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Introduction

We analyze the solution of Bordered Almost Block Diagonal linear systems
using new algorithms which are introduced and described in detail. All these al-
gorithms use a cyclic reduction approach with LU factorization. Cyclic reduction,
despite other techniques, permits to obtain a parallelizable version of the code.
Moreover, these algorithms are efficient even in serial version, we provide compar-
isons in timing and accuracy with respect to previous codes.

Almost Block Diagonal (ABD) [1, 18, 35] and Bordered Almost Block Diag-
onal (BABD) [1, 35] linear systems Ay = f arise in discretizations of Boundary
Value Problems (BVPs) with, respectively, separated and non-separated boundary
conditions, for ordinary and partial differential equations.

The ABD matrices associated to ABD linear systems are sparse matrices char-
acterized by a very special pattern: the nonzero elements are grouped in block
rows, there is no intersection between the nonzero columns of two non-consecutive
block rows; finally, the main diagonal entries always lie inside the nonzero blocks.
BABD matrices, associated to BABD linear systems, satisfy a further property, see
Figure 1: the first (or the last) block row has an additional block in the right-upper
(left-lower) corner whose nonzero columns only intersect some columns of the
last (first) block row. In Figures 2 and 3, the most frequently occurring ABD and
BABD structures arising in BVP solvers are shown. In these structures, the blocks
Si and Ri are square and have the same dimension.

In Chapter 1, we outline how BABD structures arise from Boundary Value
Problem (BVP) techniques, as the Orthogonal Spline Collocation (OSC). In par-
ticular, we consider BVP for Ordinary Differential Equations (ODEs) with non-
separated boundary conditions.

In Chapter 2, we describe some numerical techniques and approaches for solv-
ing ABD and BABD linear systems. These techniques are compared to the pro-
posed algorithms in the successive chapters. A list of codes using some of these
techniques are listed in the following two sections.

In Chapter 3, we introduce the new sequential BABD algorithm BABDCR [3, 4]
which is based on the cyclic reduction. BABDCR has been written in Fortran 90.
We compare it with respect to other codes on randomly generated systems and on
systems arising from the BVP solver MIRKDC [34].

In Chapter 4 we concern with a general version of BABDCR in order to solve



2 Introduction

A =




Da Db

V1

V2

V3

V4

. . .
. . .

VN




Figure 1: General BABD structure
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Figure 2: An ABD linear system structure, Dtop ∈ Rmtop×m, Dbot ∈
R(m−mtop)×m, Si, Ri ∈ Rm×m, yi ∈ Rm, i = 0, . . . , N , fj ∈ Rm, j = 1, . . . , N ,
da ∈ Rmtop , db ∈ Rm−mtop .
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Figure 3: A BABD linear system structure, Da, Db, Si, Ri ∈ Rm×m,yi ∈ Rm,
i = 0, . . . , N , fj ∈ Rm, j = 1, . . . , N , d ∈ Rm.
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BABD systems with blocks of different dimensions. We present many approaches
and, in particular, we employ an algorithm for solving general BABD systems aris-
ing from OSC, and an algorithm for solving only BABD systems with the particular
structure arising from OSC with monomial spline basis. Comparisons between the
new codes presented and the well-known COLROW [28, 29], based on a column-
row elimination technique described in Chapter 2, are provided.

Finally, in Chapter 5, we analyze a parallel version of BABDCR on distributed
memory parallel architecture using MPI (Message Passing Interface). This algo-
rithm has been implemented in Fortran 90 on a parallel architecture with 16 pro-
cessors. The speed-up of this parallelized code with respect to the serial version
confirms the great advantage that the cyclic reduction techniques have with respect
to sequential techniques, as the elimination techniques described in Chapter 2, in
order to solve very large BABD (or ABD) linear systems.

Serial solvers for ABD systems

Because of its relevance in BVP codes, the solution of ABD systems has been the
subject of long-term research, and several codes have been proposed. In [1] and,
more recently in [35], a very rich literature on this subject may be found. The first
code for ABD systems was SOLVEBLOK [20, 21]; as for standard LU factoriza-
tion applied to banded systems, it requires fill-in to ensure stability. The alternate
row and column stable elimination, called Varah’s procedure [74], exploited the
sparsity structure of the ABD matrices to avoid fill-in. This procedure is also de-
noted by ARCE in the following chapters. The packages COLROW and ARCECO
in [28, 29] are based on a modified version of Varah’s procedure (MARCE), which
leads to a reduction in the number of arithmetic operations. COLROW solves ABD
linear systems with row blocks of the same dimensions and ARCECO solves gen-
eral ABD linear systems with blocks of varying dimensions. Numerical experi-
ments in [29, 40] demonstrate their efficiency and their superiority with respect
to SOLVEBLOK, that is, less storage and execution time on systems arising from
BVODEs and on randomly generated linear systems. When SOLVEBLOK is ap-
plied to ABD linear systems arising from B-spline discretization, as in the BVODE
code COLSYS [6, 7, 8], it causes fill-in. In [29] it is proved that COLROW solves
these linear systems without fill-in and saving of up to 50% in execution time over
SOLVEBLOK.

The NAG library [69] contains the routine F01LHF [22], a variant of ARCECO
using level 2 BLAS routines [31], which solves both the systems: with an ABD co-
efficient matrix, and with its transpose. A level 3 BLAS [30] version of ARCECO
has also been developed in [41, 42]; the corresponding code is available in [27].
Two variants of COLROW have been developed by Patrick Keast. The first TRANSCOL-
ROW [50], as F01LHF, solves linear systems with an ABD coefficient matrix and
with its transpose; the second variant, COMPLEXCOLROW [53], solves complex
ABD linear systems and can be used in Padé methods applied to parabolic initial-
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BVP using Orthogonal Spline Collocation (OSC) for the spatial discretization. The
algