f}_{2}^{\prime} \\
\mathbf{f}_{4}^{\prime} \\
\vdots \\
\mathbf{f}_{N}^{\prime}
\end{array}\right)
$$

There are several ways to derive the above reduced system from (3.1). But, since the original matrix is essentially block bidiagonal (the first block row is not modified), each row of the reduced block system may be obtained from two adjacent rows in (3.1). That is, for $i=2 j-1$ odd, $j=1,2, \ldots,\lfloor N / 2\rfloor$, the subsystem

$$
\left(\begin{array}{ccc}
S_{i-1} & R_{i} & \tag{3.2}\\
& S_{i} & R_{i+1}
\end{array}\right)\left(\begin{array}{c}
\mathbf{y}_{i-1} \\
\mathbf{y}_{i} \\
\mathbf{y}_{i+1}
\end{array}\right)=\binom{\mathbf{f}_{i}}{\mathbf{f}_{i+1}}
$$

is transformed in order to obtain one row in the reduced system involving only the unknowns \mathbf{y}_{i-1} and \mathbf{y}_{i+1}

$$
\begin{equation*}
S_{i-1}^{\prime} \mathbf{y}_{i-1}+R_{i+1}^{\prime} \mathbf{y}_{i+1}=\mathbf{f}_{i+1}^{\prime} . \tag{3.3}
\end{equation*}
$$

If R_{i} is nonsingular, this can be achieved by multiplying (3.2) on the left by

$$
\left(\begin{array}{cc}
I & \tag{3.4}\\
-S_{i} R_{i}^{-1} & I
\end{array}\right)
$$

thus obtaining (3.3) with $S_{i-1}^{\prime}=-S_{i} R_{i}^{-1} S_{i-1}, R_{i+1}^{\prime}=R_{i+1}$ and $\mathbf{f}_{i+1}^{\prime}=\mathbf{f}_{i+1}-$ $S_{i} R_{i}^{-1} \mathbf{f}_{i}$.

However, this procedure may be unstable (see section 3.2). For this reason, we perform a partial pivoting LU factorization of the $2 m \times m$ matrix containing the overlapping columns:

$$
P_{i}\binom{R_{i}}{S_{i}}=\binom{L_{i}}{H_{i}} U_{i}=\binom{I}{G_{i}} L_{i} U_{i}=\left(\begin{array}{cc}
I & \tag{3.5}\\
G_{i} & I
\end{array}\right)\binom{L_{i} U_{i}}{O},
$$

where $G_{i}=H_{i} L_{i}^{-1}$ and P_{i} is a $2 m \times 2 m$ permutation matrix representing the m row interchanges. The reduction step leads to

$$
\begin{align*}
& S_{i-1}^{\prime}=\left(\begin{array}{ll}
-G_{i} & I
\end{array}\right) P_{i}\binom{S_{i-1}}{O}, \\
& R_{i+1}^{\prime}=\left(\begin{array}{ll}
-G_{i} & I
\end{array}\right) P_{i}\binom{O}{R_{i+1}}, \tag{3.6}\\
& \mathbf{f}_{i+1}^{\prime}=\left(\begin{array}{ll}
-G_{i} & I
\end{array}\right) P_{i}\binom{\mathbf{f}_{i}}{\mathbf{f}_{i+1}} .
\end{align*}
$$

Formulae (3.6) are obtained by multiplying (3.2) by P_{i} and by the inverse of the lower triangular matrix in (3.5)

$$
\left(\begin{array}{cc}
I & \\
G_{i} & I
\end{array}\right)^{-1}=\left(\begin{array}{cc}
I & \\
-G_{i} & I
\end{array}\right) .
$$

In fact,

$$
\left(\begin{array}{cc}
I & \tag{3.7}\\
-G_{i} & I
\end{array}\right) P_{i}\left(\begin{array}{ccc}
S_{i-1} & R_{i} & \\
& S_{i} & R_{i+1}
\end{array}\right)=\left(\begin{array}{ccc}
\widehat{S}_{i-1} & L_{i} U_{i} & \widehat{R}_{i+1} \\
S_{i-1}^{\prime} & & R_{i+1}^{\prime}
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
I & \tag{3.8}\\
-G_{i} & I
\end{array}\right) P_{i}\binom{\mathbf{f}_{i}}{\mathbf{f}_{i+1}}=\binom{\widehat{\mathbf{f}}_{i}}{\mathbf{f}_{i+1}^{\prime}} .
$$

Taking into account the second row in (3.7) and (3.8) yields equation (3.3) of the reduced system. The first row of (3.7) and (3.8)

$$
\widehat{S}_{i-1} \mathbf{y}_{i-1}+L_{i} U_{i} \mathbf{y}_{i}+\widehat{R}_{i+1} \mathbf{y}_{i+1}=\widehat{\mathbf{f}}_{i}
$$

is used in the back-substitution phase to compute \mathbf{y}_{i} from \mathbf{y}_{i-1} and \mathbf{y}_{i+1}. The elements $\widehat{S}_{i-1}, \widehat{R}_{i+1}$ and \widehat{f}_{i} are obtained by simple permutations with the matrix P_{i}. Therefore the total number of nonzero rows in the two blocks \widehat{S}_{i-1} and \widehat{R}_{i+1} is at most m. We note also that in the computation of S_{i-1}^{\prime} and R_{i+1}^{\prime} some operations are not actually performed because of the sparsity structure of the matrices involved (i.e. there are some null rows in the matrices multiplied by G_{i}).

In general, after k steps of reduction, the reduced block matrix has $\lceil N / s\rceil+$ 1 block rows, where $s=2^{k}$, and it can be further reduced by combining two consecutive rows, for each $i=(2 j-1) s$, with $j=1,2, \ldots,\lfloor\lceil N / s\rceil / 2\rfloor$

$$
\left(\begin{array}{ccc}
S_{i-s}^{(k)} & R_{i}^{(k)} & \tag{3.9}\\
& S_{i}^{(k)} & R_{i+s}^{(k)}
\end{array}\right)\left(\begin{array}{c}
\mathbf{y}_{i-s} \\
\mathbf{y}_{i} \\
\mathbf{y}_{i+s}
\end{array}\right)=\binom{\mathbf{f}_{i}^{(k)}}{\mathbf{f}_{i+s}^{(k)}}
$$

so as to obtain

$$
\begin{equation*}
S_{i-s}^{(k+1)} \mathbf{y}_{i-s}+R_{i+s}^{(k+1)} \mathbf{y}_{i+s}=\mathbf{f}_{i+s}^{(k+1)} . \tag{3.10}
\end{equation*}
$$

In analogy with (3.7) and (3.8), from (3.9) we also deduce $G_{i}^{(k)}=H_{i}^{(k)}\left(L_{i}^{(k)}\right)^{-1}$ (which is used in the reduction of the right hand side) and the following equality

$$
\begin{equation*}
\widehat{S}_{i-s}^{(k)} \mathbf{y}_{i-s}+L_{i} U_{i} \mathbf{y}_{i}+\widehat{R}_{i+s}^{(k)} \mathbf{y}_{i+s}=\widehat{\mathbf{f}}_{i}^{(k)}, \tag{3.11}
\end{equation*}
$$

which is used in the back-substitution phase to compute \mathbf{y}_{i} from \mathbf{y}_{i-s} and \mathbf{y}_{i+s}.
The reduction ends after $p=\left\lceil\log _{2}(N)\right\rceil$ steps when the 2×2 block linear system

$$
\left(\begin{array}{ll}
D_{a} & D_{b} \tag{3.12}\\
S_{0}^{(p)} & R_{N}^{(p)}
\end{array}\right)\binom{\mathbf{y}_{0}}{\mathbf{y}_{N}}=\binom{\mathbf{d}}{\mathbf{f}_{N}^{(p)}}
$$

is obtained. The algorithm proceeds with the solution of (3.12) using Gaussian Elimination, obtaining \mathbf{y}_{0} and \mathbf{y}_{N}. The other unknowns are computed through the back-substitution phase.

The following algorithm summarizes the operations performed:

```
\% Back substitution
    for \(k=p-1, \ldots, 0\)
        \(s=2^{k}\)
        for \(j=\lfloor\lceil N / s\rceil / 2\rfloor, \ldots, 2,1\)
            \(i=(2 j-1) s\)
            \(\mathbf{y}_{i}=\left(L_{i} U_{i}\right)^{-1}\left(\widehat{\mathbf{f}}_{i}^{(k)}-\widehat{S}_{i-s}^{(k)} \mathbf{y}_{i-s}-\widehat{R}_{i+s}^{(k)} \mathbf{y}_{i+s}\right)\)
        end
    end
```

The code $B A B D C R$ requires the storage of: N factorizations ${ }^{1} L_{i} \backslash U_{i}$ associated with each of the $N-1$ reductions and the factorization of the final 2×2 block linear system (3.12); the m nonzero rows of blocks $\widehat{S}_{i-s}^{(k)}, \widehat{R}_{i+s}^{(k)}$, denoted by $F_{i}^{(k)}$; the $m \times m$ matrices $G_{i}^{(k)}$. There are $N-1$ matrices $F_{i}^{(k)}, G_{i}^{(k)}$, each associated with a reduction step.

3.2 Computational cost and required memory

We measure the computational cost of the $B A B D C R$ algorithm in terms of total number of flops, where each flop represents one of the four arithmetic floating point operations.

The factorization of the coefficient matrix requires $N-1$ reductions from (3.9) to (3.10) and the partial pivoting LU factorization of the 2×2 block matrix in (3.12).

The cost of each reduction is $\frac{14}{3} m^{3}-\frac{3}{2} m^{2}-\frac{1}{6} m$ floating point operations and the 2×2 block factorization $\frac{16}{3} m^{3}-2 m^{2}-\frac{1}{3} m$ flops. Thus, the factorization requires $\frac{14}{3} m^{3} N$ flops to leading order in powers of m and N.

Solving the linear system (3.1) when the matrix is already factorized requires $N-1$ reductions of the right hand side from (3.9) to (3.10), $N-1$ back-substitutions (3.11) to compute the unknown \mathbf{y}_{i} from \mathbf{y}_{i-s} and \mathbf{y}_{i+s} (previously determined), and the solution of the 2×2 block linear system (3.12) previously factorized. The cost of each reduction is $2 m^{2}$ flops, that of each back-substitution step is $4 m^{2}$, and of the solution of 2×2 block linear system is $8 m^{2}$ flops. Therefore the solution cost of a linear system with the $B A B D C R$ algorithm is approximately $6 m^{2} N$ flops.

The computational cost of the $B A B D C R$ algorithm does not change if the factorization and solution steps are performed together. However, the memory requirement changes dramatically. If the reduction phase of the coefficient matrix and of the right hand side are carried on at the same time, then the relevant part of the factorization of the matrix is stored in place of the original coefficient matrix and the algorithm does not require fill-in. To compute the factorization only once and solve several linear systems, we need to store the permutation matrices,

[^2]all the computed N factorizations $L_{i} \backslash U_{i}$ and the $N-1$ blocks $G_{i}^{(k)}$ and $F_{i}^{(k)}$. This means that the algorithm requires a fill-in array, that is an extra memory array, of size $m^{2}(N-1)$ (which is almost one half of the memory required to store the coefficient matrix) and an integer array of size $2 m N$. This is because all the factorizations $L_{i} \backslash U_{i}$ and $G_{i}^{(k)}$ can be saved in place of the initial non-factorized matrix that requires $2 m^{2}(N+1)$ allocations.

3.3 Stability

We now discuss the stability of our algorithm in the special case $S_{i}=S$ and $R_{i}=R$ for each $i=1, \ldots, N$. Such a situation arises, for example, when an autonomous BVODE is discretized using constant stepsize. Let λ and x be one eigenvalue and the corresponding eigenvector of the matrix pencil (S, R), see [43]. Then, from (3.5) and (3.6) (the indices i have been neglected because of the constant blocks) we has

$$
\begin{aligned}
S^{\prime} x & =\left(\begin{array}{ll}
-G & I
\end{array}\right) P\binom{S}{0} x=\lambda\left(\begin{array}{cc}
-G & I
\end{array}\right) P\binom{R}{0} x \\
& =-\lambda\left(\begin{array}{ll}
-G & I
\end{array}\right) P\binom{0}{S} x=-\lambda^{2}\left(\begin{array}{cc}
-G & I
\end{array}\right) P\binom{0}{R} x \\
& =-\lambda^{2} R^{\prime} x
\end{aligned}
$$

where we have used

$$
\binom{R}{0}=\binom{R}{S}-\binom{0}{S} \quad \text { and } \quad\left(\begin{array}{cc}
-G & I
\end{array}\right) \mathrm{P}\binom{R}{S}=0
$$

Hence, as the reduction process goes on, the eigenvalues with modulus less than 1 approach 0 and the eigenvalues with modulus greater than 1 approach infinity. Hence the reduction by means of (3.4) may be unstable because there is no control on the growth (in modulus) of the elements in $S^{(k)}$ (obtained after k steps of reduction). In contrast, the $B A B D C R$ algorithm should be stable because all the elements of both H_{i} and L_{i} have modulus less or equal to 1 . Therefore, we expect that the rows of $G_{i}^{(k)}$ tend quickly to zero, and the matrices $S^{(k)}$ and $R^{(k)}$ to converge to S^{*} and R^{*}. Observe that if one row in S^{*} is nonzero than the corresponding in R^{*} is zero.

As an example, we analyze the reduction process in the $B A B D C R$ algorithm on the Wright example [77], see Section 2.1 where the Wright example is presented. The $B A B D C R$ algorithm does not exhibit instability when it is applied to the Wright problem. In fact, the first step of reduction gives a matrix with the same structure as (2.1) and C^{2} instead of $C\left(P_{i}=I\right.$ and $G_{i}=-C$ in (3.5)). Similarly, the successive steps give matrices $S^{(k)}$ with increasing powers of $C\left(C^{s}, s=2^{k}\right.$, after k steps), until the elements of the blocks become larger than 1 in modulus. At this
point, since row pivoting is performed on the $2 m \times m$ block $\binom{I}{C^{s}}$, the partial pivoting allows control of the growth of the elements of the new reduced matrices. For example, if $h=0.3$, there is no permutation for the first step and the matrices $S^{(k)}$ and $R^{(k)}$ converge to

$$
S^{*}=\left(\begin{array}{cc}
-1.6487 & -1.6487 \\
0 & 0
\end{array}\right) \quad \text { and } \quad R^{*}=\left(\begin{array}{cc}
0 & 0 \\
-1 & 1
\end{array}\right) .
$$

Due to the use of the partial pivoting LU factorization, "pathological" cases may occur; however in such cases the growth of the elements of $S^{(k)}$ and $R^{(k)}$ depends on $m \ll N$ and is restricted only to one step of reduction.

3.4 Solution of transposed BABD systems

To determine the condition number [46] of the given BABD coefficient matrix, many packages [54] for linear systems $A \mathbf{y}=\mathbf{f}$ use the factorization of A for solving the transposed system

$$
\begin{equation*}
A^{T} \mathbf{z}=\mathbf{f} \tag{3.13}
\end{equation*}
$$

see also [50], [51], [52]. We analyze the solution of (3.13) starting from the cyclic reduction described in Section 3.1. The linear system in (3.13) has the structure

$$
\left(\begin{array}{cccccc}
D_{a}^{T} & S_{0}^{T} & & & & \tag{3.14}\\
& R_{1}^{T} & S_{1}^{T} & & & \\
& & R_{2}^{T} & S_{2}^{T} & & \\
& & & \ddots & \ddots & \\
& & & & R_{N-1}^{T} & S_{N-1}^{T} \\
D_{b}^{T} & & & & & R_{N}^{T}
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{0} \\
\mathbf{z}_{1} \\
\vdots \\
\mathbf{z}_{N}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{f}_{0} \\
\vdots \\
\mathbf{f}_{N}
\end{array}\right),
$$

that is, it is still a BABD linear system with boundary blocks in the last row. We prove that cyclic reduction applied to (3.14) gives reduced linear systems with coefficient matrices equal to the transpose of the coefficient matrices obtained by cyclic reduction applied to the original system (3.1). Let $i=2 j-1$, for $j=1,2, \ldots,\lfloor N / 2\rfloor$, from the permutation in (3.5) we perform a partial column pivoting LU factorization of the $(i+1)$ th row of the coefficient matrix in (3.14):

$$
\begin{aligned}
\left(\begin{array}{ll}
R_{i}^{T} & S_{i}^{T}
\end{array}\right) P_{i}^{T} & =U_{i}^{T}\left(\begin{array}{cc}
L_{i}^{T} & H_{i}^{T} \\
& I
\end{array}\right) \\
& =\left(\begin{array}{cc}
U_{i}^{T} L_{i}^{T} & O
\end{array}\right)\left(\begin{array}{cc}
I & G_{i}^{T} \\
& I
\end{array}\right)
\end{aligned}
$$

where $G_{i}=H_{i} L_{i}^{-1}$. Now, considering the transpose of the matrices in equation (3.7) we obtain

$$
\left(\begin{array}{cc}
S_{i-1}^{T} & \tag{3.15}\\
R_{i}^{T} & S_{i}^{T} \\
& R_{i+1}^{T}
\end{array}\right) P_{i}^{T}\left(\begin{array}{cc}
I & -G_{i}^{T} \\
& I
\end{array}\right)=\left(\begin{array}{cc}
\widehat{S}_{i-1}^{T} & S_{i-1}^{\prime}{ }^{T} \\
U_{i}^{T} L_{i}^{T} & \\
\widehat{R}_{i+1}^{T} & R_{i+1}^{\prime} T
\end{array}\right)
$$

where $L_{i}, U_{i}, S_{i-1}^{\prime}, R_{T+1}^{\prime}, \widehat{S}_{i-1}, \widehat{R}_{i+1}$ are the same blocks as in (3.7), and therefore $S_{i-1}^{\prime}{ }^{T}$ and ${R_{i+1}^{\prime}}^{T}$ are the transposes of the blocks (3.6) obtained in the reduction described in Section 3.1. Thus, multiplying (3.15) by $\left(\begin{array}{cc}I & G_{i}^{T} \\ & I\end{array}\right)=$ $\left(\begin{array}{cc}I & -G_{i}^{T} \\ & I\end{array}\right)^{-1}$ and P_{i} the following equality

$$
\left(\begin{array}{cc}
S_{i-1}^{T} & \tag{3.16}\\
R_{i}^{T} & S_{i}^{T} \\
& R_{i+1}^{T}
\end{array}\right)=\left(\begin{array}{cc}
\widehat{S}_{i-1}^{T} & S_{i-1}^{\prime}{ }^{T} \\
U_{i}^{T} L_{i}^{T} & \\
\widehat{R}_{i+1}^{T} & R_{i+1}^{\prime}{ }^{T}
\end{array}\right)\left(\begin{array}{cc}
I & G_{i}^{T} \\
& I
\end{array}\right) P_{i}
$$

is satisfied. Let

$$
\binom{\mathbf{z}_{i}^{\prime}}{\mathbf{z}_{i+1}^{\prime}}=\left(\begin{array}{cc}
I & G_{i}^{T} \tag{3.17}\\
& I
\end{array}\right) P_{i}\binom{\mathbf{z}_{i}}{\mathbf{z}_{i+1}},
$$

where $i=2 j-1$, for $j=1,2, \ldots,\lfloor N / 2\rfloor$, using (3.16)-(3.17) the first three rows

$$
\left(\begin{array}{cccc}
D_{a}^{T} & S_{0}^{T} & & \\
& R_{1}^{T} & S_{1}^{T} & \\
& & R_{2}^{T} & S_{2}^{T}
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{0} \\
\mathbf{z}_{1} \\
\mathbf{z}_{2} \\
\mathbf{z}_{3}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{f}_{0} \\
\mathbf{f}_{1} \\
\mathbf{f}_{2}
\end{array}\right)
$$

of the system (3.14) are transformed into the form

$$
\left(\begin{array}{cccc}
D_{a}^{T} & \widehat{S}_{0}^{T} & S_{0}^{\prime T} & \tag{3.18}\\
& U_{1}^{T} L_{1}^{T} & & \\
& \widehat{R}_{2}^{T} & R_{2}^{\prime T} & S_{2}^{T}
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{0} \\
\mathbf{z}_{1}^{\prime} \\
\mathbf{z}_{2}^{\prime} \\
\mathbf{z}_{3}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{f}_{0} \\
\mathbf{f}_{1} \\
\mathbf{f}_{2}
\end{array}\right) .
$$

Now, we transform sequentially each adjacent triple of rows, for $i=2 j-1$, with $j=2, \ldots,\lfloor N / 2\rfloor-1$,

$$
\left(\begin{array}{ccccc}
\widehat{R}_{i-1}^{T} & R_{i-1}^{\prime}{ }^{T} & S_{i-1}^{T} & & \\
& & R_{i}^{T} & S_{i}^{T} & \\
& & & R_{i+1}^{T} & S_{i+1}^{T}
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{i-2}^{\prime} \\
\mathbf{z}_{i-1}^{\prime} \\
\mathbf{z}_{i} \\
\mathbf{z}_{i+1} \\
\mathbf{z}_{i+2}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{f}_{i-1} \\
\mathbf{f}_{i} \\
\mathbf{f}_{i+1}
\end{array}\right)
$$

in the form

$$
\left(\begin{array}{ccccc}
\widehat{R}_{i-1}^{T} & R_{i-1}^{\prime}{ }^{T} & \widehat{S}_{i-1}^{T} & S_{i-1}^{\prime} & \tag{3.19}\\
& & U_{i}^{T} L_{i}^{T} & & \\
& & \widehat{R}_{i+1}^{T} & R_{i+1}^{\prime} & S_{i+1}^{T}
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{i-2}^{\prime} \\
\mathbf{z}_{i-1}^{\prime} \\
\mathbf{z}_{i}^{\prime} \\
\mathbf{z}_{i+1}^{\prime} \\
\mathbf{z}_{i+2}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{f}_{i-1} \\
\mathbf{f}_{i} \\
\mathbf{f}_{i+1}
\end{array}\right)
$$

Finally, supposing that N is even, the last term

$$
\left(\begin{array}{lllll}
& \widehat{R}_{N-2}^{T} & R_{N-2}^{\prime}{ }^{T} & S_{N-2}^{T} & \\
D_{b}^{T} & & & R_{N-1}^{T} & S_{N-1}^{T} \\
R_{N}^{T}
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{0} \\
\mathbf{z}_{N-3}^{\prime} \\
\mathbf{z}_{N-2}^{\prime} \\
\mathbf{z}_{N-1} \\
\mathbf{z}_{N}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{f}_{N-2} \\
\mathbf{f}_{N-1} \\
\mathbf{f}_{N}
\end{array}\right)
$$

of the system (3.14) yields

$$
\left.\begin{array}{c}
\left(\begin{array}{ccccc}
& \widehat{R}_{N-2}^{T} & R_{N-2}^{\prime}{ }^{T} & \widehat{S}_{N-2}^{T} & S_{N-2}^{\prime} \\
D_{b}^{T} & & & U_{N-1}^{T} L_{N-1}^{T} & \\
\widehat{R}_{N}^{T} & R_{N}^{\prime}{ }^{T}
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{0} \\
\mathbf{z}_{N-3}^{\prime} \\
\mathbf{z}_{N-2}^{\prime} \\
\mathbf{z}_{N-1}^{\prime} \\
\mathbf{z}_{N}^{\prime}
\end{array}\right)= \tag{3.20}\\
\\
\\
\\
\\
\\
\\
\mathbf{f}_{N-2} \\
\mathbf{f}_{N-1} \\
\mathbf{f}_{N}
\end{array}\right) .
$$

The second row of (3.18)-(3.20) is used to compute

$$
\begin{equation*}
\mathbf{z}_{i}^{\prime}=\left(L_{i} U_{i}\right)^{-T} \mathbf{f}_{i} \tag{3.21}
\end{equation*}
$$

and thus to reduce the linear system (3.14) to

$$
\left(\begin{array}{cccccc}
D_{a}^{T} & S_{0}^{\prime} T & & & & \tag{3.22}\\
& R_{2}^{\prime} T & S_{2}^{\prime T} & & & \\
& & R_{4}^{\prime T} & S_{4}^{\prime T} & & \\
& & & \ddots & \ddots & \\
& & & & R_{N-2}^{\prime}{ }^{T} & S_{N-2}^{\prime}{ }^{T} \\
D_{b}^{T} & & & & & R_{N}^{\prime} T^{T}
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{0} \\
\mathbf{z}_{2}^{\prime} \\
\mathbf{z}_{4}^{\prime} \\
\vdots \\
\mathbf{z}_{N}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{f}_{0}^{\prime} \\
\mathbf{f}_{2}^{\prime} \\
\vdots \\
\mathbf{f}_{N}^{\prime}
\end{array}\right)
$$

where

$$
\begin{align*}
& \mathbf{f}_{0}^{\prime}=\mathbf{f}_{0}-\widehat{S}_{0}^{T}\left(L_{1} U_{1}\right)^{-T} \mathbf{f}_{1}, \\
& \mathbf{f}_{N}^{\prime}=\mathbf{f}_{N}-\widehat{R}_{N}^{T}\left(L_{N-1} U_{N-1}\right)^{-T} \mathbf{f}_{N-1}, \tag{3.23}\\
& \mathbf{f}_{i}^{\prime}=\mathbf{f}_{i}-\widehat{R}_{i}^{T}\left(L_{i-1} U_{i-1}\right)^{-T} \mathbf{f}_{i-1}-\widehat{S}_{i}^{T}\left(\left(L_{i+1} U_{i+1}\right)^{T}\right)^{-1} \mathbf{f}_{i+1},
\end{align*}
$$

for $i=2,4, \ldots, N-2$. The algorithm proceeds with the reduction of the linear system (3.22) using the procedure described for (3.14). The reduction ends after $p=\left\lceil\log _{2}(N)\right\rceil$ steps when the 2×2 block linear system

$$
\left(\begin{array}{cc}
D_{a}^{T} & \left.S_{0}^{(p)}\right)^{T} \tag{3.24}\\
D_{b}^{T} & R_{N}^{(p)^{T}}
\end{array}\right)\binom{\mathbf{z}_{0}}{\mathbf{z}_{N}^{(p)}}=\binom{\mathbf{f}_{0}}{\mathbf{f}_{N}^{(p)}}
$$

is obtained. Observe that the coefficient matrix in (3.24) is the transpose of the 2×2 block coefficient matrix in (3.12) obtained in cyclic reduction applied to $A \mathbf{y}=\mathbf{f}$.

The algorithm proceeds with the solution of (3.24) using Gaussian Elimination, obtaining \mathbf{z}_{0} and $\mathbf{z}_{N}^{(p)}$. The other unknowns are computed through the back-substitution phase. Given $\mathbf{z}_{i}^{(k+1)}, \mathbf{z}_{i+s}^{(k+1)}$, in the $(p-k)$ th step, for $k=p-1, \ldots, 1$, the unknowns $\mathbf{z}_{i}^{(k)}, \mathbf{z}_{i+s}^{(k)}$ are determined, using (3.17) and (3.21), from

$$
\begin{equation*}
\mathbf{z}_{i}^{(k)}=P_{i}^{T}\binom{\left(L_{i} U_{i}\right)^{-T} \mathbf{f}_{i}^{(k)}-G_{i}^{(k)^{T}} \mathbf{z}_{i+s}^{(k+1)}}{\mathbf{z}_{i+s}^{(k+1)}} \tag{3.25}
\end{equation*}
$$

for $i=(2 j-1) s, j=\lfloor\lceil N / s\rceil / 2\rfloor, \ldots, 2,1$, with $s=2^{k}$. Note that, $z_{0}^{(k)}=z_{0}$ is satisfied for any k.

The following algorithm summarizes the operations performed on the right hand side \mathbf{f} of the system (3.13), the reduction steps for the coefficient matrix are the same as executed in the factorization of A :

```
\% Solution of the transposed linear system
    \% Reduction of the right hand side
        \(p=\left\lceil\log _{2}(N)\right\rceil\)
        for \(k=0, \ldots, p-1\)
            \(s=2^{k}\)
            \(\mathbf{f}_{0}^{(k+1)}=\mathbf{f}_{0}^{(k)}-\widehat{S}_{0}^{T}\left(L_{1} U_{1}\right)^{-T} \mathbf{f}_{1}^{(k)}\)
            \(\mathbf{f}_{2}^{(k+1)}=\mathbf{f}_{2}^{(k)}-\widehat{R}_{2}^{T}\left(L_{1} U_{1}\right)^{-T} \mathbf{f}_{i}^{(k)}\)
            for \(j=2, \ldots,\lfloor\lceil N / s\rceil / 2\rfloor\)
                \(i=(2 j-1) s\)
                \(\mathbf{f}_{i-s}^{(k+1)}=\mathbf{f}_{i-s}^{(k+1)}-\widehat{S}_{i-s}^{T}\left(L_{i} U_{i}\right)^{-T} \mathbf{f}_{i}^{(k)}\)
                \(\mathbf{f}_{i+s}^{(k+1)}=\mathbf{f}_{i+s}^{(k)}-\widehat{R}_{i+s}^{T}\left(L_{i} U_{i}\right)^{-T} \mathbf{f}_{i}^{(k)}\)
            end
        end
    \% Solution of the final \(2 \times 2\) block linear system
        \(\binom{\mathbf{z}_{0}}{\mathbf{z}_{N}^{(p)}}=\left(\begin{array}{cc}D_{a}^{T} & S_{0}^{(p)^{T}} \\ D_{b}^{T} & R_{N}^{(p)^{T}}\end{array}\right)^{-1} \widehat{P}\binom{\mathbf{f}_{0}}{\mathbf{f}_{N}^{(p)}}\)
    \% Back substitution
        for \(k=p-1, \ldots, 0\)
        \(s=2^{k}\)
        for \(j=\lfloor\lceil N / s\rceil / 2\rfloor, \ldots, 2,1\)
                \(i=(2 j-1) s\)
                \(\mathbf{z}_{i}^{(k+1)}=\left(L_{i} U_{i}\right)^{-T} \mathbf{f}_{i}^{(k)}-G_{i}^{(k)^{T}} \mathbf{z}_{i+s}^{(k+1)}\)
                \(\binom{\mathbf{z}_{i}^{(k)}}{\mathbf{z}_{i+s}^{(k)}}=P_{i}^{T}\binom{\mathbf{z}_{i}^{(k+1)}}{\mathbf{z}_{i+s}^{(k+1)}}\)
        end
    end
```


3.5 Description of the software

The $B A B D C R$ package is written in Fortran 90 and available in double precision. It has four main subroutines:

- BABDCR_FACT factorizes the BABD coefficient matrix in (3.1);
- BABDCR_SOLV solves the linear system (3.1) with a coefficient matrix factorized by BABDCR_FACT;
- BABDCR_SOLVT solves the transposed linear system $A^{T} \mathbf{z}=\mathbf{f}$ with the coefficient matrix A factorized by BABDCR_FACT;
- BABDCR_FACTSOLV factorizes the BABD coefficient matrix and at the same time solves the linear system (3.1).

The last subroutine is convenient if only a single BABD linear system needs to be solved. The original coefficient matrix is replaced with part of the factorization and can no longer be used. On the other hand, the first two subroutines solve system (3.1) in two successive steps: BABDCR_FACT factorizes the coefficient matrix and BABDCR_SOLV uses the output of BABDCR_FACT to compute the solution of (3.1), the arrays containing the cyclic reduction factorization are not modified by successive calls to BABDCR_SOLV. Thus, the solution of q linear systems with the same coefficient matrix can be computed by means of one call to BABDCR_FACT followed by q calls to BABDCR_SOLV. This procedure yields a great decrease in the number of operations compared to the multiple use of BABDCR_FACTSOLV; however, it requires fill-in vectors (see below). Finally, if A is factorized with BABDCR_FACT, then BABDCR_SOLVT uses its output to solve the linear system $A^{T} \mathbf{z}=\mathbf{f}$. This subroutine is mainly used to compute the 1-norm of the inverse of the coefficient matrix in order to determine the condition number of the BABD coefficient matrix. This can be obtained by means of the subroutine DONEST [47], which needs in order to evaluate the 1 -norm of the matrix A^{-1} : the product $A^{-1} \mathbf{x}$ (for example, computed by means of BABDCR_SOLV) and the product $\left(A^{-1}\right)^{T} \mathbf{x}$ (for example, computed by means of BABDCR_SOLV) for a given vector \mathbf{x}.

The package requires that the coefficient matrix in input is given as in Figure 3.1, that is, the block rows

$$
\begin{equation*}
V_{i}:=\left(S_{i-1}, R_{i}\right) \tag{3.26}
\end{equation*}
$$

must be given sequentially in an $m \times m \times 2 N$ three-dimensional array MATR_A; boundary blocks are saved in two $m \times m$ arrays LFTBLK and RGTBLK. The right hand side \mathbf{f} must be assigned in an $m \times(N+1)$ array VECT_B.

The structure of BABDCR_FACT and BABDCR_SOLV is represented in Figures 3.2-3.3. Dashed blocks contain the Fortran 90 intrinsic procedure RESHAPE, the BLAS routines DGER, DTRSM, DGEMV and DDOT, and the Lapack routines DGETRF and DGETRS.

BABDCR_FACT involves calls to REASSEMBLE and REDUCE_BLOCK. The subroutine REASSEMBLE allows us to assemble a $2 m \times m$ block from

$$
\begin{aligned}
& \text { MATR_A }=\left(\begin{array}{|c|c|}
\hline V_{1} & V_{2} \\
\cdots & V_{N} \\
\operatorname{LFTBLK}=\binom{D_{a}}{\hline} & \text { RGTBLK }=\binom{D_{b}}{\hline}
\end{array} .=\begin{array}{c}
\end{array}\right)
\end{aligned}
$$

Figure 3.1: Structure of the input coefficient matrix

Figure 3.2: BABDCR_FACT subroutine hierarchy
two consecutive blocks of size $m \times m$. The output obtained is used by REDUCE_BLOCK which applies one step of reduction to obtain one block row from two consecutive ones (see (3.9)-(3.10)). The operations performed in REDUCE_BLOCK are summarized in Figure 3.5, where the variables considered have the same meaning of those in Section 3.1.

Since the reduction is also applied to the right hand side, we need to save, after each step of the coefficient matrix reduction, the block G_{i} which is used in REDUCERHS; moreover, we need to save the matrices L_{i} and U_{i} of the LU factorization of the $2 m \times m$ block $\binom{R_{i}^{(k)}}{S_{i}^{(k)}}$ (computed by the LAPACK routine DGETRF) and the fill-in block F_{i} of size m by m containing the nonzero rows of $\widehat{S}_{i-s}^{(k)}$ and $\widehat{R}_{i+s}^{(k)}$ which are used in SOLVE_BLOCK. Finally, $S_{i-s}^{(k)}$ and $R_{i+s}^{(k)}$ are replaced by the blocks of the new reduced matrix, namely $S_{i-s}^{(k+1)}$ and $R_{i+s}^{(k+1)}$.

On exit, BABDCR_FACT outputs two new arrays containing the fill-in blocks F_{i} and the permutations, saved in a $m \times m \times(N-1)$ array and in a $2 m \times N$ integer array, respectively. The arrays containing the coefficient matrix now have the structure in Figure 3.5: the first and the last block of MATR_A and the boundary blocks contain the LU factorization of the matrix in (3.12) (see Figure 3.6), whereas each $L U G_{i}$ block contains L_{i}, U_{i} and G_{i} (saved as in Figure 3.5) reshaped as a $2 m \times m$ array.

Figure 3.3: BABDCR_SOLV subroutine hierarchy

Figure 3.4: Operations performed in REDUCE_BLOCK

The subroutine BABDCR_SOLV uses the subroutines REDUCE_RHS to compute the right hand side of (3.10) from (3.9), and SOLVE_BLOCK to back-solve, that is, to compute x_{s} from (3.11) (x_{i-s} and x_{i+s} are known values). The LAPACK routine DGETRS solves the final 2×2 block linear system factorized by DGETRF.

The subroutine BABDCR_SOLVT uses the subroutine REDUCE_RHST to determine the right hand side of (3.22), it uses the subroutine DGETRS for solving linear systems and DAXPY for performing the multiplications in (3.23). The unknowns are determined in SOLVE_BLOCKT which performs the operations in (3.25) using the BLAS routine DGEMV. The routine DGETRS also performs the solution of the final 2×2 block linear system (3.24) factorized by DGETRF in BABDCR_FACT.

Finally, the subroutine BABDCR_FACTSOLV uses the subroutines REDUCE (which include the subroutines REDUCE_BLOCK and REDUCE_RHS), REASSEM-

Figure 3.5: Structure of the coefficient matrix on exit from BABDCR__FACT

Figure 3.6: Structure of the LU factorization of (3.12)

BLE and SOLVE_BLOCK. Since the linear system is solved step by step with the factorization, the block G_{i} is used immediately after it is computed and so does not need to be saved. For this reason, the fill-in block F_{i} is saved in place of G_{i} and the subroutine essentially does not generate fill-in. The coefficient matrix is modified by the subroutine. It cannot be used for solving other systems with different righthand sides, because the fill-in blocks are not saved and the permutation matrices are not output.

3.6 Calling sequences

We list the parameters used in the calling sequences of the four main subroutines of the package $B A B D C R$. Note that, unless otherwise stated, the parameters do not change on exit.

The subroutine BABDCR_ FACT has the calling sequence:

> CALL BABDCR_FACT(m, N, MATR_A, LFTBLK, RGTBLK, PERM, FILL_IN, INFO $)$
where the parameters are defined as follows:
\boldsymbol{m} integer, number of rows of each block V_{i}, see (3.26), in the coefficient matrix (3.1).
N integer, number of blocks V_{i}.
MATR_A real, $m \times m \times 2 N$ array. On input, it contains the coefficient matrix of the BABD system (3.1) which is stored as in Figure 3.1. On exit, it contains the factorization of the coefficient matrix which is stored as in Figure 3.5.

LFTBLK real, $m \times m$ array. On input, it contains the boundary block D_{a}. On exit, it contains the upper-left block A_{1}, see Figure 3.6, of the LU factorization of the final 2×2 block matrix in (3.12).

RGTBLK real, $m \times m$ array. On input, it contains the boundary block D_{b}. On exit, it contains the upper-left block A_{2}, see Figure 3.6, of the LU factorization of the final 2×2 block matrix in (3.12).

PERM integer, $2 m \times N$ array. On exit, each column contains the permutation vector associated with the LU factorization performed by each call to REDUCE_BLOCK. The last two columns are associated with the permutation performed by the factorization of the final 2×2 block matrix in (3.12).

FILL_IN real, $m \times m \times(N-1)$ array. On exit, it contains the fill-in blocks $F_{i}^{(k)}$ generated by the factorization (by each call to REDUCE_BLOCK).

INFO integer. On exit, this parameter is equal to 0 if the coefficient matrix is nonsingular, or gives the index ${ }^{2}$ of the block where breakdown has occurred if A is singular.

The subroutine BABDCR_SOLV has the calling sequence:

CALL BABDCR_SOLV(m, N, MATR_A, LFTBLK, RGTBLK, PERM, FILL_IN, VECT_B)

where the first seven parameters were defined in the subroutine BABDCR_FACT (and contain the output of that subroutine). The last parameter is

VECT_B real, $m \times(N+1)$ array. On input, it contains the right hand side \mathbf{f} of system (3.1). On exit, it contains the solution of the system.

The subroutine BABDCR_SOLV has the calling sequence:

CALL BABDCR_SOLVT(m, N, MATR_A, LFTBLK RGTBLK, PERM, FILL_IN, VECT_B)

As for BABDCR_SOLV, the first seven parameters were defined in the subroutine BABDCR_FACT (and contain the output of that subroutine). The last parameter is

VECT_B real, $m \times(N+1)$ array. On input, it contains the right hand side \mathbf{f} of system $A^{T} \mathbf{z}=\mathbf{f}$, see (3.14). On exit, it contains the solution of the system.

Finally, the subroutine BABDCR_FACTSOLV has the calling sequence:

CALL BABDCR_FACTSOLV (m, N, MATR_A, VECT_B, INFO)

where the parameters are defined like those used in BABDCR_FACT. Since, in BABDCR_FACTSOLV, we do not heap the permutations array and the fill-in blocks, we cannot use the factorization on exit for solving more linear systems.

[^3]
3.6.1 A new version of MIRKDC

The code MIRKDC, whose algorithm is described in Section 1.3.1, uses the following variable names: neqns and Nsub are, respectively, the order m of the system (1.18) and the number N of subintervals of the current mesh, leftbc is the number of boundary conditions at the point a, MxNsub is the user defined maximum number of subintervals of $[a, b]$, and blocks is a vector which contains the blocks $V_{i}:=\left(S_{i}, R_{i+1}\right)$ of the current BABD coefficient matrix in (1.20), stored column by column, as for the array MATR_A in Figure 3.1.

We present a variant of MIRKDC, called MIRKDC_2, which solves the system of BVPs (1.18) with general non-separated boundary conditions. The algorithm uses the discretizations of MIRKDC resulting in linear systems (1.20) with the BABD form, as in (3.1), that are solved using the BABD solver BABDCR. Therefore, in MIRKDC_2 we essentially replace COLROW, employed in MIRKDC, with $B A B D C R$. To do this, we make some modifications of the MIRKDC code:

- the permutation vector array, of length neqns* (MxNsub+1) is replaced by a vector array of length $2 *$ neqns $* M \times N s u b$,
- the array FILL_IN, described in Section 3.5, is saved in (Nsub-1) *(neqns **2) contiguous locations in the array blocks,
- the arrays top and bot contain the blocks D_{a} and D_{b} of the Jacobian in (1.20), represented in (3.1), which each are of size neqns \times neqns instead of leftbc \times neqns and (neqns $-l e f t b c$) \times neqns, respectively,
- in $B A B D C R$ the right hand side associated with the linear system is overwritten by the solution, whereas COLROW doesn't overwrite the solution. Therefore, before the call to $B A B D C R$ the right hand side occupies the same locations as for the solution.

3.7 Comparisons among the linear system solvers

We compare BABDCR with COLROW and RSCALE on the ABD and BABD linear systems generated by the codes MIRKDC and MIRKDC_2. Our tests are executed on an Alpha-server DS20E with a 667 MHz EV67 processor with a Compaq Fortran 90 (formerly Digital Fortran 90) compiler. Here and in the next section we use in MIRKDC and MIRKDC_2 the optimal 3 stages, 4 -th order MIRK scheme

0	0	0	0	0
1	1	0	0	0
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$	$-\frac{1}{8}$	0
		$\frac{1}{6}$	$\frac{1}{6}$	$\frac{2}{3}$

and an associated 4 -th order, 4 stages CMIRK scheme, see Section and [33]. First, we discuss the ABD linear systems generated by MIRKDC applied to a linear BVP
$\mathbf{y}^{\prime}=M \mathbf{y}(t)$ with $M \in \mathbb{R}^{m \times m}$ and linear boundary conditions $D_{\text {top }} \mathbf{y}(a)=\mathbf{d}_{a} \in$ $\mathbb{R}^{m_{\text {top }}}$ and $D_{b o t} \mathbf{y}(b)=\mathbf{d}_{b} \in \mathbb{R}^{m-m_{\text {top }}}$.

Here we fix $m=20$ and $m_{t o p}=10$. Both $D_{t o p}, D_{b o t}$ and M are randomly generated full matrices and such that the BVP is well-conditioned. That is, $D_{\text {top }}, D_{\text {bot }} \in \mathbb{R}^{10 \times 20}$ have rank 10 , which guarantees the unicity of the solution. Also, matrix M is obtained from $M=Q \Lambda Q^{T}$, where Q is an orthogonal matrix arising from the QR factorization of a random matrix and Λ is a diagonal matrix with 10 positive and 10 negative diagonal values of moderate size. Then from the Proposition 1.1.10 and 1.1.14, the resulting BVP is well conditioned with an exponential dichotomy of rank 10 .
$B A B D C R$ and RSCALE require the simple transformation

$$
\begin{gathered}
D_{a}=\binom{D_{t o p}}{0} \in \mathbb{R}^{m \times m}, \quad D_{b}=\binom{0}{D_{b o t}} \in \mathbb{R}^{m \times m} \\
\text { and } \quad \mathrm{d}=\binom{d_{a}}{d_{b}} \in \mathbb{R}^{\mathrm{m}},
\end{gathered}
$$

in order to be applied to a system with the BABD structure in (3.1). The timings and errors, in Table 3.1, lead us to prefer COLROW over the other algorithms. Indeed, COLROW is more than 2 times faster than $B A B D C R$ and more than 4 times faster than RSCALE. Moreover, the errors for COLROW and BAB$D C R$ are similar, but RSCALE is less accurate. These results essentially agree with the theoretical computational costs of the three solvers. In fact, applied to the ABD linear system in Fig. 2, to leading order in m, COLROW requires $\left(\frac{5}{3} m^{3}+m\left(m-m_{\text {top }}\right) m_{\text {top }}\right) N$ operations and $\operatorname{RSCALE}\left(\frac{20}{3} m^{3}\right) N$.

Table 3.1: ABD systems generated by MIRKDC applied to a linear problem.

	time (secs.)			error		
	$\mathrm{N}=256$	$\mathrm{~N}=512$	$\mathrm{~N}=1024$	$\mathrm{~N}=256$	$\mathrm{~N}=512$	$\mathrm{~N}=1024$
BABDCR	$3.71 \mathrm{e}-02$	$7.12 \mathrm{e}-02$	0.152	$1.65 \mathrm{e}-13$	$2.88 \mathrm{e}-13$	$3.46 \mathrm{e}-13$
COLROW	$1.46 \mathrm{e}-02$	$2.83 \mathrm{e}-02$	$6.34 \mathrm{e}-02$	$1.55 \mathrm{e}-13$	$2.05 \mathrm{e}-13$	$7.08 \mathrm{e}-13$
RSCALE	$6.83 \mathrm{e}-02$	0.136	0.274	$2.54 \mathrm{e}-12$	$6.02 \mathrm{e}-12$	$3.01 \mathrm{e}-11$

For a comparison on BABD linear systems, we apply MIRKDC 2 to a linear BVP $\mathbf{y}^{\prime}=M \mathbf{y}(t)$ with non-separated boundary conditions $D_{a} \mathbf{y}(a)+D_{b} \mathbf{y}(b)=$ $\mathbf{d} \in \mathbb{R}^{m}$. Again, the size of the problem is $m=20$. For M, we investigate two cases:

1. M is a well-conditioned matrix with eigenvalues $-102,-10,-7,-4,-3,-2.5$, $-1.3,-1,-0.5,-0.4,0.2,0.3,1,1,2,2.5,3,4,11,25$;
2. M has eigenvalues $-9,-3.5,-3,-2,-2,-1.5,-1.5,-1.25,-0.5,-1 \mathrm{e}-08,0.25$, $0.5,0.5,1,3,4,5,7,8,1 \mathrm{e}+08$.

For COLROW we re-write the BABD system as an equivalent ABD linear system of double size, see 2.7. Then, the computational cost of this solver becomes $\left(\frac{46}{3} m^{3}\right) N$. This implies that theoretically $B A B D C R$ is more than three times faster. In Tables 3.2-3.3, we compare the errors and timings of the three linear solvers. From the results in Table 3.2 on the cases 1.-2., BABDCR is approximately 3 times faster than COLROW and more than 1.5 times faster than RSCALE. Timings associated with COLROW include converting the linear system from the BABD structure to the ABD structure 2.7. The errors associated with BABDCR and COLROW are similar, and RSCALE is the least accurate algorithm. The errors of the three methods, applied to case (2), are given in Table 3.3. Note that these errors are large, because the BVP is ill-conditioned for the presence of a null eigenvalue, see Proposition 1.1.9 and Theorem 1.1.10. Finally, observe that BABDCR and COLROW are significantly more accurate than RSCALE.

Table 3.2: Times in seconds for the solution of BABD systems generated by MIRKDC_2 applied to a linear 20×20 BVP.

	$\mathrm{N}=256$	$\mathrm{~N}=512$	$\mathrm{~N}=1024$
BABDCR	$3.61 \mathrm{e}-02$	$7.03 \mathrm{e}-02$	0.151
COLROW	0.102	0.224	0.464
RSCALE	$6.83 \mathrm{e}-02$	0.136	0.287

Table 3.3: Errors for the solution of BABD systems generated by MIRKDC_2 applied to a linear $20 \times 20 \mathrm{BVP}$.

		c	case (1)		case (2)		
	$\mathrm{N}=256$	$\mathrm{~N}=512$	$\mathrm{~N}=1024$	$\mathrm{~N}=256$	$\mathrm{~N}=512$	$\mathrm{~N}=1024$	
BABDCR	$7.62 \mathrm{e}-13$	$1.22 \mathrm{e}-12$	$1.19 \mathrm{e}-12$	$6.28 \mathrm{e}-04$	$2.22 \mathrm{e}-04$	$8.00 \mathrm{e}-05$	
COLROW	$7.53 \mathrm{e}-13$	$4.10 \mathrm{e}-13$	$1.25 \mathrm{e}-12$	$2.80 \mathrm{e}-04$	$2.16 \mathrm{e}-04$	$9.25 \mathrm{e}-05$	
RSCALE	$5.17 \mathrm{e}-12$	$2.90 \mathrm{e}-11$	$6.02 \mathrm{e}-11$	$1.90 \mathrm{e}-02$	$8.55 \mathrm{e}-03$	$1.08 \mathrm{e}-02$	

3.8 Comparisons of the two versions of MIRKDC

In order to better emphasize the advantages of using $B A B D C R$, Tables 3.4-3.5 give statistics for calls to MIRKDC_2 (that uses BABDCR) and to MIRKDC (using COL$R O W)$ applied to the BVP of double size $\mathbf{y}^{\prime}=M \mathbf{y}(t), \mathbf{z}^{\prime}=\mathbf{0}$ with separated boundary conditions $\mathbf{y}(a)-\mathbf{z}(a)=\mathbf{0}$ and $D_{a} \mathbf{z}(b)+D_{b} \mathbf{y}(b)=\mathbf{d}$. Both codes are applied to the problem with M having eigenvalues as in case (1) using the MIRK/CMIRK scheme of order 4 [34]. From Tables 3.4 and 3.5, BABDCR in

Table 3.4: MIRKDC_2 (using $B A B D C R$) for the linear problem in case (1) with an initial mesh of 256 points and tolerance 1e-07

MESH	\sharp FACTs	time (secs.)	\sharp SOLVEs	time (secs.)
256	1	$0.32 \mathrm{e}-01$	2	$0.98 \mathrm{e}-02$
224	1	$0.25 \mathrm{e}-01$	2	$0.78 \mathrm{e}-02$
246	1	$0.29 \mathrm{e}-01$	2	$0.78 \mathrm{e}-02$
Total:	3	$0.87 \mathrm{e}-01$	6	$0.25 \mathrm{e}-01$

Total monitored Linear Algebra time: 0.11 secs.
Total monitored Nonlinear Algebra time: 0.12 secs.

Table 3.5: MIRKDC (using COLROW) for the linear problem of double size in case (1) with an initial mesh of 256 points and tolerance 1e-07.

MESH	\sharp FACTs	time (secs.)	\sharp SOLVEs	time (secs.)
256	1	0.11	2	$0.16 \mathrm{e}-01$
224	1	$0.75 \mathrm{e}-01$	2	$0.12 \mathrm{e}-01$
246	1	$0.82 \mathrm{e}-01$	2	$0.14 \mathrm{e}-01$
Total:	3	0.27	6	$0.41 \mathrm{e}-01$

Total monitored Linear Algebra time: 0.31 secs.
Total monitored Nonlinear Algebra time: 0.12 secs.

MIRKDC_2 saves more than one half of the linear algebra time with respect to using COLROW. Though this result is valid for the problem considered, results in Table 3.2 show that, for a general BVP with non-separated boundary conditions, $B A B D C R$ in MIRKDC runs significantly faster than COLROW.

Chapter 4

Algorithms to solve general BABD linear systems

In Section 1.7, we have determined the BABD structures of the linear systems arising from Orthogonal Spline Collocation (OSC) applied to a BVODE. In these structures, see (1.32) and (1.37), the block rows V_{i} have some columns not overlapped with other block rows. Also, the number of columns (or rows) in the blocks V_{i} may not be constant. Therefore the code $B A B D C R$, described in the previous chapter, cannot be applied to these 'general' structures. We generalize the cyclic reduction approach, employed in $B A B D C R$, for solving these BABD systems. Different cyclic reduction approaches are described. In particular, a new technique for systems arising from spline collocation with a monomial basis, as in (1.37), is introduced. We motivate the choice of an approach with respect to other approaches, analyzing times, errors and memory requirements. Comparisons with other codes are also provided.

4.1 Introduction

We consider the BABD linear system

$$
\begin{equation*}
A \mathbf{y}=\mathbf{f} \tag{4.1}
\end{equation*}
$$

with the coefficient matrix A having the 'general' structure

Since each block row V_{i} has overlapping columns with the adjacent block rows, it may be represented with the following structure

$$
V_{i}=\left(\begin{array}{ccc}
S_{i-1} & T_{i} & R_{i} \tag{4.2}
\end{array}\right), \quad i=1, \ldots, N
$$

where blocks R_{i-1} (in V_{i-1}) and S_{i-1} (in V_{i}) contain the overlapping columns between V_{i-1} and V_{i}. Therefore, the resulting structure may be represented as in the following

$$
A=\left(\begin{array}{cccccccccc}
D_{a} & & & & & & & & & D_{b} \tag{4.3}\\
S_{0} & T_{1} & R_{1} & & & & & & & \\
& & S_{1} & T_{2} & R_{2} & & & & & \\
& & & & \ddots & & & & & \\
& & & & & \ddots & & & & \\
& & & & & S_{i-1} & T_{i} & R_{i} & & \\
& & & & & & & \ddots & & \\
& & & & & & & & \ddots & \\
& & & & & & & S_{N-1} & T_{N} & R_{N}
\end{array}\right) .
$$

Note that, S_{0} and R_{N} contain the same columns of the boundary blocks D_{a} and D_{b}, respectively. Also, T_{i} has no overlapping columns with any other block row. We set $n_{i} \times\left(m_{i-1}+k_{i}+m_{i}\right)$ the size of each block row V_{i} in (4.2), where n_{i} is the number of rows, m_{i} is the number of columns of R_{i} (and S_{i} in V_{i+1}), and k_{i} is the number of columns of T_{i}. Also, n_{0} is the number of rows of the boundary blocks D_{a} and D_{b}. Then, supposing that the coefficient matrix A is square of dimension

$$
\begin{equation*}
N_{d i m}=\sum_{i=0}^{N} n_{i} \tag{4.4}
\end{equation*}
$$

we obtain

$$
\sum_{i=0}^{N} n_{i}=\sum_{i=0}^{N} m_{i}+\sum_{i=1}^{N} k_{i}
$$

and, for the nonsingularity of the linear system (4.1), we require

$$
\begin{array}{ll}
n_{i} \geq k_{i}, & i=1, \ldots N \\
n_{i}+n_{i+1} \geq k_{i}+m_{i}+k_{i+1}, & \tag{4.5}\\
i=1, \ldots, N-1
\end{array}
$$

In the proof of conditions (4.5), we state that if $n_{i}+n_{i+1}<k_{i}+m_{i}+k_{i+1}$ is satisfied, then the submatrix

$$
\left(\begin{array}{ccc}
& & \tag{4.6}\\
T_{i} & R_{i} & \\
& S_{i} & T_{i+1} \\
& &
\end{array}\right)
$$

of size $N_{d i m} \times\left(k_{i}+m_{i}+k_{i+1}\right)$ extracted from (4.3), has $k_{i}+m_{i}+k_{i+1}$ linear independent columns. Hence, (4.6) has more than $n_{i}+n_{i+1}$ linear independent rows. This reductio ad absurdum that some null rows are linear independent. Analogously, the condition $n_{i} \geq k_{i}$ is satisfied because the k_{i} (no overlapping) columns of T_{i} are linear independent.

As an example, see Section 1.7, the BABD structure (4.3) arises from the numerical solution of two-point boundary value problems with non-separated boundary conditions, as in (1.4). Considering a BVP of order m and using k Gaussian points in each of the N subintervals, the resulting BABD structure has block rows (4.2) with

- in the B-spline case (Section 1.7.1):

$$
\begin{equation*}
S_{i-1}=W_{i, 1}, \quad T_{i}=W_{i, 2}, \quad R_{i}=W_{i, 3} \tag{4.7}
\end{equation*}
$$

with $W_{i, 1}, W_{i, 3} \in \mathbb{R}^{k \times m}$ and $W_{i, 2} \in \mathbb{R}^{k \times(k-m)}$,

- in the monomial spline case (Section 1.7.2):

$$
\begin{equation*}
S_{i-1}=\binom{H_{i}}{-E_{i}}, \quad T_{i}=\binom{G_{i}}{-F_{i}} \quad \text { and } \quad R_{i}=\binom{0}{I} \tag{4.8}
\end{equation*}
$$

where $-E_{i} \in \mathbb{R}^{m \times m}$, the identity matrix $I \in \mathbb{R}^{m \times m}, H_{i} \in \mathbb{R}^{k \times m},-F_{i} \in$ $\mathbb{R}^{m \times k}$, and $G_{i} \in \mathbb{R}^{k \times k}$.
We use the following notation for the right hand side \mathbf{f} and for the unknown vector \mathbf{y} of system (4.1),

$$
\begin{align*}
& \mathbf{f}=\left(\begin{array}{llll}
\mathbf{d}^{T}, & \mathbf{f}_{1}^{T}, & \ldots, & \mathbf{f}_{N}^{T}
\end{array}\right)^{T}, \\
& \mathbf{y}=\left(\begin{array}{llllll}
\mathbf{z}_{0}^{T}, & \mathbf{w}_{1}^{T}, & \mathbf{z}_{1}^{T}, & \mathbf{w}_{2}^{T}, & \ldots, & \mathbf{z}_{N-1}^{T},
\end{array} \mathbf{w}_{N}^{T}, \quad \mathbf{z}_{N}^{T}\right)^{T}, \tag{4.9}
\end{align*}
$$

where $\mathbf{d} \in \mathbb{R}^{n_{0}}, \mathbf{f}_{i} \in \mathbb{R}^{n_{i}}, \mathbf{z}_{i} \in \mathbb{R}^{m_{i}}$, and $\mathbf{w}_{i} \in \mathbb{R}^{k_{i}}$.
We note that, in the numerical discretization of BVODEs, using the techniques described in Chapter 1, the number of block rows N is usually much larger than n_{i}, m_{i}, and k_{i}.

4.2 Cyclic reduction approach for general BABD linear systems

The cyclic reduction algorithm, described in Chapter 3, can be improved to solve BABD linear systems (4.1) with structure (4.3). This algorithm yields systems of lower dimension (involving less unknowns) with the same BABD structure, until it reaches a small system that is easy to solve directly. After that, using backsubstitution, all the unknowns of the system are determined.

At the first step, for $i=2 j-1, j=1,2, \ldots,\lfloor N / 2\rfloor$, each subsystem

$$
\begin{align*}
& S_{i-1} \mathbf{z}_{i-1}+T_{i} \mathbf{w}_{i}+R_{i} \mathbf{z}_{i}=\mathbf{f}_{i} \tag{4.10}\\
& \qquad S_{i} \mathbf{z}_{i}+T_{i+1} \mathbf{w}_{i+1}+R_{i+1} \mathbf{z}_{i+1}=\mathbf{f}_{i+1}
\end{align*}
$$

involving $s_{i}=m_{i-1}+k_{i}+m_{i}+k_{i+1}+m_{i+1}$ unknowns, is transformed in the equation

$$
\begin{equation*}
S_{i-1}^{\prime} \mathbf{z}_{i-1}+T_{i}^{\prime} \mathbf{w}_{i}^{\prime}+R_{i+1}^{\prime} \mathbf{z}_{i+1}=\mathbf{f}_{i+1}^{\prime} \tag{4.11}
\end{equation*}
$$

involving only the $s_{i}-r_{i}$ (with $r_{i}>0$) unknowns: $\mathbf{z}_{i-1}, \mathbf{z}_{i+1}$ and \mathbf{w}_{i}^{\prime}, described below.

Note that, the blocks S_{i-1}^{\prime} and R_{i+1}^{\prime} correspond to the same unknowns associated to S_{i-1} and R_{i+1}, respectively. Therefore, after the first step of the algorithm, the linear system

$$
\left(\begin{array}{ccccccc}
D_{a} & & & & & & D_{b} \tag{4.12}\\
S_{0}^{\prime} & T_{1}^{\prime} & R_{2}^{\prime} & & & & \\
& & S_{2}^{\prime} & T_{3}^{\prime} & R_{4}^{\prime} & & \\
& & & & & & \\
& & & & \ddots & & \\
& & & & & & \\
& & & & S_{N-2}^{\prime} & T_{N-1}^{\prime} & R_{N}^{\prime}
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{0} \\
\mathbf{w}_{1}^{\prime} \\
\mathbf{z}_{2} \\
\mathbf{w}_{3}^{\prime} \\
\vdots \\
\mathbf{z}_{N-2} \\
\mathbf{w}_{N-1}^{\prime} \\
\mathbf{z}_{N}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{d} \\
\mathbf{f}_{2}^{\prime} \\
\mathbf{f}_{4}^{\prime} \\
\vdots \\
\mathbf{f}_{N}^{\prime}
\end{array}\right)
$$

is obtained. The blocks R_{i-1}^{\prime} and S_{i-1}^{\prime} lie in the same columns of the BABD coefficient matrix in (4.12). Also, S_{0}^{\prime} contains the overlapping columns of the first block row with D_{a} and R_{N}^{\prime} contains the overlapping columns of the last block row with D_{b}. If N is odd, the last row of the initial system with coefficient matrix (4.3) is unchanged, that is

$$
S_{N-1}^{\prime}=S_{N-1}, \quad T_{N}^{\prime}=T_{N}, \quad R_{N}^{\prime}=R_{N}
$$

Therefore, the number of block rows of the resulting linear system (4.12) is $\lceil N / 2\rceil+$ 1.

There are several ways to reduce subsystems (4.10) to (4.11); at least four as represented in Figure 4.1. In fact, since each matrix (4.6) has $k_{i}+m_{i}+k_{i+1}$ linear independent columns, any submatrix M_{i}, in Figure 4.1, has rank $r_{i} \leq n_{i}+n_{i+1}$.

1. $M_{i}=\left(\begin{array}{ccc}T_{i} & R_{i} & \\ & S_{i} & T_{i+1}\end{array}\right), r_{i}=k_{i}+m_{i}+k_{i+1}$, yields to a null vector \mathbf{w}_{i}^{\prime}, because T_{i}^{\prime} is not determined;
2. $M_{i}=\left(\begin{array}{cc}R_{i} & \\ S_{i} & T_{i+1}\end{array}\right), r_{i}=m_{i}+k_{i+1}$, yields to $\mathbf{w}_{i}^{\prime}=\mathbf{w}_{i}$, $T_{i}^{\prime} \in \mathbb{R}^{\left(n_{i}+n_{i+1}-r_{i}\right) \times k_{i}} ;$
3. $M_{i}=\left(\begin{array}{cc}T_{i} & R_{i} \\ & S_{i}\end{array}\right), r_{i}=k_{i}+m_{i}$, yields to $\mathbf{w}_{i}^{\prime}=\mathbf{w}_{i+1}$, $T_{i}^{\prime} \in \mathbb{R}^{\left(n_{i}+n_{i+1}-r_{i}\right) \times k_{i+1}} ;$
4. $M_{i}=\binom{R_{i}}{S_{i}}, r_{i}=m_{i}$ leads to $\mathbf{w}_{i}^{\prime}=\binom{\mathbf{w}_{i}}{\mathbf{w}_{i+1}}$, $T_{i}^{\prime} \in \mathbb{R}^{\left(n_{i}+n_{i+1}-r_{i}\right) \times\left(k_{i}+k_{i+1}\right)}$.

Figure 4.1: M_{i}, r_{i} and \mathbf{w}_{i}^{\prime} used in four possible reduction of (4.10) in (4.11)

Thus, using the inverse of an $r_{i} \times r_{i}$ matrix extracted from M_{i}, we can express explicitly r_{i} unknowns of the subsystem (4.10) as a function of the remaining $s_{i}-$ r_{i}. In the equation (4.11), the unknowns \mathbf{w}_{i}^{\prime} are those used in (4.10) and different from \mathbf{z}_{i-1} and \mathbf{z}_{i+1}. The unknowns \mathbf{w}_{i}^{\prime} are of length $s_{i}-\left(r_{i}+m_{i}+m_{i+1}\right)=$ $k_{i}+m_{i}+k_{i+1}-r_{i}$.

The reduction of any subsystem (4.10) is performed by row partial pivoting LU factorization applied to M_{i} :

$$
P_{i} M_{i}=\binom{L_{i}}{H_{i}} U_{i}=\left(\begin{array}{cc}
I & \\
G_{i} & I
\end{array}\right) L_{i} U_{i}
$$

The permutation matrix P_{i} is of size $\left(n_{i}+n_{i+1}\right) \times\left(n_{i}+n_{i+1}\right), L_{i}$ and U_{i} are respectively lower and upper triangular matrices of dimension r_{i}, H_{i} is of size $\left(n_{i}+n_{i+1}-r_{i}\right) \times r_{i}$ and $G_{i}=H_{i} L_{i}^{-1} \in \mathbb{R}^{\left(n_{i}+n_{i+1}-r_{i}\right) \times r_{i}}$. The reduced system (4.12) is obtained by multiplying each pair of block rows (4.10) by P_{i} and by

$$
\left(\begin{array}{cc}
I & \\
-G_{i} & I
\end{array}\right)
$$

the inverse of the lower triangular matrix $\left(\begin{array}{cc}I & \\ G_{i} & I\end{array}\right)$.
Then, in case 4 (Figure 4.1), the reduction yields

$$
\begin{align*}
& \left(\begin{array}{cc}
I & \\
-G_{i} & I
\end{array}\right) P_{i}\left(\begin{array}{ccccc}
S_{i-1} & T_{i} & R_{i} & & \\
& & S_{i} & T_{i+1} & R_{i+1}
\end{array}\right)= \\
& \left(\begin{array}{ccccc}
\tilde{S}_{i-1} & \tilde{T}_{i} & L_{i} U_{i} & \tilde{T}_{i+1} & \tilde{R}_{i+1} \\
S_{i-1}^{\prime} & T_{i, 1}^{\prime} & & T_{i, 2}^{\prime} & R_{i+1}^{\prime}
\end{array}\right) . \tag{4.13}
\end{align*}
$$

The block T_{i}^{\prime} in (4.11) is

$$
T_{i}^{\prime}=\left(\begin{array}{cc}
T_{i, 1}^{\prime} & T_{i, 2}^{\prime}
\end{array}\right)
$$

For the other cases in Figure 4.1, since T_{i} and/or T_{i+1} are in M_{i}, they are not involved in the operations for determining T_{i}^{\prime}.

The right hand side is modified accordingly

$$
\left(\begin{array}{cc}
I & \tag{4.14}\\
-G_{i} & I
\end{array}\right) P_{i}\binom{\mathbf{f}_{i}}{\mathbf{f}_{i+1}}=\binom{\tilde{\mathbf{f}}_{i}}{\mathbf{f}_{i+1}^{\prime}} .
$$

From (4.13), it follows that the blocks S_{i-1}^{\prime} and R_{i+1}^{\prime} satisfy

$$
\begin{align*}
& S_{i-1}^{\prime}=\left(\begin{array}{ll}
-G_{i} & I
\end{array}\right) P_{i}\binom{S_{i-1}}{O} \tag{4.15}\\
& R_{i+1}^{\prime}=\left(\begin{array}{ll}
-G_{i} & I
\end{array}\right) P_{i}\binom{O}{R_{i+1}}
\end{align*}
$$

where S_{i-1}^{\prime} is of size $\left(n_{i}+n_{i+1}-r_{i}\right) \times m_{i-1}$, and R_{i+1}^{\prime} is of size $\left(n_{i}+n_{i+1}-\right.$ $\left.r_{i}\right) \times m_{i+1}$.

In any of the four cases represented in Figure 4.1, the blocks S_{i-1}^{\prime} and R_{i+1}^{\prime} are determined through the operations in (4.15). In contrast, the block T_{i}^{\prime} of size $\left(n_{i}+n_{i+1}-r_{i}\right) \times\left(k_{i}+m_{i}+k_{i+1}-r_{i}\right)$ differs in each case:

1. T_{i}^{\prime} does not exist,
2. $T_{i}^{\prime}=\left(\begin{array}{ll}-G_{i} & I\end{array}\right) P_{i}\binom{T_{i}}{O}$,
3. $T_{i}^{\prime}=\left(\begin{array}{ll}-G_{i} & I\end{array}\right) P_{i}\binom{O}{T_{i+1}}$,
4. $T_{i}^{\prime}=\left(\begin{array}{cc}-G_{i} & I\end{array}\right) P_{i}\left(\begin{array}{cc}T_{i} & O \\ O & T_{i+1}\end{array}\right)$.

The right hand side $\mathbf{f}_{i+1}^{\prime}$ is of length $n_{i}+n_{i+1}-r_{i}$ and satisfies

$$
\mathbf{f}_{i+1}^{\prime}=\left(\begin{array}{cc}
-G_{i} & I
\end{array}\right) P_{i}\binom{\mathbf{f}_{i}}{\mathbf{f}_{i+1}} .
$$

The reduced system (4.12) does not involve at least the unknowns $\mathbf{z}_{2 j-1}$, for $j=$ $1,2, \ldots,\lfloor N / 2\rfloor$. Since each $\mathbf{z}_{2 j-1}$ is of length $m_{2 j-1}$, the dimension $N_{d i m}$, defined (4.4), of the initial system is reduced by

$$
\begin{equation*}
\sum_{j=1}^{\lfloor N / 2\rfloor} r_{2 j-1} \tag{4.16}
\end{equation*}
$$

which is larger than

$$
\sum_{j=1}^{\lfloor N / 2\rfloor} m_{2 j-1}
$$

In case 4, the reduced system (4.12) is of dimension $N_{d i m}-\sum_{j=1}^{\lfloor N / 2\rfloor} m_{2 j-1}$, while in the other cases the dimension is much smaller.

Let us describe what happen in the next steps of cyclic reduction. Let $s=$ 2^{k}, after k steps of reduction the coefficient matrix has $\lceil N / s\rceil+1$ block rows. The linear system can be further reduced by combining two successive block row equations (for each $i=(2 j-1) s$, with $j=1,2, \ldots,\lfloor\lceil N / s\rceil / 2\rfloor$)

$$
\begin{aligned}
S_{i-s}^{(k)} \mathbf{z}_{i-s}+T_{i}^{(k)} \mathbf{w}_{i}^{(k)}+ & R_{i}^{(k)} \mathbf{z}_{i}=\mathbf{f}_{i}^{(k)} \\
& S_{i}^{(k)} \mathbf{z}_{i}+T_{i+s}^{(k)} \mathbf{w}_{i+s}^{(k)}+R_{i+s}^{(k)} \mathbf{z}_{i+s}=\mathbf{f}_{i+s}^{(k)}
\end{aligned}
$$

to give

$$
S_{i-s}^{(k+1)} \mathbf{z}_{i-s}+T_{i}^{(k+1)} \mathbf{w}_{i}^{(k+1)}+R_{i+s}^{(k+1)} \mathbf{z}_{i+s}=\mathbf{f}_{i+s}^{(k+1)}
$$

where

$$
\begin{aligned}
& S_{i-s}^{(k+1)}=\left(\begin{array}{ll}
-G_{i}^{(k)} & I
\end{array}\right) P_{i}^{(k)}\binom{S_{i-s}^{(k)}}{O} \\
& R_{i+s}^{(k+1)}=\left(\begin{array}{ll}
-G_{i}^{(k)} & I
\end{array}\right) P_{i}^{(k)}\binom{O}{R_{i+s}^{(k)}} .
\end{aligned}
$$

In the cases in Figure 4.1, we have

1. $T_{i}^{(k+1)}$ does not exist,
2. $T_{i}^{(k+1)}=\left(\begin{array}{ll}-G_{i}^{(k)} & I\end{array}\right) P_{i}^{(k)}\binom{T_{i}^{(k)}}{O}$,
3. $T_{i}^{(k+1)}=\left(\begin{array}{ll}-G_{i}^{(k)} & I\end{array}\right) P_{i}^{(k)}\binom{O}{T_{i+s}^{(k)}}$,
4. $T_{i}^{(k+1)}=\left(\begin{array}{ll}-G_{i}^{(k)} & I\end{array}\right) P_{i-s}^{(k)}\left(\begin{array}{cc}T_{i}^{(k)} & O \\ O & T_{i+s}^{(k)}\end{array}\right)$,
and

$$
\mathbf{f}_{i+s}^{(k+1)}=\left(\begin{array}{cc}
-G_{i}^{(k)} & I
\end{array}\right) P_{i}^{(k)}\binom{\mathbf{f}_{i}^{(k)}}{\mathbf{f}_{i+s}^{(k)}}
$$

with $G_{i}^{(k)}=H_{i}^{(k)}\left(L_{i}^{(k)}\right)^{-1}$ and

$$
P_{i}^{(k)} M_{i}^{(k)}=\binom{L_{i}^{(k)}}{H_{i}^{(k)}} U_{i}^{(k)}=\left(\begin{array}{cc}
I & \\
G_{i}^{(k)} & I
\end{array}\right)\binom{L_{i}^{(k)} U_{i}^{(k)}}{O}
$$

where $M_{i}^{(k)}$ is one of the possible choices as shown in Figure 4.1.
After $p=\left\lceil\log _{2}(N)\right\rceil$ reduction steps, we obtain the system

$$
\left(\begin{array}{ccc}
D_{a} & & D_{b} \tag{4.17}\\
S_{0}^{(p)} & T_{\frac{N}{2}}^{(p)} & R_{N}^{(p)}
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{0} \\
\mathbf{w}_{\frac{N}{2}}^{(p)} \\
\mathbf{z}_{N}
\end{array}\right)=\binom{\mathbf{d}}{\mathbf{f}_{N}^{(p)}}
$$

The algorithm proceeds with the solution of (4.17) using Gaussian elimination, obtaining $\mathbf{z}_{0}, \mathbf{w}_{\frac{N}{2}}^{(p)}$ and \mathbf{z}_{N}. The other unknowns are computed through the backsubstitution phase in a similar manner to that described in Chapter 3.

The algorithm has been described above in the most possible general way, using mainly case 4 as an example. However the approach used in case 4 , is not appropriate, because it determines blocks T_{i}^{\prime} of a larger size than the other cases. Also, the computational cost is larger. For example in case 4 , the block $T_{\frac{N}{2}}^{(p)}$ is of size $\left(m_{0}+m_{N}+\sum_{i=1}^{N} k_{i}-n_{0}\right) \times\left(\sum_{i=1}^{N} k_{i}\right)$. This yields a system (4.17) of a large dimension $\left(m_{0}+m_{N}+\sum_{i=1}^{N} k_{i}\right)$. In contrast, in the first step of case 1 , we obtain a matrix having no T_{i}^{\prime} block and then as in $B A B D C R$ in the successive steps only $\binom{R_{i}}{S_{i}}$ is factored. The resulting final system is

$$
\left(\begin{array}{cc}
D_{a} & D_{b} \\
S_{0}^{(p)} & R_{N}^{(p)}
\end{array}\right)\binom{\mathbf{z}_{0}}{\mathbf{z}_{N}}=\binom{\mathbf{d}}{\mathbf{f}_{N}^{(p)}}
$$

it is of dimension $m_{0}+m_{N}$. Therefore, the approach in case 4 is never used. We have described it in detail, because it describes cyclic reduction with more generality than the others.

In the next sections, we describe algorithms using cyclic reduction as described in cases 1,2 or 3 , which solve linear systems arising from OSC. We show that the efficiency of these algorithms depends essentially on the BABD structure. In particular we optimize the algorithm associated with case 1 . The resulting algorithm can easily be implemented also for solving systems with the general structure (4.3).

4.3 An algorithm for BABD systems arising from OSC

As seen in Section 4.1, the discretization of the m th ordinary differential equation (1.4) on $[a, b]$, using orthogonal spline collocation (OSC) with B-splines or
monomial splines yields a BABD system

$$
\left(\begin{array}{cccccccc}
D_{a} & & & & & & & D_{b} \tag{4.18}\\
S_{0} & T_{1} & R_{1} & & & & & \\
& & S_{1} & T_{2} & R_{2} & & & \\
& & & & & & & \\
& & & & \ddots & & & \\
& & & & & & \\
& & & & & S_{N-1} & T_{N} & R_{N}
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{0} \\
\mathbf{w}_{1} \\
\mathbf{z}_{1} \\
\mathbf{w}_{2} \\
\vdots \\
\mathbf{z}_{N-1} \\
\mathbf{w}_{N} \\
\mathbf{z}_{N}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{d} \\
\mathbf{f}_{1} \\
\mathbf{f}_{2} \\
\vdots \\
\mathbf{f}_{N}
\end{array}\right)
$$

In (4.18), $S_{i} \in \mathbb{R}^{(\tilde{k}+m) \times m}, T_{i} \in \mathbb{R}^{(\tilde{k}+m) \times \tilde{k}}, C_{i} \in \mathbb{R}^{(\tilde{k}+m) \times m}$ and $D_{a}, D_{b} \in$ $\mathbb{R}^{m \times m}$. If k is the number of Gaussian points in each subintervals used in the discretization of the ODE, the parameter \tilde{k} used in the dimensions of the blocks above, is determined as follows:

- B-spline case, see (4.7),

$$
\tilde{k}=k-m>0
$$

- Monomial spline case, see (4.8),

$$
\tilde{k}=k
$$

First, we apply the first step of the reduction in case 1 (Figure 4.1), that is, we employ Gaussian elimination to each matrix

$$
M_{i}=\left(\begin{array}{ccc}
T_{i} & R_{i} & \tag{4.19}\\
& S_{i} & T_{i+1}
\end{array}\right), \quad i=2 j-1, \text { for } j=1, \ldots,\lfloor N / 2\rfloor .
$$

This yields a BABD system

$$
\left(\begin{array}{ccccc}
D_{a} & & & & D_{b} \tag{4.20}\\
S_{0}^{\prime} & R_{2}^{\prime} & & & \\
& S_{2}^{\prime} & R_{4}^{\prime} & & \\
& & \ddots & \ddots & \\
& & & S_{N-2}^{\prime} & R_{N}^{\prime}
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{0} \\
\mathbf{z}_{2} \\
\vdots \\
\mathbf{z}_{N-2} \\
\mathbf{z}_{N}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{d} \\
\mathbf{f}_{2}^{\prime} \\
\mathbf{f}_{4}^{\prime} \\
\vdots \\
\mathbf{f}_{N}^{\prime}
\end{array}\right)
$$

where $S_{i}^{\prime}, R_{i+2}^{\prime} \in \mathbb{R}^{m \times m}$, for any $i=0,2, \ldots, N-2$.
The computational cost of this first step is

$$
\begin{equation*}
\lfloor N / 2\rfloor\left(\frac{14}{3} m^{3}+16 \tilde{k}^{2} m+16 \tilde{k} m^{2}+\frac{16}{3} \tilde{k}^{3}-4 \tilde{k} m-\frac{3}{2} m^{2}-2 \tilde{k}^{2}-\frac{1}{3} \tilde{k}-\frac{1}{6} m\right) \tag{4.21}
\end{equation*}
$$

In the r th step, $r=2, \ldots, p=\left\lceil\log _{2}(N)\right\rceil$, we apply Gaussian elimination to the matrix

$$
M_{i}^{(r-1)}=\binom{R_{i}^{(r-1)}}{S_{i}^{(r-1)}}, \quad i=(2 j-1) s, \text { for } j=1, \ldots,\lfloor\lceil N / s\rceil / 2\rfloor
$$

where $s=2^{r-1}$. The computational cost of these $p-1$ steps is

$$
\begin{equation*}
\lceil N / 2\rceil\left(\frac{14}{3} m^{3}-\frac{3}{2} m^{2}-\frac{1}{6} m\right) \tag{4.22}
\end{equation*}
$$

We call this algorithm $G B A B D C R-0$. From (4.21) and (4.22), the computational cost of the factorization phase is

$$
\begin{equation*}
N\left(\frac{8}{3} \tilde{k}^{3}+8 \tilde{k}^{2} m++8 \tilde{k} m^{2}+\frac{14}{3} m^{3}-\tilde{k}^{2}-2 \tilde{k} m-\frac{3}{2} m^{2}-\frac{1}{6} \tilde{k}-\frac{1}{6} m\right) \tag{4.23}
\end{equation*}
$$

Note that, in the last $p-1$ steps of $G B A B D C R-0$, the system can be solved using the algorithm $B A B D C R$, described in Chapter 3.

4.4 GBABDCR: an optimized implementation of the cyclic reduction

The reduction process implemented in GBABDCR-0 can be optimized by taking into account that the matrix (4.19) is not full and also that the unknowns \mathbf{w}_{i} are only multiplied by T_{i}. As, we use a condensation step (see [10]) in order to eliminate the dependence on \mathbf{w}_{i} in V_{i}. This step may be viewed as the first reduction step in the algorithm that eliminates the even unknowns \mathbf{w}_{i} of the solution vector \mathbf{y}. We observe that blocks T_{i} of size $(\tilde{k}+m) \times \tilde{k}$, have full rank \tilde{k} because they have no overlapping columns with other block rows. Then, we determine the factorization:

$$
\widetilde{P}_{i} T_{i}=\binom{\widetilde{L}_{i}}{\widetilde{H}_{i}} \widetilde{U}_{i}=\left(\begin{array}{cc}
I & \tag{4.24}\\
\widetilde{G}_{i} & I
\end{array}\right)\binom{\widetilde{L}_{i} \widetilde{U}_{i}}{O}
$$

where \widetilde{L}_{i} and \widetilde{U}_{i} are square matrices of dimension \tilde{k} and $\widetilde{G}_{i}=\widetilde{H}_{i} \widetilde{L}_{i}^{-1} \in \mathbb{R}^{m \times \widetilde{k}}$.
Multiplying on the left V_{i} by \widetilde{P}_{i} and the inverse of the lower triangular matrix in the last term of (4.24), we obtain

$$
\left(\begin{array}{cc}
I & \tag{4.25}\\
-\widetilde{G}_{i} & I
\end{array}\right) \widetilde{P}_{i}\left(\begin{array}{lll}
S_{i-1} & T_{i} & R_{i}
\end{array}\right)=\left(\begin{array}{ccc}
\widetilde{S}_{i-1} & \widetilde{L}_{i} \widetilde{U}_{i} & \widetilde{R}_{i} \\
\widehat{S}_{i-1} & & \widehat{R}_{i}
\end{array}\right) .
$$

Analogously, we perform these operations on the right hand side \mathbf{f}_{i} to obtain the vectors $\binom{\widetilde{\mathbf{f}}_{i}}{\widehat{\mathbf{f}}_{i}}$. The row with the boundary blocks and the second row of (4.25), for $i=2 j-1, j=1,2, \ldots,\lfloor N / 2\rfloor$, yields the linear system

$$
\left(\begin{array}{ccccc}
D_{a} & & & & D_{b} \tag{4.26}\\
\widehat{S}_{0} & \widehat{R}_{1} & & & \\
& \widehat{S}_{1} & \widehat{R}_{2} & & \\
& & \ddots & \ddots & \\
& & & \widehat{S}_{N-1} & \widehat{R}_{N}
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{0} \\
\mathbf{z}_{1} \\
\mathbf{z}_{2} \\
\vdots \\
\mathbf{z}_{N}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{d} \\
\widehat{\mathbf{f}}_{1} \\
\widehat{\mathbf{f}}_{2} \\
\vdots \\
\widehat{\mathbf{f}}_{N}
\end{array}\right)
$$

The system (4.26) has dimension $(N+1) m$ and no longer depends on the unknowns \mathbf{w}_{i}. These unknowns will be computed in the last step of the cyclic reduction back-substitution phase (when all the \mathbf{z}_{i} have already been computed) by using the first row of (4.25)

$$
\widetilde{L}_{i} \widetilde{U}_{i} \mathbf{w}_{i}=\tilde{\mathbf{f}}_{i}-\widetilde{S}_{i-1} \mathbf{z}_{i-1}-\widetilde{R}_{i} \mathbf{z}_{i}
$$

Since \widetilde{G}_{i} may be saved with \widetilde{L}_{i} and \widetilde{U}_{i} in place of T_{i} in the row block

$$
\left(\begin{array}{ccc}
S_{i-1} & T_{i} & R_{i}
\end{array}\right)
$$

the factorization (4.25) does not require additional memory. Therefore, this condensation phase can be considered as a (completely parallelizable) initial step applicable to BABD systems, in order to simplify their structure before factorization.

The system (4.26) can be further reduced by using the algorithm $B A B D C R$. When the LU factorization

$$
P_{i}\binom{\widehat{R}_{i}}{\widehat{S}_{i}}=\binom{L_{i}}{H_{i}} U_{i}=\left(\begin{array}{cc}
I & \\
G_{i} & I
\end{array}\right)\binom{L_{i} U_{i}}{O}
$$

is applied to the block rows of index i and $i+1$ in (4.26), we have

$$
\left(\begin{array}{cc}
I & \tag{4.27}\\
-G_{i} & I
\end{array}\right) P_{i}\left(\begin{array}{ccc}
\widehat{S}_{i-1} & \widehat{R}_{i} & \\
& \widehat{S}_{i} & \widehat{R}_{i+1}
\end{array}\right)=\left(\begin{array}{ccc}
\bar{S}_{i-1} & L_{i} U_{i} & \bar{R}_{i} \\
S_{i-1}^{\prime} & & R_{i}^{\prime}
\end{array}\right)
$$

The first row may be used to compute \mathbf{z}_{i} from \mathbf{z}_{i-1} and \mathbf{z}_{i+1}.
This last factorization requires additional memory to store the fill-in blocks $G_{i}=H_{i} L_{i}^{-1}$. In fact G_{i} is used in the reduction of the right hand side of (4.26) corresponding to the block rows i and $i+1$. After this step, we obtain a BABD system with the same structure of (4.20) but with a number of operations

$$
\begin{equation*}
N\left(\frac{2}{3} \tilde{k}^{3}+2 \tilde{k}^{2} m+4 \tilde{k} m^{2}-\tilde{k} m-\frac{1}{2} \tilde{k}^{2}-\frac{1}{6} \tilde{k}\right)+\lfloor N / 2\rfloor\left(\frac{14}{3} m^{3}-\frac{3}{2} m^{2}-\frac{1}{6} m\right) \tag{4.28}
\end{equation*}
$$

Hence, we save

$$
\begin{equation*}
N\left(2 \tilde{k}^{3}+6 \tilde{k}^{2} m+4 \tilde{k} m^{2}-\frac{1}{2} \tilde{k}^{2}-\tilde{k} m\right) \tag{4.29}
\end{equation*}
$$

operations with respect to $G B A B D C R-0$.
As in $B A B D C R$, iterating the last step on the successively reduced systems, we obtain, after $\left\lceil\log _{2} N\right\rceil$ steps, a 2×2 block linear system

$$
\left(\begin{array}{cc}
D_{a} & D_{b} \tag{4.30}\\
S_{0}^{*} & R_{N}^{*}
\end{array}\right)\binom{\mathbf{z}_{0}}{\mathbf{z}_{N}}=\binom{\mathbf{f}_{0}^{*}}{\mathbf{f}_{N}^{*}}
$$

The solution of (4.30) with Gaussian elimination determines \mathbf{z}_{0} and \mathbf{z}_{N}. Successively, a back-substitution phase allows to compute all the other unknowns. We call this optimized algorithm $G B A B D C R$.

The computational cost of $G B A B D C R$, in the factorization phase, is
$N\left(\frac{2}{3} \tilde{k}^{3}+2 \tilde{k}^{2} m+4 \tilde{k} m^{2}+\frac{14}{3} m^{3}-\frac{1}{2} \tilde{k}^{2}-\tilde{k} m-\frac{3}{2} m^{2}-\frac{1}{6} \tilde{k}-\frac{1}{6} m\right)$.
Since GBABDCR proceeds as GBABDCR-0 after the first two steps described above, the total saving in the computational cost of the factorization phase of $G B A B D C R$ is again (4.29).

4.4.1 Description of the software

The $G B A B D C R$ package has two main subroutines:

- GBABDCR_FACT performs the factorization of the coefficient matrix of the system (4.18);
- GBABDCR_SOLV uses the output of GBABDCR_ FACT to solve (4.18).

The solution of a set of p linear systems with the same coefficient matrix can be obtained by means of one call to GBABDCR_FACT followed by p calls to GBABDCR_SOLV with a large saving in computational cost. In Figure 4.4.1, the calling sequences of the two subroutines are shown.

SUBROUTINE GBABDCR_FACT (\tilde{k}, m, N, MATR_A, LFTBLK, RGTBLK, PERM, FILL_IN, INFO)

> SUBROUTINE GBABDCR_SOLV $(\tilde{k}, m, N$, MATR_A, LFTBLK, RGTBLK, PERM, FILL_IN, VECT B)

Figure 4.2: Calling sequences of the two main subroutines
The package requires that the coefficient matrix in input is given as in Figure 4.3, that is, blocks (S_{i-1}, T_{i}, R_{i+1}) must be given sequentially and stored respectively in MATR_A which is a three-dimensional array of size $(\tilde{k}+m) \times(\tilde{k}+2 m) \times$ N.
The right hand side of (4.35) must be given in a vector VECT_B of length $(\tilde{k}+$ $m) N+m$, see Figure 4.3. The boundary blocks D_{a} and D_{b} are saved, respectively, in the arrays LFTBLK and RGTBLK both of size $m \times m$.

The array FILL_IN is of size $m \times m \times(N-1)$ and contains the fill-in blocks generated by the factorizations. PERM is an integer array containing the permutation vectors associated with the LU factorizations.

MATR_A $=\left(\begin{array}{|l|l|l|l|l|l|}\hline S_{0} & T_{1} & R_{1} \\ \hline\end{array} \ldots \ldots \begin{array}{|l|l|l|}\hline S_{N-1} & T_{N} & R_{N} \\ \hline\end{array}\right)$,
LFTBLK $=\binom{D_{a}}{$\hline}\quad RGTBLK $=\left(\boxed{D_{b}}\right)$,
$\operatorname{VECT} _\mathrm{B}=\left(\begin{array}{c}\mathbf{d} \\ \mathbf{f}_{1} \\ \mathbf{f}_{2} \\ \vdots \\ \mathbf{f}_{N}\end{array}\right)$.
Figure 4.3: Structure of the input coefficient matrix and right hand side

Several algorithms are proposed in [1] for solving ABD (or BABD) systems arising from OSC. As for $G B A B D C R$, some of these algorithms solve only particular systems in order to become more efficient than those written for general systems. For example $A B D P A C K$, described in Section 2.5.1, solves only ABD systems (2.14) arising from OSC with monomial spline basis. In contrast, COLROW solves ABD systems with the same 'general' structure (4.18) used in GBABDCR. In the following sections, we compare timings and accuracy of our algorithms with respect to COLROW and $A B D P A C K$.

4.5 Numerical comparisons

First, we compare the two algorithm $G B A B D C R$ and $G B A B D C R-0$, based on the cyclic reduction approaches proposed above. We want to prove, rather than simply theoretically ($G B A B D C R$ requires less computational cost and storage), that condensation may reduce the execution time.

Second, we compare these codes with COLROW [29], which is one of the fastest available codes for ABD linear systems with coefficient matrices in the form

$$
A=\left(\begin{array}{cccccccc}
D_{\text {top }} & & & & & & & \tag{4.32}\\
S_{0} & T_{1} & R_{1} & & & & & \\
& & S_{1} & T_{2} & R_{2} & & & \\
& & & & \ddots & & & \\
& & & & & & & \\
& & & & & S_{N-1} & T_{N} & R_{N} \\
& & & & & & & D_{b o t}
\end{array}\right),
$$

where $S_{i}, R_{i} \in \mathbb{R}^{(\tilde{k}+m) \times m}, T_{i} \in \mathbb{R}^{(\tilde{k}+m) \times \tilde{k}}, D_{\text {top }} \in \mathbb{R}^{m_{\text {top }} \times m}, D_{\text {bot }} \in \mathbb{R}^{\left(m-m_{\text {top }}\right) \times m}$.
As discussed in Section 2.5, COLROW uses a modified alternate row and column elimination that generates no fill-in. When applied to (4.32), the computa-
tional cost of the factorization phase is

$$
\begin{aligned}
& N\left(\frac{2}{3} \tilde{k}^{3}+3 \tilde{k}^{2} m-\tilde{k}^{2} m_{\text {top }}-\tilde{k} m_{\text {top }}^{2}+4 \tilde{k} m^{2}+\frac{5}{3} m^{3}+m^{2} m_{\text {top }}-m m_{\text {top }}^{2}\right. \\
& \left.\quad-\frac{1}{2} \tilde{k}^{2}-2 \tilde{k} m-\frac{3}{2} m^{2}+m m_{\text {top }}-m_{\text {top }}^{2}-\frac{1}{6} \tilde{k}-\frac{1}{6} m\right) \\
& +\frac{2}{3} m^{3}+2 \tilde{k} m m_{\text {top }}+2 m m_{\text {top }}^{2}-\tilde{k} m_{\text {top }}^{2}-m_{\text {top }}^{3}-\frac{1}{2} m^{2}-\tilde{k} m_{\text {top }}-m_{\text {top }}^{2}-\frac{1}{6} m .
\end{aligned}
$$

As discussed in Section 2.2, COLROW can solve the BABD system (4.18) if we rearrange it as follows

$$
\begin{gather*}
\widetilde{A}=\left(\begin{array}{cccccccccccc}
-I & I & & & & & & & & & & \\
S_{0} & 0 & T_{1} & R_{1} & & & & & & & \\
& -I & 0 & 0 & I & & & & & \\
& & & S_{1} & 0 & T_{2} & R_{2} & & & & \\
& & & & -I & 0 & 0 & I & & & \\
& & & & & & \ddots & & & & \\
& & & & & & S_{N-1} & 0 & T_{N} & R_{N} & \\
& & & & & & & -I & 0 & 0 & I \\
& & & & & & & & & D_{b} & D_{a}
\end{array}\right) \\
\widetilde{x}=\left(\begin{array}{ccccccccccc}
\mathbf{z}_{0} & \mathbf{y}_{0} & \mathbf{w}_{1} & \mathbf{z}_{1} & \mathbf{y}_{1} & \mathbf{w}_{2} & \ldots & \mathbf{z}_{N-1} & \mathbf{y}_{N-1} & \mathbf{w}_{N} & \mathbf{z}_{N} \\
\mathbf{y}_{N}
\end{array}\right),
\end{gather*}
$$

where $S_{i}, T_{i}, R_{i}, \mathbf{d}, \mathbf{f}_{i}, \mathbf{z}_{i}, \mathbf{w}_{i}$ are the same blocks and vectors as in (4.18) and vectors \mathbf{y}_{i} are new unknowns:

$$
\mathbf{y}_{N}=\ldots=\mathbf{y}_{1}=\mathbf{y}_{0}=\mathbf{z}_{0} .
$$

Then, we can apply $C O L R O W$ to the ABD linear system (4.33) and compare its results to those of $G B A B D C R$ and $G B A B D C R-0$ applied to the original BABD linear system (4.18). Now, the cost of COLROW in the factorization phase is

$$
\begin{align*}
& N\left(\frac{2}{3} \tilde{k}^{3}+5 \tilde{k}^{2} m+15 \tilde{k} m^{2}+\frac{46}{3} m^{3}-\frac{1}{2} \tilde{k}^{2}-4 \tilde{k} m-5 m^{2}-\frac{1}{6} \tilde{k}-\frac{1}{3} m\right) \\
& +3 \tilde{k} m^{2}+\frac{25}{3} m^{3}-\tilde{k} m-3 m^{2}-\frac{1}{3} m \tag{4.34}
\end{align*}
$$

From (4.34) and (4.31), we note that GBABDCR saves with respect COLROW

$$
\begin{aligned}
& N\left(3 \tilde{k}^{2} m++11 \tilde{k} m^{2}+\frac{32}{3} m^{3}-3 \tilde{k} m-\frac{7}{2} m^{2}-\frac{1}{6} m\right) \\
& +3 \tilde{k} m^{2}+\frac{25}{3} m^{3}-\tilde{k} m-3 m^{2}-\frac{1}{3} m
\end{aligned}
$$

flops.
For each test case shown in Tables 4.1-4.2, the coefficients of the BABD coefficient matrix A have been generated randomly. We use a AlphaServer DS20E with a 667 MHz EV67 processor and a Compaq Fortran 90 (formerly Digital Fortran $90)$ compiler. The right hand side \mathbf{f} has been set so that the solution is $(1, \ldots, 1)^{T}$.

In Table 4.1, we show the execution times, in seconds, as functions of \tilde{k}, m and N, varying each parameter in turn and fixing the others. The timings confirm

Table 4.1: Execution times (in seconds) to solve linear systems with varying m, \tilde{k} and N using GBABDCR, GBABDCR-0 and COLROW.

problem	GBABDCR	GBABDCR-0	COLROW
$m=5, \tilde{k}=10, N=2000$	$6.53 \mathrm{e}-02$	$9.86 \mathrm{e}-02$	0.148
$m=10, \tilde{k}=10, N=2000$	0.156	0.222	0.439
$m=20, \tilde{k}=10, N=2000$	0.529	0.651	1.581
$m=10, \tilde{k}=5, N=2000$	0.106	0.135	0.317
$m=10, \tilde{k}=10, N=2000$	0.156	0.222	0.439
$m=10, \tilde{k}=20, N=2000$	0.305	0.490	0.733
$m=10, \tilde{k}=10, N=1000$	$7.12 \mathrm{e}-02$	0.105	0.208
$m=10, \tilde{k}=10, N=2000$	0.156	0.222	0.439
$m=10, \tilde{k}=10, N=4000$	0.345	0.463	0.876

Table 4.2: Computed errors in the solution of linear systems with varying m, \tilde{k} and N using GBABDCR, GBABDCR-0 and COLROW.

problem	GBABDCR	GBABDCR-0	COLROW
$m=5, \tilde{k}=10, N=2000$	$4.12 \mathrm{e}-07$	$4.09 \mathrm{e}-07$	$9.95 \mathrm{e}-07$
$m=10, \tilde{k}=10, N=2000$	$5.56 \mathrm{e}-10$	$9.75 \mathrm{e}-10$	$3.53 \mathrm{e}-10$
$m=20, \tilde{k}=10, N=2000$	$1.32 \mathrm{e}-10$	$6.40 \mathrm{e}-11$	$8.15 \mathrm{e}-11$
$m=10, \tilde{k}=5, N=2000$	$4.72 \mathrm{e}-11$	$7.88 \mathrm{e}-11$	$3.47 \mathrm{e}-11$
$m=10, \tilde{k}=10, N=2000$	$5.56 \mathrm{e}-10$	$9.75 \mathrm{e}-10$	$3.53 \mathrm{e}-10$
$m=10, \tilde{k}=20, N=2000$	$4.13 \mathrm{e}-11$	$3.41 \mathrm{e}-11$	$3.71 \mathrm{e}-11$
$m=10, \tilde{k}=10, N=1000$	$7.08 \mathrm{e}-11$	$4.04 \mathrm{e}-11$	$4.61 \mathrm{e}-11$
$m=10, \tilde{k}=10, N=2000$	$5.56 \mathrm{e}-10$	$9.75 \mathrm{e}-10$	$3.53 \mathrm{e}-10$
$m=10, \tilde{k}=10, N=4000$	$5.56 \mathrm{e}-10$	$1.09 \mathrm{e}-09$	$3.53 \mathrm{e}-10$

our expectations from theory: $G B A B D C R$ is faster than $G B A B D C R-0$ and $C O L-$ $R O W$, though the speed-ups are lower than theory suggests. Moreover, the gap between $G B A B D C R$ and $G B A B D C R-0$ increases for larger values of \tilde{k} / m; conversely, $G B A B D C R$ improves over $C O L R O W$ when m / k increases. The ratios of costs between GBABDCR-0 and GBABDCR and between COLROW and GBAB$D C R$ are approximately 1.5 and 2.8 , respectively. In Table 4.2, we show the errors of the methods in the same tests used in Table 4.1. Note that the order of the error is the same for all the methods. The case $m=5, \tilde{k}=10, N=2000$ gives a slight larger than expected error, but this is true for all the methods and probably depends on the chosen random matrix.

4.6 An approach to solve BABD systems in the monomial case

We consider the solution of BABD linear systems with structure

$$
\left(\begin{array}{ccccccc}
D_{a} & & & & & & D_{b} \tag{4.35}\\
H_{1} & G_{1} & & & & & \\
-E_{1} & -F_{1} & I & & & & \\
& & & & & & \\
& & & \ddots & & & \\
& & & & H_{N} & G_{N} & \\
& & & & -E_{N} & -F_{N} & I
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{1} \\
\mathbf{w}_{1} \\
\mathbf{z}_{2} \\
\vdots \\
\vdots \\
\\
\\
\\
\mathbf{z}_{N} \\
\mathbf{w}_{N} \\
\mathbf{z}_{N+1}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{d} \\
\mathbf{f}_{1} \\
0 \\
\vdots \\
\mathbf{f}_{N} \\
0
\end{array}\right)
$$

where $-E_{i} \in \mathbb{R}^{m \times m}$, the identity matrix $I \in \mathbb{R}^{m \times m}, H_{i} \in \mathbb{R}^{\tilde{\tilde{k}} \times m},-F_{i} \in \mathbb{R}^{m \times \tilde{k}}$ and $G_{i} \in \mathbb{R}^{\tilde{k} \times \tilde{k}}$. Those systems arise from OSC with monomial basis functions, see Section 1.7.2.

4.6.1 The algorithm $B A B D C R \quad M O N O$

We describe a particular cyclic reduction approach for solving the BABD system (4.35), called BABDCR_MONO. This algorithm takes advantage of the structure in (4.35) through factorizations of matrices of smaller dimension with respect to that used in the cases in Figure 4.1, proposed in Section 4.2. Here the blocks S_{i-1}, T_{i} and R_{i} are those defined in (4.8).

The algorithm transforms each pair of block row equations

$$
\left(\begin{array}{ccccc}
H_{i} & G_{i} & & & \tag{4.36}\\
-E_{i} & -F_{i} & I & & \\
& & H_{i+1} & G_{i+1} & \\
& & -E_{i+1} & -F_{i+1} & I
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{i} \\
\mathbf{w}_{i} \\
\mathbf{z}_{i+1} \\
\mathbf{w}_{i+1} \\
\mathbf{z}_{i+2}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{f}_{i} \\
0 \\
\mathbf{f}_{i+1} \\
0
\end{array}\right),
$$

for $i=2 j-1, j=1,2, \ldots,\lfloor N / 2\rfloor$, into one block row equation

$$
\left(\begin{array}{ccc}
H_{i}^{\prime} & G_{i}^{\prime} & \tag{4.37}\\
-E_{i}^{\prime} & -F_{i}^{\prime} & J_{i+2}^{\prime}
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{i} \\
\mathbf{w}_{i} \\
\mathbf{z}_{i+2}
\end{array}\right)=\binom{\mathbf{f}_{i}^{\prime}}{\mathbf{g}_{i}^{\prime}},
$$

involving only the unknowns $\mathbf{z}_{i}, \mathbf{w}_{i}$ and \mathbf{z}_{i+2}. Blocks $H_{i}^{\prime}, G_{i}^{\prime}$ and J_{i+2}^{\prime} have respectively the same number of columns as H_{i}, G_{i} and I. The blocks H_{i}^{\prime} (and $-E_{i}^{\prime}$) overlap the columns of J_{i}^{\prime}, that are generated by the reduction of the previous pair of block rows. Also, J_{i+2}^{\prime} overlaps the columns of H_{i+2}^{\prime} (and $-E_{i+2}^{\prime}$), that are generated by the reduction of the successive pair of block rows. To do this, we
use a cyclic reduction approach similar to that presented in Section 4.2 for M_{i} in case 2, Figure 4.1. Since the coefficient matrix (4.35) is non-singular, the columns overlapped by the $(\tilde{k}+2 m) \times(\tilde{k}+m)$ matrix M_{i}

$$
M_{i}=\left(\begin{array}{cc}
I & \\
H_{i} & G_{i} \\
-E_{i} & -F_{i}
\end{array}\right)
$$

are linear independent. Hence, as previously, we use a row partial pivoting LU factorization

$$
P_{i} M_{i}=\binom{L_{i}}{C_{i}} U_{i}=\left(\begin{array}{cc}
I & \tag{4.38}\\
C_{i} L_{i}^{-1} & I
\end{array}\right)\binom{L_{i} U_{i}}{O},
$$

where P_{i} is a $(\tilde{k}+2 m) \times(\tilde{k}+2 m)$ permutation matrix, L_{i} and U_{i} are lower and upper triangular matrices of dimension $(\tilde{k}+m) \times(\tilde{k}+m)$, respectively. We premultiply (4.36) by $\left(\begin{array}{cc}I & \\ & P_{i}\end{array}\right)$ and the inverse of the lower triangular matrix $\left(\begin{array}{ccc}I & & \\ & I & \\ & C_{i} L_{i}^{-1} & I\end{array}\right)$, yielding

$$
\begin{align*}
& \left(\begin{array}{cccc}
H_{i}^{\prime} & G_{i}^{\prime} & & \\
\tilde{E}_{i} & \tilde{F}_{i} & L_{i} U_{i} & J_{i+2} \\
-E_{i}^{\prime} & -F_{i}^{\prime} & & J_{i+2}^{\prime}
\end{array}\right)= \\
& \left(\begin{array}{ccc}
I & & \\
& I & \\
& -C_{i} L_{i}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
I & \\
& P_{i}
\end{array}\right)\left(\begin{array}{ccccc}
H_{i} & G_{i} & & & \\
-E_{i} & -F_{i} & I & & \\
& & H_{i+1} & G_{i+1} & \\
& & -E_{i+1} & -F_{i+1} & I
\end{array}\right) \tag{4.39}
\end{align*}
$$

The corresponding right hand sides are reduced, using the same operations:

$$
\left(\begin{array}{c}
\mathbf{f}_{i}^{\prime} \tag{4.40}\\
\tilde{\mathbf{f}}_{i} \\
\mathbf{g}_{i}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
I & & \\
& I & \\
& -C_{i} L_{i}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
I & \\
& P_{i}
\end{array}\right)\left(\begin{array}{c}
\mathbf{f}_{i} \\
0 \\
\\
\mathbf{f}_{i+1} \\
0
\end{array}\right) .
$$

The blocks in (4.39) have the following sizes: $H_{i}^{\prime} \in \mathbb{R}^{\tilde{k} \times m}, G_{i}^{\prime} \in \mathbb{R}^{\tilde{k} \times \tilde{k}},-E_{i}^{\prime} \in$ $\mathbb{R}^{m \times m},-F_{i}^{\prime} \in \mathbb{R}^{m \times \tilde{k}}, J_{i+2}^{\prime} \in \mathbb{R}^{m \times m}$, and $\tilde{E}_{i} \in \mathbb{R}^{(\tilde{k}+m) \times \tilde{k}}, \tilde{F}_{i} \in \mathbb{R}^{(\tilde{k}+m) \times \tilde{k}}$, $\tilde{J_{i+2}} \in \mathbb{R}^{(\tilde{k}+m) \times m}$. The vectors in (4.40) have length: $\mathbf{f}_{i}^{\prime} \in \mathbb{R}^{\tilde{k}}, \mathbf{g}_{i}^{\prime} \in \mathbb{R}^{m}$ and $\tilde{\mathbf{f}}_{i} \in \mathbb{R}^{\tilde{k}+m}$. From (4.39) and (4.40), it is easy to prove that the blocks into the reduced row block equation (4.37) are determined through the operations

$$
\begin{aligned}
& H_{i}^{\prime}=H_{i}, \quad G_{i}^{\prime}=G_{i}, \\
& \left(\begin{array}{ll}
-E_{i}^{\prime} & -F_{i}^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
-C_{i} L_{i}^{-1} & I
\end{array}\right) P_{i}\left(\begin{array}{cc}
-E_{i} & -F_{i} \\
O
\end{array}\right), \\
& J_{i+2}^{\prime}=\left(\begin{array}{cc}
-C_{i} L_{i}^{-1} & I
\end{array}\right) P_{i}\binom{O}{I},
\end{aligned}
$$

and

$$
\mathbf{f}_{i}^{\prime}=\mathbf{f}_{i}, \quad \mathbf{g}_{i}^{\prime}=\left(\begin{array}{ll}
-C_{i} L_{i}^{-1} & I
\end{array}\right) P_{i}\left(\begin{array}{c}
0 \\
\mathbf{f}_{i} \\
0
\end{array}\right) .
$$

Note that J_{i+2}^{\prime} is not an identity matrix.
After l steps of reduction, $l=1, \ldots, \log _{2}(N)-2$, the coefficient matrix obtained is of size $\lceil N / s\rceil(\tilde{k}+m)+m$ where $s=2^{l}$, and it can be further on reduced by combining two adjacent block row equations (for each $i=2(j-1) s+1$, with $j=1,2, \ldots,\lfloor N /(2 s)\rfloor)$

$$
\left(\begin{array}{ccccc}
H_{i}^{(l)} & G_{i}^{(l)} & & & \\
-E_{i}^{(l)} & -F_{i}^{(l)} & J_{i+s}^{(l)} & & \\
& & H_{i+s}^{(l)} & G_{i+s}^{(l)} & \\
& & -E_{i+s}^{(l)} & -F_{i+s}^{(l)} & J_{i+2 s}^{(l)}
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{i} \\
\mathbf{w}_{i} \\
\mathbf{z}_{i+s} \\
\mathbf{w}_{i+s} \\
\mathbf{z}_{i+2 s}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{f}_{i}^{(l)} \\
\mathbf{g}_{i}^{(l)} \\
\mathbf{f}_{i+s}^{(l)} \\
\mathbf{g}_{i+s}^{(l)}
\end{array}\right)
$$

in order to obtain

$$
\left(\begin{array}{ccc}
H_{i}^{(l+1)} & G_{i}^{(l+1)} & \\
-E_{i}^{(l+1)} & -F_{i}^{(l+1)} & J_{i+2 s}^{(l+1)}
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{i} \\
\mathbf{w}_{i} \\
\mathbf{z}_{i+2 s}
\end{array}\right)=\binom{\mathbf{f}_{i}^{(l+1)}}{\mathbf{g}_{i}^{(l+1)}} .
$$

Let $p=\left\lceil\log _{2}(N)\right\rceil$, after $p-1$ steps the linear system has the two block row equations

$$
\left.\begin{array}{c}
\left(\begin{array}{cccc}
H_{1}^{(p-1)} & G_{1}^{(p-1)} & & \\
-E_{1}^{(p-1)} & -F_{1}^{(p-1)} & J_{\frac{N}{2}+1}^{(p-1)} & \\
& & H_{\frac{N}{2}+1}^{(p-1)} & G_{\frac{N}{2}+1}^{(p-1)} \\
& & -E_{\left.\frac{N}{2}+1\right)}^{(p-1)} & -F_{\left.\frac{N}{2}+1\right)}^{(p-1)} \\
& & J_{N+1}^{(p-1)}
\end{array}\right)\left(\begin{array}{c}
\mathbf{z}_{1} \\
\mathbf{w}_{1} \\
\mathbf{z}_{\frac{N}{2}+1}^{(p-1} \\
\mathbf{w}_{\frac{N}{2}+1}^{(p)} \\
\mathbf{z}_{N+1}
\end{array}\right)= \tag{4.4}\\
\\
\\
\\
\\
\\
\\
\mathbf{f}_{1}^{(p-1)} \\
\mathbf{g}_{1}^{(p-1)} \\
\mathbf{f}_{\left.\frac{N}{2}+1\right)}^{(p-1)} \\
\mathbf{g}_{\frac{N}{2}+1}^{p-1)}
\end{array}\right),
$$

it can be further on reduced in order to obtain a system with a full coefficient matrix of size $2 m \times 2 m$

$$
\left(\begin{array}{cc}
D_{a} & D_{b} \tag{4.42}\\
H_{1}^{(p)} & J_{N+1}^{(p)}
\end{array}\right)\binom{\mathbf{z}_{1}}{\mathbf{z}_{N+1}}=\binom{\mathbf{d}}{\mathbf{f}_{1}^{(p)}} .
$$

To do this, we use a row partial pivoting LU factorization

$$
\begin{aligned}
& P_{1}^{(p-1)}\left(\begin{array}{ccc}
G_{1}^{(p-1)} & & \\
-F_{1}^{(p-1)} & J_{\frac{N}{2}+1}^{(p-1)} & \\
& H_{\frac{N}{2}+1}^{(p-1)} & G_{\frac{N}{2}+1}^{(p-1)} \\
& -E_{\frac{N}{2}+1}^{(p-1)} & -F_{\frac{N}{2}+1}^{(p-1)}
\end{array}\right)= \\
& \left.\left(\begin{array}{cc}
I & I
\end{array}\right)^{\left(\begin{array}{c}
L_{1}^{(p-1)} U_{1}^{(p-1)} \\
\\
C_{1}^{(p-1)}\left(L_{1}^{(p-1)}\right)^{-1}
\end{array}\right.} \begin{array}{l}
0
\end{array}\right)
\end{aligned}
$$

where $P_{1}^{(p-1)}$ is a $2(\tilde{k}+m) \times 2(\tilde{k}+m)$ permutation matrix, $L_{1}^{(p-1)}$ and $U_{1}^{(p-1)}$ are lower and upper triangular matrices of dimension $(2 \tilde{k}+m) \times(2 \tilde{k}+m)$, and $C_{1}^{(p-1)}$ is an $m \times(2 \tilde{k}+m)$ matrix. Afterwards, we premultiply (4.41) by $P_{1}^{(p-1)}$ and by $\left(\begin{array}{cc}I & \\ C_{1}^{(p-1)}\left(L_{1}^{(p-1)}\right)^{-1} & I\end{array}\right)^{-1}$. These operations yield

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\tilde{H}_{1} & L_{1}^{(p-1)} U_{1}^{(p-1)} & \tilde{J}_{1} \\
H_{1}^{(p)} & & J_{N+1}^{(p)}
\end{array}\right)= \\
& \left(\begin{array}{ccccc}
H_{1}^{(p-1)} & G_{1}^{(p-1)} & & & \\
-E_{\frac{N}{2}}^{(p-1)} & -F_{\frac{N}{2}}^{(p-1)} & J_{\frac{N}{2}}^{(p-1)} & & \\
& & H_{\frac{N}{2}+1}^{(p-1)} & G_{\frac{N}{2}+1}^{(p-1)} & \\
& & -E_{\frac{N}{2}+1}^{(p-1)} & -F_{\frac{N}{2}+1}^{(p-1)} & J_{N+1}^{(p-1)}
\end{array}\right), \\
& \binom{\tilde{\mathbf{f}}_{1}}{\mathbf{f}_{1}^{(p)}}=\left(\begin{array}{cc}
I & \\
C_{1}^{(p-1)}\left(L_{1}^{(p-1)}\right)^{-1} & I
\end{array}\right) P_{1}^{(p-1)}\left(\begin{array}{c}
\mathbf{f}_{1}^{(p-1)} \\
\mathbf{g}_{1}^{(p-1)} \\
\mathbf{f}_{\frac{N}{2}+1}^{(p-1)} \\
\mathbf{g}_{\frac{N}{2}+1}^{(p-1)}
\end{array}\right),
\end{aligned}
$$

where $\tilde{H}_{1}, \tilde{J}_{1} \in \mathbb{R}^{(2 \tilde{k}+m) \times m}, \tilde{\mathbf{f}}_{1} \in \mathbb{R}^{2 \tilde{k}+m}$ and $H_{1}^{(p)}, J_{N+1}^{(p)} \in \mathbb{R}^{m \times m}, \mathbf{f}_{1}^{(p)} \in$ $\mathbb{R}^{2 \tilde{k}+m}$ are the blocks and right hand side into the $2 m$ by $2 m$ system (4.42).

The algorithm proceeds with the solution of (4.42) and the back-substitution phase where all the other unknowns $\mathbf{w}_{1}, \mathbf{z}_{2}, \mathbf{w}_{2} \ldots, \mathbf{z}_{N}, \mathbf{w}_{N}$ are computed.

4.6.2 Description of the software

The $B A B D C R_{-} M O N O$ package has two main subroutines:

- BABDCR_ MONO_FACT performs the factorization of the coefficient matrix of the system (4.35);
- BABDCR_ MONO_SOLV uses the output of BABDCR_MONO_FACT for solving (4.35).

In figure (4.4) the calling sequences of the two subroutines are shown.
SUBROUTINE BABDCR_MONO_FACT $(\tilde{k}, m, N$, ARRAY1, ARRAY2, LFTBLK, RGTBLK, PERM, FILL_IN, INFO)

SUBROUTINE BABDCR_MONO_SOLV $(\tilde{k}, m, N$, ARRAY1, ARRAY2, LFTBLK, RGTBLK, PERM, FILL_IN, VECT_B)

Figure 4.4: Calling sequences of the two main subroutines

The package requires that the coefficient matrix in input is given as in Figure 4.5, that is, blocks $\left(H_{i}, G_{i}, O\right)$ and $\left(-E_{i},-F_{i}, I\right)$ must be given sequentially and saved respectively in ARRAY1 and ARRAY2 which are three-dimensional arrays of size $\tilde{k} \times(\tilde{k}+2 m) \times N$ and $m \times(\tilde{k}+2 m) \times N$.
The right hand side of (4.35) must be given in a vector VECT_B of length $(\tilde{k}+$ $m) N+m$, see Figure 4.6.2. The boundary blocks D_{a} and D_{b} are stored, in the arrays LFTBLK and RGTBLK, respectively, both of size $m \times m$.

$$
\begin{aligned}
& \text { ARRAY1 }=\left(\begin{array}{|l|l|l|l|l|l|}
\hline H_{1} & G_{1} & O & \ldots & H_{N} & G_{N} \\
\hline & O \\
\text { ARRAY2 } & =\left(\begin{array}{|l|l|l|l|l|l|}
\hline-E_{1} & -F_{1} & I \\
\hline
\end{array}\right. & \ldots & -E_{N} & -F_{N} & I \\
\hline
\end{array}\right)
\end{aligned}
$$

Figure 4.5: Structure of the input coefficient matrix

$$
\mathrm{VECT}_{-} \mathrm{B}=\left[\mathbf{d}, \mathbf{f}_{1}, 0, \mathbf{f}_{2}, 0, \ldots, \mathbf{f}_{N}, 0\right]
$$

Figure 4.6: Structure of the right hand side

4.7 Comparisons in the monomial case

We compare the code $A B D P A C K$, described in Section 2.5.1, with our algorithms: $G B A B D C R$ and $B A B D C R _M O N O$. ABDPACK solves ABD linear systems with coefficient matrices having the structure in (2.14). Our tests have been employed on BABD systems with structure (4.35) and on the same machine used in the numerical test in Section 4.5. We apply $A B D P A C K$ to the equivalent large ABD linear system, obtained through a transformation of the initial BABD system (4.35). This transformation is similar to that shown in (4.33) where the blocks S_{i-1}, T_{i} and R_{i} are those represented in (4.8). We compare its results with respect to $G B A B$ $D C R$ and BABDCR_MONO applied to the initial system (4.35). We have tested these methods on randomly generated BABD systems with $\tilde{k}=6, m=4$ and $N=256,512,1024,2048,4096$.
From Table 4.4, we note that the cyclic reduction method $G B A B D C R$ is at least 10% faster than $B A B D C R _M O N O$. Since $A B D P A C K$ is applied to an ABD system, we have inserted in Table 4.3 the timings for obtaining the double sized ABD system from the original BABD system. We note from Tables 4.4 and 4.3 , that the code $A B D P A C K$ is slower than the two cyclic reduction algorithms just for the transformation of the original system. Errors of the three linear solvers, represented in Table 4.5, depend on the conditioning of the system. This topic needs more testing and numerical analysis to find how the stability of the codes models the accuracy of the results. We obtain that, for N large $(N>1024), B A B D C R _M O N O$ has an error of order 10^{-7}, while, the other two methods are slightly more accurate (the error is of order 10^{-8}). For $N<1024$, the more accurate methods are $B A B$ $D C R _M O N O$ and $A B D P A C K$. Hence, it is preferable to use $G B A B D C R$ for a large number of block rows N and $B A B D C R _M O N O$ for small N. This first case is clearly of interest in most of the BVPs.

If more than one system is solved, it can be convenient to use $B A B D C R _M O N O$ just because the time spent in the solution phase is less than in $G B A B D C R$, as shown in Table 4.6.

Concerning memory allocation, we note that $B A B D C R _M O N O$ requires the same storage size of $G B A B D C R$. $A B D P A C K$ requires less storage because it generates no fill-in and it not requires the null block of ARRAY1 as GBABDCR and $B A B D C R _M O N O$ do, see Figure 4.5.

Table 4.3: Timings of assemble-phase (converting a BABD in an ABD system) for the method $A B D P A C K$, with $\tilde{k}=6, m=4$ and $N=256,512, \ldots, 4096$

	$\mathrm{N}=256$	$\mathrm{~N}=512$	$\mathrm{~N}=1024$	$\mathrm{~N}=2048$	$\mathrm{~N}=4096$
$A B D P A C K$	$1.95 \mathrm{e}-03$	$4.88 \mathrm{e}-03$	$8.78 \mathrm{e}-03$	$1.95 \mathrm{e}-02$	$4.68 \mathrm{e}-02$

Table 4.4: Total timings for the methods $B A B D C R _M O N O, G B A B D C R, A B D$ $P A C K$, with $\tilde{k}=6, m=4$ and $N=256,512, \ldots, 4096$ applied to random BABD linear systems

	$\mathrm{N}=256$	$\mathrm{~N}=512$	$\mathrm{~N}=1024$	$\mathrm{~N}=2048$	$\mathrm{~N}=4096$
BABDCR_MONO	$4.88 \mathrm{e}-03$	$1.07 \mathrm{e}-02$	$2.15 \mathrm{e}-02$	$4.78 \mathrm{e}-02$	$8.59 \mathrm{e}-02$
GBABDCR	$4.88 \mathrm{e}-03$	$9.76 \mathrm{e}-03$	$1.95 \mathrm{e}-02$	$4.39 \mathrm{e}-02$	$7.71 \mathrm{e}-02$
ABDPACK	$7.81 \mathrm{e}-03$	$1.66 \mathrm{e}-02$	$3.22 \mathrm{e}-02$	$6.44 \mathrm{e}-02$	0.15

Table 4.5: Errors for the methods $B A B D C R A O N O, G B A B D C R, A B D P A C K$, with $\tilde{k}=6, m=4$ and $N=256,512, \ldots, 4096$ applied to random BABD linear systems

	$\mathrm{N}=256$	$\mathrm{~N}=512$	$\mathrm{~N}=1024$	$\mathrm{~N}=2048$	$\mathrm{~N}=4096$
BABDCRAMONO	$5.15 \mathrm{e}-10$	$4.93 \mathrm{e}-12$	$1.46 \mathrm{e}-09$	$1.35 \mathrm{e}-07$	$1.09 \mathrm{e}-07$
GBABDCR	$1.42 \mathrm{e}-09$	$1.56 \mathrm{e}-11$	$3.83 \mathrm{e}-09$	$3.47 \mathrm{e}-08$	$3.31 \mathrm{e}-08$
ABDPACK	$2.54 \mathrm{e}-10$	$1.22 \mathrm{e}-11$	$4.30 \mathrm{e}-10$	$3.90 \mathrm{e}-08$	$6.52 \mathrm{e}-08$

Table 4.6: Timings of solution-phase for the methods $B A B D C R _M O N O, G B A B-$ $D C R, A B D P A C K$, with $\tilde{k}=6, m=4$ and $N=256,512, \ldots, 4096$ applied to random BABD linear systems

	$\mathrm{N}=256$	$\mathrm{~N}=512$	$\mathrm{~N}=1024$	$\mathrm{~N}=2048$	$\mathrm{~N}=4096$
BABDCR_MONO	$9.76 \mathrm{e}-04$	$2.93 \mathrm{e}-03$	$5.86 \mathrm{e}-03$	$1.46 \mathrm{e}-02$	$2.34 \mathrm{e}-02$
GBABDCR	$1.95 \mathrm{e}-03$	$2.93 \mathrm{e}-03$	$6.83 \mathrm{e}-03$	$1.46 \mathrm{e}-02$	$2.64 \mathrm{e}-02$
$A B D P A C K$	$9.76 \mathrm{e}-04$	$2.93 \mathrm{e}-03$	$4.88 \mathrm{e}-03$	$1.07 \mathrm{e}-02$	$2.73 \mathrm{e}-02$

Chapter 5

A parallel algorithm for the solution of BABD systems using MPI

We analyze an MPI Fortran 90 package, called $P B A B D C R$, for the solution of BABD linear systems with the structure

$$
\left(\begin{array}{ccccc}
D_{a} & & & & D_{b} \tag{5.1}\\
S_{0} & R_{1} & & & \\
& S_{1} & R_{2} & & \\
& & \ddots & \ddots & \\
& & & S_{N-1} & R_{N}
\end{array}\right)\left(\begin{array}{c}
\mathbf{y}_{0} \\
\mathbf{y}_{1} \\
\mathbf{y}_{2} \\
\vdots \\
\mathbf{y}_{N}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{d} \\
\mathbf{f}_{1} \\
\mathbf{f}_{2} \\
\vdots \\
\mathbf{f}_{N}
\end{array}\right)
$$

The package handles BABD matrices with square blocks S_{i}, R_{i}, D_{a} and D_{b} all of size $m \times m$.

5.1 The parallel algorithm

$P B A B D C R$ is a parallel implementation on P processors of the cyclic reduction algorithm $B A B D C R$, described in Chapter 3. The package requires that the coefficient matrix and the right hand side of the system (5.1) are defined as in Figure 5.1: the blocks rows $V_{i}=\left(S_{i-1}, R_{i}\right)$ and the boundary blocks D_{a} and D_{b} must be given sequentially in an $m \times m \times 2(N+1)$ real array MATR_A and the right hand side in an $m \times(N+1)$ real array VECT_B.

In the following, we indicate a processor using directly its handle K, where $K=0, \ldots, P-1$.

The algorithm consists in three phases:

1. STARTUP
2. FACTORIZATION

Figure 5.1: Structures of the input coefficient matrix MATR_A and of the input right hand side VECT_B.

3. SOLUTION

In the STARTUP phase, proc 0 breaks the blocks

into contiguous parts and distributes them to all the P processors.
As an example, after this block-distribution, proc ${ }^{1} K$ has $N_{0}=\lfloor N / P\rfloor$ block rows:

$$
V_{N_{0} K+1}, \ldots, V_{N_{0}(K+1)}
$$

and the associated right hand sides

$$
\mathbf{f}_{N_{0} K+1}, \ldots, \mathbf{f}_{N_{0}(K+1)}
$$

If N is not a multiple of K, proc $P-1$ also has the last $N-N_{0} P$ block rows:

$$
V_{N_{0} P+1}, \ldots, V_{N}
$$

and the associated right hand sides

$$
\mathbf{f}_{N_{0} P+1}, \ldots, \mathbf{f}_{N}
$$

Moreover, proc 0 broadcasts to each processor the boundary blocks D_{a}, D_{b} and the associated right hand side \mathbf{d}.

Property 5.1.1. The algorithm requires that each processor K, with $K=0, \ldots, P-$ 2 , has number of block rows a power of 2 , that is $N_{0}=2^{i}$, for some $i \in \mathbb{N}$.

Property 5.1.1 could represent a drawback of the parallel code, if the choice of the number of processors is user-defined.

For a given parallel architecture and problem size, the algorithm, in the startup phase, chooses the number of processors to minimize the number of steps in the factorization and solution phases. This part is described in detail in Section 5.1.3.

[^4]
5.1.1 Factorization phase

The factorization phase consists in $\log _{2} N$ steps which perform the cyclic reduction, described in Section 3.1, for the algorithm $B A B D C R$. One difference with respect to $B A B D C R$ is that the computation in each step is clearly distributed between processors and we need to communicate between them to proceed with the reduction.

Now, set $(K, j)=N_{0} K+j$, for $j=1, \ldots, N_{0}$, we start the factorization supposing that proc K has stored the matrix

$$
\left(\begin{array}{ccccc}
S_{(K, 0)} & R_{(K, 1)} & & & \tag{5.2}\\
& & \ddots & & \\
& & & S_{\left(K, N_{0}-1\right)} & R_{\left(K, N_{0}\right)}
\end{array}\right)
$$

in its own memory allocations, as described in the previous section.
The $\log _{2} N$ steps of the factorization are grouped in two parts:

- In the first $k_{0}=\left\lceil\log _{2}\left(N_{0}\right)\right\rceil$ steps, called the reduction steps, the coefficient matrix (5.2) is reduced into the block row

$$
\left(\begin{array}{ll}
S_{(K, 0)}^{\left(k_{0}\right)} & R_{\left(K, N_{0}\right)}^{\left(k_{0}\right)} \tag{5.3}
\end{array}\right)
$$

without any communication between processors. This yields, altogether in the parallel architecture, the BABD coefficient matrix

$$
\left(\begin{array}{ccccc}
D_{a} & & & & D_{b} \\
S_{(0,0)}^{\left(k_{0}\right)} & R_{\left(0, N_{0}\right)}^{\left(k_{0}\right)} & & & \\
& & \ddots & & \\
& & & S_{(P-1,0)}^{\left(k_{0}\right)} & R_{\left(P-1, N_{0}\right)}^{\left(k_{0}\right)}
\end{array}\right)
$$

- in the next step (called the communication step), each processor K receives a block row from an adjacent processor (that has handle $K-1$, if K is odd, and $K+1$, if K is even). Then, the processors K and $K+1$ (with $K=2 j$, for $\left.j=0, \ldots,\left\lfloor\frac{P-2}{2}\right\rfloor\right)$ have the same pair of block rows ${ }^{2}$

$$
\left(\begin{array}{lll}
S_{(K, 0)}^{\left(k_{0}\right)} & R_{\left(K, N_{0}\right)}^{\left(k_{0}\right)} & \\
& S_{(K+1,0)}^{\left(k_{0}\right)} & R_{\left(K+1, N_{0}\right)}^{\left(k_{0}\right)}
\end{array}\right)
$$

that is reduced into the block row

$$
\left(\begin{array}{ll}
S_{(K, 0)}^{\left(k_{0}+1\right)} & R_{\left(K+1, N_{0}\right)}^{\left(k_{0}+1\right)} \tag{5.4}
\end{array}\right) .
$$

In the next step (a communication step), the pairs of processors $K, K+2$ and $K+1, K+3$ for $K=4 j, j=0,1, \ldots$, interchange their last determined block rows and reduce the obtained pair of block rows. This algorithm

[^5]proceeds for $\ln p=\left\lceil\log _{2}(P)\right\rceil$ steps until each processor factorizes the final 2×2 block coefficient matrix
\[

\left($$
\begin{array}{cc}
D_{a} & D_{b} \tag{5.5}\\
S_{0}^{\left(k_{0}+\ln p\right)} & R_{N}^{\left(k_{0}+\ln p\right)}
\end{array}
$$\right)
\]

For more details, see the algorithm listed in Section 5.2.

5.1.2 Solution phase

The SOLUTION phase consists in three parts

- in the first k_{0} steps (reduction steps), the right hand side is reduced without any communication between processors. This produces the right hand sides associated to the coefficient matrices determined in the first k_{0} steps of the factorization phase;
- in the next $\left\lceil\log _{2}(P)\right\rceil$ steps (communication steps), the right hand side is reduced after communication between processors (those used in the second part of the factorization phase);
- finally, the back-substitution phase is performed in each processor. It determines the unknowns of the system (5.1), without any additional communication between processors.

5.1.3 A note about the startup

First, we analyze how to choose the number of processors for minimizing the computational time spent in the cyclic reduction. In this analysis, we consider the time spent for the communications between processors to be negligible.

Given N block rows and a parallel architecture with $M A X P$ processors, the number of processors P and the number of block rows N_{0}, that minimize the computational time of the reduction, are determined from the following
Proposition 5.1.2. If $\left\lfloor\frac{N}{2}\right\rfloor=l$ with $l \leq M A X P$, then $P=l$ and $N_{0}=2$, in the first $P-1$ processors, and $N_{0}=N-2(P-1)$ in proc $P-1$. Otherwise, if $l>M A X P$, the number of processors, P, and the number of block rows, N_{0}, is determined from the following algorithm

```
\(l=\left\lfloor\frac{N}{2}\right\rfloor\)
\(n=0\)
repeat
    \(l=\left\lceil\frac{l}{2}\right\rceil\)
    \(n=n+1\)
until \((l \leq M A X P)\)
\(P=l\)
\(N_{0}=2^{n+1}\) for any proc with handle \(0, \ldots, P-2\)
```

$N_{0}=N-(P-1) 2^{n+1}$ for proc $P-1$.

Proposition 5.1.3. Given N block rows, a parallel architecture with MAXP processors, and using the approach described in the previous proposition, we need k_{0} factorization steps (before the communication phase), with $N_{0}=2^{k_{0}}$ for proc K with $K=0, \ldots, P-2$ and $N_{0} \leq 2^{k_{0}}+1$ for proc $P-1$. Therefore, the Proposition 5.1.2 yields an algorithm that satisfies the Property 5.1.1.

Below, we refer to a time step as a single reduction (from a pair of block rows to one block row), as described in Section 3.1. Also, we refer to timing as the time spent in a time step.

Proposition 5.1.4. The values P and N_{0} determined in the Proposition 5.1.2, yields an algorithm that solves (5.1) with the minimum possible number of time steps, for a given parallel architecture.

We illustrate the Proposition 5.1.4, using the following two examples. In the first, we use a parallel architecture with $M A X P=3$ processors and a BABD system (5.1) with $N=5$ block rows. If we use all the three processors, in the algorithm, then $P=3$ and in order to satisfy the property 5.1.1, V_{1} is stored in proc $0, V_{2}$ in proc 1 and V_{3}, V_{4}, and V_{5} in proc 2 . This results in an algorithm where only proc 2 performs the reduction of its blocks (two reductions), while the other processors wait for the communication phase. The communication phase consists of 2 communication steps and therefore 2 additional reductions. Thus in total (in the parallel machine), we use 4 time steps with 2 communications for obtaining the final 2×2 block linear system with coefficient matrix (5.5) in each processor. In contrast, if we use, as recommended by Proposition 5.1.2, only two processors, then $P=2$ with V_{1} and V_{2} in proc 0 and V_{3}, V_{4}, V_{5} in proc 1 . This yields one reduction performed in both processors, 2 communication steps and the associated reductions. Then, we use only 3 time steps and 2 communications.

An other example: we set $M A X P=2$ and $N=15$. Since $l=\left\lfloor\frac{15}{3}\right\rfloor>$ $M A X P$, from the algorithm in Proposition 5.1.2 we get $P=\left\lceil\left\lceil\frac{l}{2}\right\rceil / 2\right\rceil=2, N_{0}=$ $2^{3}=8$ for proc 0 and $N_{0}=7$ for proc 1 . This yields, before the communication, 7 time steps (with $k_{0}=3$) and after this, there is one communication step with the associated reduction. We use a total of 8 time-steps and 1 communication.

In contrast, if we use only one processor this yields $N_{0}=15$ then there are $k_{0}=4$ reduction steps. These yield 7 time steps in the first reduction step, 4 in the second step, 2 in the third step and 1 time step in the fourth reduction step. Therefore we get 14 time steps.

5.2 Code in a pseudo programming language

The algorithm, presented below in a pseudo-programming language, describes the factorization and the solution phase in the case: $P=2^{l n p}$ and $N_{0}=2^{k_{0}}$.

FACTORIZATION in proc K

```
\(k_{0}=\left\lceil\log _{2}\left(N_{0}\right)\right\rceil\)
\(\ln p=\left\lceil\log _{2}(P)\right\rceil\)
\% \(k_{0}\) reduction steps
for step \(=0, \ldots, k_{0}-1\)
    \(s=2^{\text {step }}\)
    for \(j=1,2, \ldots,\left\lfloor\left\lceil N_{0} / s\right\rceil / 2\right\rfloor\)
        \% reduction of a pair of block rows
        \(l=(K,(2 j-1) s)\)
            \(P_{l}\binom{R_{l}^{(\text {step })}}{S_{l}^{(\text {step })}}=\binom{L_{l}}{T_{l}} U_{l}\)
        \(G_{l}^{(s t e p)}=T_{l} L_{l}^{-1}\)
        \(\binom{\widehat{S}_{l-s}^{(s t e p)}}{S_{l-s}^{(s t e p+1)}}=\left(\begin{array}{cc}I & \\ -G_{l}^{(s t e p)} & I\end{array}\right) P_{l}\binom{S_{l-s}^{(s t e p)}}{O}\)
        \(\binom{\widehat{R}_{l+p}^{(s t e p)}}{R_{l+s}^{(s t e p+1)}}=\left(\begin{array}{cc}I & \\ -G_{l}^{(s t e p)} & I\end{array}\right) P_{l}\binom{O}{R_{l+s}^{(s t e p)}}\)
        end
end
\(s_{1}=2\)
\(\operatorname{prod}=\bmod \left(K, s_{1}\right)\)
\% lnp communication steps
    \(l_{1}(0)=(K, 0)\)
    \(l_{2}(0)=\left(K, N_{0}\right)\)
    for step \(=0, \ldots, \ln p-1\)
        IF \((\operatorname{prod}==0)\) THEN
        \% communication with \(K+\frac{s_{1}}{2}\)
            send \(\left(\begin{array}{ll}S_{l_{1}(\text { step })}^{\left(k_{0}+\text { step }\right)} & R_{l_{2}(\text { step })}^{\left(k_{0}+\text { step }\right)}\end{array}\right)\) to proc \(K+\frac{s_{1}}{2}\)
            \(m_{1}(\) step \()=\left(k+\frac{s_{1}}{2}, 0\right)\)
            \(m_{2}(s t e p)=\left(k+\frac{s_{1}}{2}, N_{0}\right)\)
                receive \(\left(S_{m_{1}(s t e p)}^{\left(k_{0}+\text { step }\right)} \quad R_{m_{2}(\text { step })}^{\left(k_{0}+\text { step }\right)}\right)\) from proc \(K+\frac{s_{1}}{2}\)
                \(l_{1}(\) step +1\()=l_{1}(\) step \()\)
                \(l_{2}(\) step +1\()=m_{2}(\) step \()\)
                \(m_{1}(\) step +1\()=l_{2}(\) step \()\)
                \(m_{2}(\) step +1\()=m_{1}(\) step \()\)
            ELSE
            \% communication with \(K-\frac{s_{1}}{2}\)
                send \(\left(\begin{array}{ll}S_{l_{1}(\text { step })}^{\left(k_{0}+\text { step }\right)} & R_{l_{2}(\text { step })}^{\left(k_{0}+\text { step }\right)}\end{array}\right)\) to proc \(K-\frac{s_{1}}{2}\)
                \(m_{1}(\) step \()=\left(K-\frac{s_{1}}{2}, 0\right)\)
```

$$
\begin{aligned}
& m_{2}(\text { step })=\left(K-\frac{s_{1}}{2}, N_{0}\right) \\
& \text { receive }\left(S_{m_{1}(s t e p)}^{\left(k_{0}+\text { step }\right)} \quad R_{m_{2}(\text { step })}^{\left(k_{0}+\text { step }\right)}\right) \text { from proc } K-\frac{s_{1}}{2} \\
& l_{1}(\text { step }+1)=m_{1}(\text { step }) \\
& l_{2}(\text { step }+1)=l_{2}(\text { step }) \\
& m_{1}(\text { step }+1)=m_{2}(\text { step }) \\
& m_{2}(\text { step }+1)=l_{1}(\text { step }) \\
& \text { ENDIF } \\
& l=l+1 \\
& P_{l}\binom{R_{m_{1}(s t e p+1)}^{\left(k_{0}+s t e p\right)}}{S_{m_{2}(s t e p+1)}^{\left(k_{0}+s t e p\right)}}=\binom{L_{l}}{T_{l}} U_{l} \\
& G_{l}^{\left(k_{0}+s t e p\right)}=T_{l} L_{l}^{-1} \\
& \binom{\widehat{S}_{l_{1}(\text { step }+1)}^{\left(k_{0}+\text { step }\right)}}{S_{l_{1}(\text { step }+1)}^{\left(k_{0}+s t e p+1\right)}}=\left(\begin{array}{cc}
I & \\
-G_{l}^{\left(k_{0}+\text { step }\right)} & I
\end{array}\right) P_{l}\binom{S_{l_{1}(s t e p+1)}^{\left(k_{0}+\text { step }\right)}}{O} \\
& \binom{\widehat{R}_{l_{2}(s t e p+1)}^{\left(k_{0}+\text { step }\right)}}{R_{l_{2}(\text { step }+1)}^{\left(k_{0}+\text { ste }+1\right)}}=\left(\begin{array}{cc}
I & \\
-G_{l}^{\left(k_{0}+\text { step }\right)} & I
\end{array}\right) P_{l}\binom{O}{R_{l_{2}(\text { step }+1)}^{\left(k_{0}+\text { step }\right)}} \\
& \text { \% update } s_{1} \text { and prod } \\
& s_{1}=s_{1} \cdot 2 \\
& \text { prod }=1 \\
& \text { for } I=0, \ldots, 2^{(\text {step }+1)}-1 \\
& \operatorname{prod}=\operatorname{prod} \cdot \bmod \left(K-I, s_{1}\right) \\
& \text { end } \\
& \text { end } \\
& \text { \% Factorization of the final } 2 \times 2 \text { system } \\
& \widehat{P}\left(\begin{array}{ll}
D_{a} & D_{b} \\
S_{0}^{\left(l n p+k_{0}\right)} & R_{N}^{\left(l n p+k_{0}\right)}
\end{array}\right)=\widehat{L} \widehat{U}
\end{aligned}
$$

SOLUTION phase in proc K

```
% }\mp@subsup{k}{0}{}\mathrm{ rhs reduction steps
for step = 0,\ldots, 䭘-1
    s=2
    for j=1,2,\ldots,\lfloor\lceil\N0/s\rceil/2\rfloor
        % reduction of pairs of block rows
        l=(K,(2j-1)s)
            ( (\begin{array}{c}{\mp@subsup{\widehat{\mathbf{f}}}{l}{(step })}\\{\mp@subsup{\mathbf{f}}{l+s}{(step+1)}}\end{array})=(\begin{array}{cc}{I}&{}\\{-\mp@subsup{G}{l}{(step)}}&{I}\end{array})\mp@subsup{P}{i}{}(\begin{array}{l}{\mp@subsup{\mathbf{f}}{l}{(step)}}\\{\mp@subsup{\mathbf{f}}{l+s}{(step )}}\end{array})
        end
    end
```

```
\(s_{1}=2\)
\(\operatorname{prod}=\bmod \left(K, s_{1}\right)\)
\% lnp rhs communication steps
    for step \(=0, \ldots, \ln p-1\)
        IF \((\operatorname{prod}==0)\) THEN
        \% communication with \(K+\frac{s_{1}}{2}\)
            send \(\mathbf{f}_{l_{2}(\text { step })}^{\left(k_{0}+\text { step }\right)}\) to proc \(K+\frac{s_{1}}{2}\)
            receive \(\mathbf{f}_{m_{2}(\text { step })}^{\left(k_{0}+\text { step }\right)}\) from proc \(K+\frac{s_{1}}{2}\)
        ELSE
        \% communication with \(K-\frac{s_{1}}{2}\)
                send \(\mathbf{f}_{l_{2}(\text { step })}^{\left(k_{0}+\text { step }\right)}\) to proc \(K-\frac{s_{1}}{2}\)
                receive \(\mathbf{f}_{m_{2}(\text { step })}^{\left(k_{0}+s t e p\right)}\) from proc \(K-\frac{s_{1}}{2}\)
        ENDIF
        \(l=l+1\)
        \(\binom{\widehat{\mathbf{f}}_{m_{1}(\text { step }+1)}^{\left(k_{0}+\text { step }\right)}}{\mathbf{f}_{l_{2}(\text { step }+1)}^{\left(k_{0}+\text { step }+1\right)}}=\left(\begin{array}{cc}I & \\ -G_{l}^{\left(k_{0}+\text { step }\right)} & I\end{array}\right) P_{l}\binom{\mathbf{f}_{m_{1}(\text { step })}^{\left(k_{0}+1\right)}}{\mathbf{f}_{l_{2}(\text { step }+1)}^{k_{0}+\text { step }}}\)
        \% update \(s_{1}\) and prod
        \(s_{1}=s_{1} \cdot 2\)
        prod \(=1\)
        for \(I=0, \ldots, 2^{(\text {step }+1)}-1\)
            \(\operatorname{prod}=\operatorname{prod} \cdot \bmod \left(K-I, s_{1}\right)\)
        end
    end
    \% Solution of the final \(2 \times 2\) system
        \(\binom{\mathbf{y}_{0}}{\mathbf{y}_{N}}=(\widehat{L} \widehat{U})^{-1} \widehat{P}\binom{\mathbf{d}}{\mathbf{f}_{N}^{\left(\ln p+k_{0}\right)}}\)
    \% Back substitution
        for step \(=\ln p-1, \ldots, 0\)
        \(\mathbf{y}_{m_{1}(\text { step })}=\left(L_{l} U_{l}\right)^{-1}\).
                \(\left(\widehat{\mathbf{f}}_{m_{1}(\text { step })}^{\left(k_{0}+\text { step }\right)}-\widehat{S}_{l_{1}(\text { step })}^{\left(k_{0}+\text { step }\right)} \mathbf{y}_{l_{1}(\text { step })}-\widehat{R}_{l_{2}(\text { step })}^{\left(k_{0}+s t e p\right)} \mathbf{y}_{l_{2}(\text { step })}\right)\)
        \(l=l-1\)
    end
    for step \(=k_{0}-1, \ldots, 0\)
        \(s=2^{\text {step }}\)
        for \(j=\left\lfloor\left\lceil N_{0} / s\right\rceil / 2\right\rfloor, \ldots, 2,1\)
            \(l=(K,(2 j-1) s)\)
            \(\mathbf{y}_{l}=\left(L_{l} U_{l}\right)^{-1}\left(\widehat{\mathbf{f}}_{l}^{(s t e p)}-\widehat{S}_{l-s}^{(s t e p)} \mathbf{y}_{l-s}-\widehat{R}_{l+s}^{(s t e p)} \mathbf{y}_{l+s}\right)\)
        end
    end
```


5.3 Speedup

In Tables 5.1-5.2, we represent the speedup of the algorithm $P B A B D C R$. That is, the ratio between the execution time (time of factorization plus time of solution) on one processor and the execution time on many processors. This implementation is applied to random BABD linear systems. We use a cluster of $16(2.4 \mathrm{GHz}$ Intel Xeon) processors with the Intel Fortran 90/95 compiler. Tables 5.1-5.2 describe the speedup of the algorithm, for fixed N and varying the dimension m of blocks and the number P of processors. These data are also represented in Figure 5.2 for $N=512$ and in Figure 5.3 for $N=1024$.

In Table 5.2 and in Figure 5.3, where $N=1024$, we obtain higher speedup with increasing the dimension m for fixed P. In fact, since the factorization of an $m \times m$ matrix is the principal cost in each reduction, this cost (a timing) prevails over the time spent in the communication for increasing m. This results in a benefit of the multiprocessing procedure with respect the one processor version.

This happens only if the number of block rows, N, is sufficiently large with respect to m, especially when m is small (that yields low computational cost). In fact, for $m=4$ and $N=512$, see Table 5.1 and Figure 5.2, the speedup decreases if the number of processors increases. In this case the cost of communication prevails over the computational cost.

Wright, in [76], suggests a value of m that is at least 50 or 100 for obtaining better result of multiprocessing with respect to the one processor version.

Finally, for the results obtained in Section 3.8 in the serial case, we remark that $B A B D C R$ could result in a faster MIRKDC package on distributed parallel architectures than PMIRKDC [68]. We have not provided a direct comparison with PMIRKDC because it has been written for shared memory architectures and our linear solver $P B A B D C R$ can be implemented only on distributed memory architecture using MPI.

Table 5.1: Speedup of the code $P B A B D C R$ with $N=512$.

Problem	$P=2$	$P=4$	$P=8$	$P=16$
$m=4$	1.864	2.592	3.684	2.661
$m=16$	1.800	3.715	6.590	10.412
$m=64$	1.839	3.649	6.944	11.752

Table 5.2: Speedup of the code $P B A B D C R$ with $N=1024$.

Problem	$P=2$	$P=4$	$P=8$	$P=16$
$m=4$	1.917	2.951	4.508	6.306
$m=16$	1.950	3.615	7.578	12.605
$m=64$	2.030	3.912	7.768	14.153

Figure 5.2: Speedup of $P B A B D C R$ with $N=512$ and $P=2,4,8,16$ processors. The dashed line is the ideal speedup (speedup for P processors $=P$) that could be obtained, if the communications were instantaneous.

Figure 5.3: Speedup of $P B A B D C R$ with $N=1024$ and $P=2,4,8,16$ processors. The dashed line is the ideal speedup (speedup for P processors $=P$) that could be obtained, if the communications were instantaneous.

Chapter 6

Appendix of Numerical Analysis

In this appendix, we state those basic facts about polynomials and Runge Kutta formulas needed in the previous chapters.

6.1 Polynomials

A polynomial of order $n \in \mathbb{N}$ or of degree at most $n-1$ is a function of the form

$$
p(x)=a_{1}+a_{2} x+\ldots+a_{n} x^{n-1}=\sum_{j=1}^{n} a_{j} x^{j-1}
$$

where a_{j} are real numbers, $a_{j} \in \mathbb{R}$. We use the letter \mathcal{P}_{n} to denote the linear space of all polynomials of order n. We call monomial each polynomial $p(x) \in \mathcal{P}_{n}$ of type $p(x)=a_{n} x^{n-1}$. A sequence $\left\{p_{i}(x)\right\}_{i \geq 1}$ of orthogonal polynomials in $[a, b]$, with $p_{i}(x) \in \mathcal{P}_{i}$ has the property

$$
\int_{a}^{b} p_{i}(x) p_{j}(x) d x=0, \quad i \neq j
$$

An example are the Legendre polynomials [17] with the k th Legendre polynomial in $[a, b]$

$$
p_{k}(x)=\frac{(-1)^{k}}{(a+b)^{k} k!} \frac{d^{k}}{d x^{k}}\left(1-\left(\frac{2}{a+b} x-1+\frac{2 a}{a+b}\right)^{2}\right)^{k}
$$

Given $k \in \mathbb{N}$, the k th divided difference of a function f at the points sequence $\left\{\tau_{l}\right\}_{l=1}^{k+1}=\left\{\tau_{1}, \ldots, \tau_{k+1}\right\}$ is the value

$$
\begin{aligned}
& {\left[\tau_{1}, \ldots, \tau_{k+1}\right] f:=} \\
& \left\{\begin{array}{l}
\frac{f^{(k)}(\tau)}{k!} \quad \text { if } \tau=\tau_{1}=\cdots=\tau_{k+1} \\
\frac{\left[\tau_{1}, \ldots, \tau_{i-1}, \tau_{i+1}, \ldots, \tau_{k+1}\right] f-\left[\tau_{1}, \ldots, \tau_{j-1}, \tau_{j+1}, \ldots, \tau_{k+1}\right] f}{\tau_{j}-\tau_{i}} \\
\text { if } \tau_{i}, \tau_{j} \in\left\{\tau_{l}\right\}_{l=1}^{k+1} \text { are any two distinct points } \tau_{i} \neq \tau_{j}
\end{array}\right.
\end{aligned}
$$

In the previous chapters, we use the property of the k th divided difference

$$
\left[\tau_{1}, \ldots, \tau_{k+1}\right] g=0
$$

for any g polynomial of order k in $\left[\tau_{1}, \tau_{k+1}\right]$, see [18]. The support of a function $f(x)$, denoted as $\operatorname{supp}(f)$ is the set

$$
\operatorname{supp}(f)=\{x \in \mathbb{R} \mid f(x) \neq 0\}
$$

We denote with $(x)_{+}$the "truncation" function

$$
(x)_{+}:=\left\{\begin{array}{cc}
x & \text { if } x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Other truncated functions are $(x)_{+}^{j}:=x \cdot(x)_{+}^{j-1}, j \in \mathbb{N}, j>0$ and

$$
(x)_{+}^{0}:=\left\{\begin{array}{cc}
1 & \text { if } x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Let $\Delta=\left\{x_{i}\right\}_{i=1}^{N+1}$ a partition or subdivision of the interval $[a, b]$ with strictly increasing sequence of points

$$
\Delta: a=x_{1}<x_{2}<\cdots<x_{N}<x_{N+1}=b
$$

we call piecewise polynomial of order n defined on Δ, any function $f(x)$ such that $p_{i}(x)=\left.f(x)\right|_{\left[x_{i}, x_{i+1}\right]}$ is a polynomial of order n, for $i=1, \ldots, N$. We denote the collection of all such piecewise polynomial defined on Δ with $\mathcal{P}_{n, \Delta}$. An important class of piecewise polynomial is formed by the splines. We will use $\mathbb{S}_{\Delta}^{n, m}$ to denote the set of \mathcal{C}^{m} splines of order $n, n \geq m$, defined on the partition Δ

$$
\mathbb{S}_{\Delta}^{n, m}:=\left\{s(x) \in \mathcal{C}^{m}[a, b]:\left.s(x)\right|_{\left[x_{i}, x_{i+1}\right]} \in \mathcal{P}_{n}, i=1, \ldots, N\right\}
$$

$\lfloor x\rfloor$ denotes the greater integer less than or equal to x and $\lceil x\rceil$ denotes the smallest integer greater than or equal to x

6.2 Runge-Kutta formulae

The Runge-Kutta formulae [24] determine approximations of the solution of an IVODE problem in [a,b]

$$
\begin{aligned}
& \mathbf{y}^{\prime}=\mathbf{f}(t, \mathbf{y}(t)), \quad \mathbf{y}(t) \in \mathbb{R}^{m} \quad t \in[a, b] \\
& \mathbf{y}\left(t_{0}\right)=\mathbf{y}_{0}
\end{aligned}
$$

$\left(t_{0} \equiv a\right)$, using the scheme

$$
\mathbf{y}_{i+1}=\mathbf{y}_{i}+h_{i} \sum_{r=1}^{s} b_{r} \mathbf{K}_{i, r}
$$

with the stages

$$
\mathbf{K}_{i, r}=\mathbf{f}\left(t_{i}+c_{r} h_{i}, \mathbf{y}_{i}+h_{i} \sum_{j=1}^{r} x_{r j} \mathbf{K}_{i, j}\right), r=1, \ldots, s
$$

where s is the number of stages, $h_{i}=t_{i+1}-t_{i}$ is the amplitude of the i th subinterval of the given mesh $\left\{t_{i}\right\}_{i=0}^{N}$ composed by N subintervals. The given coefficients $\mathbf{b}=\left\{b_{r}\right\}_{r=1}^{s}$, called weight coefficients, the $s \times s$ lower triangular matrix $X:=$ $\left\{x_{r, j}\right\}_{r, j=1}^{s}$ and the ascissa vector $\mathbf{c}:=\left\{c_{r}\right\}_{r=1}^{s}, 0 \leq c_{r} \leq 1$, determines a unique Runge-Kutta formula which can be represented with the Butcher array

$$
\begin{array}{l|l}
\mathbf{c} & \mathbf{X} \\
\hline & \mathbf{b}
\end{array}
$$

If for some $r, x_{r r} \neq 0$, then the RK formula is called implicit.

6.3 MIRK/CMIRK schemes in the code MIRKDC

Here we summarize the approach used in MIRKDC for employing a MIRK/CMIRK scheme applied to the BVP system (1.18)-(1.19) of dimension m. The approach consists of a two-level iteration scheme.

At beginning, the user determines an initial mesh (or partition) $\left\{t_{i}\right\}_{i=0}^{N}$ of N subintervals of $[a, b]$, an associated discrete solution approximation $\mathbf{Y}^{(0)}$ and a MIRK scheme, choosing a suitable Butcher array (1.17). The user defines also a defect tolerance $T O L$. The first level-step is the setup and the solution of the discrete system

$$
\boldsymbol{\Phi}(\mathbf{Y})=0
$$

where

$$
\begin{array}{cc}
\mathbf{Y}=\left(\mathbf{y}_{0}^{T}, \ldots, \mathbf{y}_{N}^{T}\right)^{T}, \mathbf{y}_{j} \in \mathbb{R}^{m}, & j=0, \ldots, N, \\
\boldsymbol{\Phi}(\mathbf{Y})=\left(\boldsymbol{\Phi}_{0}(\mathbf{Y})^{T}, \ldots, \boldsymbol{\Phi}_{N}(\mathbf{Y})^{T}\right)^{T}, & \mathbf{\Phi}_{i}: \mathbb{R}^{m(N+1)} \longrightarrow \mathbb{R}^{m}, \\
\mathbf{\Phi}_{i}(\mathbf{Y})=\mathbf{y}_{i+1}-\mathbf{y}_{i}-h_{i} \sum_{r=1}^{s} b_{r} \mathbf{K}_{i, r}, & i=0, \ldots, N-1, \\
\mathbf{\Phi}_{N}=\mathbf{g}\left(\mathbf{y}_{0}, \mathbf{y}_{N}\right) . &
\end{array}
$$

with stages $\mathbf{K}_{i, r}$ defined in (1.16). The system is solved using the Newton iteration $\mathbf{Y}^{(q+1)}=\mathbf{Y}^{(q)}+\Delta \mathbf{Y}^{(q)}$, for $q=0,1, \ldots$, where

$$
\begin{equation*}
\left[\frac{\partial \boldsymbol{\Phi}\left(\mathbf{Y}^{(q)}\right)}{\partial \mathbf{Y}}\right] \Delta \mathbf{Y}^{(q)}=-\boldsymbol{\Phi}\left(\mathbf{Y}^{(q)}\right) \tag{6.1}
\end{equation*}
$$

given $\mathbf{Y}^{(0)}$. On convergence the Newton iteration gives a discrete solution approximation $\widehat{\mathbf{Y}}=\left(\widehat{\mathbf{y}}_{0}^{T}, \ldots, \widehat{\mathbf{y}}_{N}^{T}\right)$.

Then, in the second step-level, we use an associated CMIRK scheme to costruct a C^{1} continuous approximation solution over the entire interval $[a, b]$. The CMIRK scheme determine for each subinterval $\left[t_{i}, t_{i+1}\right]$ a polynomial in $[0,1]$

$$
\mathbf{u}\left(t_{i}+\theta h_{i}\right)=\widehat{\mathbf{y}}_{i}+h_{i} \sum_{r=1}^{s^{*}} b_{r}(\theta) \mathbf{K}_{i, r}, 0 \leq \theta \leq 1, t_{i} \leq t \leq t_{i+1}
$$

with $s^{*}>s$ and $\mathbf{K}_{i, r}$, for $r=1, \ldots, s$, are those defined in (1.16).
The extra stages

$$
\mathbf{K}_{i, r}=\mathbf{f}\left(t_{i}+c_{r} h_{i},\left(1-v_{r}\right) \widehat{\mathbf{y}}_{i}+v_{r} \widehat{\mathbf{y}}_{i+1}+h_{i} \sum_{j=1}^{r-1} x_{r j} \mathbf{K}_{i, j}\right), r=s+1, \ldots, s^{*}
$$

(that is, the remaining coefficients c_{r}, v_{r} and $x_{r j}, r=s+1, \ldots, s^{*}, j=1, \ldots, r-$ 1) and the s^{*} polynomials $b_{i}(\theta)$ are chosen imposing on $\mathbf{u}(t)$, the continuous conditions on the current mesh and, for a given order p,

$$
\max _{0 \leq \theta \leq 1}\left\|\mathbf{y}\left(t_{i}+\theta h_{i}\right)-\mathbf{u}\left(t_{i}+\theta h_{i}\right)\right\|=O\left(h_{i}^{p+1}\right), \quad i=0, \ldots, N-1
$$

where $\mathbf{y}(t)$ is the exact solution of the initial ODE $\mathbf{y}^{\prime}=\mathbf{f}(t, \mathbf{y}(t))$ with $\mathbf{y}\left(t_{i}\right)=$ $\mathbf{u}\left(t_{i}\right)=\widehat{\mathbf{y}}_{i} . p$ is chosen as the order of accuracy of the discrete MIRK scheme chosen. Then, the approach proceeds with the estimate of the defect

$$
\delta(t):=\mathbf{u}^{\prime}(t)-\mathbf{f}(t, \mathbf{u}(t)), t \in[a, b]
$$

on each subinterval δ_{i}. If the termination condition

$$
\begin{equation*}
\left\|\delta_{i}\right\| \leq T O L \tag{6.2}
\end{equation*}
$$

for $i=0, \ldots, N-1$ is not satisfied, then it uses the current mesh, defect estimates and $T O L$ to construct new mesh which equidistributes defect estimates with sufficient refinement to approximately satisfy (6.2).

Finally $\mathbf{u}(t)$ is evaluated on the new mesh to set up the new discrete initial solution approximation, at the new mesh points. More details are described in [33] and [23].

Acknowledgements

I thank the staff of three Departments: the Department of Mathematics in Bari, the Department of Mathematics of the Southern Methodist University in Dallas, and the School of Computing in Leeds. I acknowledge, particularly, all my international colleagues for the technical and moral support during the three years spent in my PhD programme.

Giuseppe Romanazzi
Bari, February 2006

Bibliography

[1] P. Amodio, J. R. Cash, G. Roussos, R. W. Wright, G. Fairweather, I. Gladwell, G. L. Kraut, and M. Paprzycki. Almost block diagonal linear systems: sequential and parallel solution techniques, and applications. Numer. Linear Algebra Appl., 7:275-317, 2000.
[2] P. Amodio and M. Paprzycki. A cyclic reduction approach to the numerical solution of boundary value ODEs. SIAM J. Sci. Comput., 18(1):56-68, 1997.
[3] P. Amodio and G. Romanazzi. BABDCR: a Fortran 90 package for the solution of Bordered ABD systems. Rapporto 40/04, Dipartimento di Matematica, Università di Bari, Italy, 2004.
[4] P. Amodio and G. Romanazzi. Algorithm 8xx: BABDCR: a Fortran 90 package for the solution of bordered ABD linear systems. ACM Transactions on Mathematical Software, 2006.
[5] U.M. Ascher, J. Christiansen, and R.D. Russell. A collocation solver for mixed order systems of boundary value problems. Math. Comp., 33:659679, 1979.
[6] U.M. Ascher, J. Christiansen, and R.D. Russell. COLSYS - a collocation code for boundary value problems. In Codes for Boundary Value Problems in Ordinary Differential Equations, Springer-Verlag Lecture Notes in Computer Science 76, Childs B., Scott M., Daniel JW, Denman E, Nelson P. (eds.), pages 164-185. Springer-Verlag, New York, 1979. Code colsys is available from library ode on netlib.
[7] U.M. Ascher, J. Christiansen, and R.D. Russell. Algorithm 569: Colsys: Collocation software for boundary-value odes. ACM Trans. Math. Softw., 7(2):223-229, 1981.
[8] U.M. Ascher, J. Christiansen, and R.D. Russell. Collocation software for boundary value ode's. ACM Trans. Math. Softw., 7(2):209-222, 1981.
[9] U.M. Ascher, R.M.M. Mattheij, and R.D. Russell. Numerical solution of boundary value problems for ordinary differential equations. Classics in Applied Mathematics, 13. SIAM, Philadelphia, 2nd edition, 1995.
[10] U.M. Ascher, S. Pruess, and R.D. Russell. On spline basis selection for solving differential equations. SIAM J. Numer. Anal., 20(1):121-142, 1983.
[11] U.M. Ascher and R.D. Russell. Reformulation of boundary value problems into 'standard form'. SIAM J. Numer. Anal., 23(2):238-254, 1981.
[12] U.M. Ascher and R. Weiss. Collocation for singular perturbation problems I: First order systems with constant coefficients. SIAM J. Numer. Anal., 20(3):537-557, 1983.
[13] G. Bader and U. Ascher. A new basis implementation for a mixed order boundary value ode solver. SIAM J. Sci. Statist. Comput., 8:483-500, 1987.
[14] F.W. Beaufait and G.W. Reddien. Midpoint difference method for analyzing beam structures. Computers and Structures, 8:745-751, 1978.
[15] R. Bellman and R. Kalaba. Quasilinearization and Nonlinear Boundary Value Problems. American Elsevier, New York, 1965.
[16] K.R. Bennett and G. Fairweather. A parallel boundary value ode code for shared memory machines. International Journal of High Speed Computing, 4:71-86, 1992. Code pcolnew is available by anonymous ftp from directory /pub/karin/pcolnew at math.nist.gov. (This version was prepared for specific shared memory parallel computers which are no longer widely available).
[17] R. Bevilacqua, D. Bini, M. Capovani, and O. Menchi. Metodi numerici. Zanichelli, Bologna, 1992.
[18] C. De Boor. A practical guide to splines. Springer-Verlag, New York, 1978.
[19] C De Boor and B. Swartz. Collocation at gaussian points. SIAM J. Numer. Anal., 10(4):582-606, 1973.
[20] C. De Boor and R. Weiss. Algorithm 546. solveblok. ACM Trans. Math. Softw., 6(1):88-91, 1980.
[21] C. De Boor and R. Weiss. Solveblok: A package for solving almost block diagonal linear systems. ACM Trans. Math. Softw., 6(1):80-87, 1980.
[22] R.W. Brankin and I. Gladwell. Codes for almost block diagonal systems. Comput. Math. Appl., 19(7):1-6, 1990.
[23] K. Burrage, F.H. Chipman, and P.H. Muir. Order results for mono-implicit runge-kutta methods. SIAM Journal on Numerical Analysis, 31:876-891, 1994.
[24] J.C. Butcher. The Numerical Analysis of Ordinary Differential Equations. Wiley, Chichester, 1987.
[25] J.R. Cash, G. Moore, and R.W. Wright. An automatic continuation strategy for the solution of singularly perturbed nonlinear boundary value problems. ACM Trans. Math. Software, 27:245-266, 2001.
[26] J.R. Cash and R.W. Wright. A deferred correction method for nonlinear twopoint boundary value problems: Implementations and numerical evaluation. SIAM Journal of Scientific and Statistical Computing, 12:971-989, 1991.
[27] C. Cyphers and M. Paprzycki. A level 3 blas based solver for almost block diagonal systems. SMU Softreport 92-3, Department of Mathematics, Southern Methodist University. Code $l 3$ abdsol is available from library linalg on netlib, 1992.
[28] J.C. Diaz, G. Fairweather, and P. Keast. Algorithm 603: Colrow and arceco: Fortran packages for solving certain almost block diagonal linear systems by modified alternate row and column elimination. ACM Transactions on Mathematical Software, 9(3):376-380, 1983.
[29] J.C. Diaz, G. Fairweather, and P. Keast. FORTRAN packages for solving certain almost block diagonal linear systems by modified alternate row and column elimination. ACM Transactions on Mathematical Software, 9:358375, 1983.
[30] J. Dongarra, J. Du Croz, and S. Hammarling. A set of level 3 basic linear algebra subprograms. Technical report, ANL-MCS-TM57, Argonne National Laboratory, 1988. The level 3 BLAS are available on netlib, in the NAG library, and, in optimized form, from many computer manufacturers.
[31] J. Dongarra, J. Du Croz, S. Hammarling, and R.J. Hanson. An extended set of fortran basic linear algebra subprograms. ACM Transactions on Mathematical Software, 14:1-17, 1988. The level 2 BLAS are available on netlib, in the NAG library, and, in optimized form, from many computer manufacturers.
[32] J. Dongarra, C.B. Moler, J.R. Bunch, and G.W. Stewart. LINPACK User's Guide. SIAM, Philadelphia, 1979.
[33] W.H. Enright and P.H. Muir. Runge-kutta software with defect control for boundary value odes. Technical Report 93-267, Department of Computer Science, University of Toronto, Toronto, Ontario, Canada, 1993.
[34] W.H. Enright and P.H. Muir. Runge-kutta software with defect control for boundary value odes. SIAM J. Sci. Comput., 17:479-497, 1996.
[35] G. Fairweather and I. Gladwell. Algorithms for almost block diagonal linear systems. SIAM Review, 46(1):49-58, 2004.
[36] G. Fairweather and P. Keast. Rowcol- a package for solving almost block diagonal linear systems arising in h^{-1}-galerkin and collocation- h^{-1}-galerkin
methods. Technical Report 158/82, Department of Computer Science, University of Toronto, 1982.
[37] G. Fairweather, P. Keast, and J.C. Diaz. On the h^{-1}-galerkin method for second-order linear two-point boundary value problems. SIAM J. Numer. Anal., 21:314-326, 1984.
[38] B. Garrett and I. Gladwell. Solving bordered almost block diagonal systems stably and efficiently. J. Comput. Methods Sci. Engrg., 1:75-98, 2001.
[39] W. Gautschi. Numerical analysis: an introduction. Birkhäuser, Boston, 1997.
[40] I. Gladwell and R.I. Hay. Vector- and parallelization of ode bvp codes. Parallel Comput., 12:343-350, 1989.
[41] I. Gladwell and M. Paprzycki. Solving almost block diagonal systems using level 3 blas. In Proceedings of the Fifth SIAM Conference on Parallel Processing for Scientific Computing, pages 52-62, Philadelphia, PA, 1992. SIAM.
[42] I. Gladwell and M. Paprzycki. Parallel solution of almost block diagonal systems on the cray y-mp using level 3 blas. Journal of Computational and Applied Mathematics, 45:181-189, 1993.
[43] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, 1983.
[44] W. Govaerts and J.D. Price. Mixed block elimination for linear system with wider borders. IMA Journal of Numerical Analysis, 13:161-180, 1993. Code bemw is available from library linalg on netlib.
[45] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration: structure-preserving algorithms for ordinary differential equations. Springer, Berlin, 2002.
[46] N. J. Higham. Fortran codes for estimating the one norm of a real or complex matrix with applications to condition number. Technical Report 135, University of Manchester, Manchester, 1987.
[47] N. J. Higham. Algorithm 674: FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation. ACM Trans. Math. Softw., 15(2):168, 1989.
[48] I.Gladwell and D.K. Sayers, editors. Computational Techniques for Ordinary Differential Equations. The Institute of Mathematics and its Applications, Academic Press, 1980.
[49] K.R. Jackson and R.N. Pancer. The parallel solution of abd systems arising in numerical methods for bvps for odes. Technical Report 255/91, Department of Computer Science, University of Toronto, Toronto, Ontario, Canada, 1992.
[50] P. Keast. Code colrow.f. It is available at http://www.mscs.dal.ca/~keast/leq/colrow.f.
[51] P. Keast. Code condcolrow.f. It is available at http://www.mscs.dal.ca/~keast/leq/condcolrow.f.
[52] P. Keast. Code abdcnd.f. It is available at http://www.mscs.dal.ca/~keast/leq/abdend.f.
[53] P. Keast. Code complexcolrow.f. It is available at http://www.mscs.dal.ca/~keast/leq/complexcolrow.f.
[54] P. Keast and R. Affleck. Codes for estimating condition numbers of certain almost block diagonal matrices. Technical report, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada, 2000.
[55] P. Keast and G. Fairweather. Code lampak.f. It is available at http://www.mscs.dal.ca/~keast/leq/[1997].
[56] P. Keast, G. Fairweather, and J.C. Diaz. A computational study of finite element methods for second order linear two-point boundary value problems. Math. Comp., 40:499-518, 1983.
[57] P. Keast and P.H. Muir. Algorithm 688: Epdcol: a more efficient pdecol. ACM Transactions on Mathematical Software, 17:153-166, 1991.
[58] H.B. Keller. Numerical Methods for Two Point Boundary Value Problems. Dover, New York, 1992.
[59] D.C. Lam. Implemantation of the box scheme and model analysis of diffusion-convenction equations. PhD thesis, University of Waterloo, Waterloo, Canada, 1974.
[60] M. Lentini and V. Pereyra. An adaptive finite difference solver for nonlinear two-point boundary problems with mild boundary layers. SIAM J. Numer. Anal., 14:91-111, 1977.
[61] M. Lentini and V. Pereyra. Pasva4: an ode boundary solver for problems with discontinous interfaces and algebraic parameters. Math. Appl. Comput., 2:103-118, 1983.
[62] N.K. Madsen and R.F. Sincovec. Algorithm 540: Pdecol: general collocation software for partial differential equations. ACM Transactions on Mathematical Software, 5:326-351, 1979.
[63] F. Majaess, P. Keast, G. Fairweather, and K. R. Bennett. Algorithm 704: ABDPACK and ABBPACK-FORTRAN programs for the solution of almost block diagonal linear systems arising in spline collocation at Gaussian points with monomial basis functions. ACM Trans. Math. Softw., 18(2):205-210, 1992.
[64] F. Majaess, P. Keast, G. Fairweather, and K. R. Bennett. The solution of almost block diagonal linear systems arising in spline collocation at Gaussian points with monomial basis functions. ACM Trans. Math. Softw., 18(2):193204, 1992.
[65] G. Micula and S. Micula. Handbook of splines. Kluwer, Dordrecht, 1999.
[66] P.H. Muir. Optimal discrete and continuous mono-implicit rungekutta schemes for bvodes. Advances in Computational Mathematics, 10:135167, 1999.
[67] P.H. Muir and B.Owren. Order barriers and characterizations for continuous mono-implicit runge-kutta schemes. Mathematics of Computation, 61:675699, 1993.
[68] P.H. Muir, R.N. Pancer, and K.R. Jackson. Pmirkdc: a parallel mono-implicit rungekutta code with defect control for boundary value odes. Parallel Computing, 29:711741, 2003.
[69] NAG Ltd, Oxford, UK. The NAG Fortran 77 Library, 2000.
[70] T.B. Nokonechny, P. Keast, and P.H. Muir. A method of lines package, based on monomial spline collocation, for systems of one dimensional parabolic differential equations. In Griffiths D.F. and Watson G.A., editors, Numerical Analysis, A.R. Mitchell 75th Birthday Volume, pages 207-223, Singapore, 1993. World Scientific.
[71] S. M. Roberts and J. S. Shipman. Two-point boundary value problems: Shooting Methods. Elsevier Publishing Company, New York, 1972.
[72] M. Tenenbaum and H. Pollard. Ordinary Differential Equations. Dover Publications, New York, 1985.
[73] M. van Veldhuizen. A note on partial pivoting and gaussian elimination. Numerische Mathematik, 29:1-10, 1977.
[74] J.M. Varah. Alternate row and column elimination for solving certain linear systems. SIAM J. Numer. Anal., 13:71-75, 1976.
[75] R.W. Wright, J. Cash, and G. Moore. Mesh selection for stiff two-point boundary value problems. Numer. Algorithms, 7:205-224, 1994.
[76] S.J. Wright. Stable parallel algorithms for two-point boundary value problems. SIAM J. Sci. Stat. Comput., 13(3):742-764, 1992.
[77] S.J. Wright. A collection of problems for which gaussian elimination with row partial pivoting is unstable. SIAM J. Sci. Stat. Comp., 14:231-238, 1993.
[78] S.J. Wright and V. Pereyra. Adaption of a two point boundary value problems solver to a vector-multiprocessor environment. SIAM J. Sci. Stat. Comput., 11:425-449, 1990.
[79] P.Y. Yalamov and M. Paprzycki. Stability and performance analysis of a block elimination solver for bordered linear systems. IMA Journal of Numerical Analysis, 19:335-348, 1999.

[^0]: ${ }^{1}$ An approach is the Quasi-Linearization Method (QLM) that applied to (1.3) generates the sequence of linear BVODE

 $$
 \mathbf{y}_{n+1}^{\prime}(x)=\mathbf{f}\left(x, \mathbf{y}_{n}(x)\right)+\left(\mathbf{y}_{n+1}(x)-\mathbf{y}_{n}(x)\right) \frac{\partial f}{\partial \mathbf{y}}\left(x, \mathbf{y}_{n}(x)\right)
 $$

 using the Newton iteration applied to $F(\mathbf{y})=\mathbf{y}^{\prime}-\mathbf{f}(x, \mathbf{y})$.

[^1]: ${ }^{2}$ We refer to conventional column elimination the Gaussian elimination where column elimination with column interchanges are performed instead of row eliminations with row interchanges as in row partial pivoting.

[^2]: ${ }^{1} L_{i} \backslash U_{i}$ denotes a square matrix containing the non null part of the lower triangular matrix L_{i} and of the upper triangular U_{i} without its unit diagonal.

[^3]: ${ }^{2}$ If k (non-negative integer) and j (positive even integer between 2 and $N / 2^{k}$) are such that INFO $=2^{k}(j-1)+1$, then the breakdown has occurred in the j th block column of the coefficient matrix of the linear system obtained after k steps of reduction.

[^4]: ${ }^{1}$ We use the term 'proc' as an abbreviation for 'processor'

[^5]: ${ }^{2}$ Note that $\left(K, N_{0}\right)=(K+1,0)$

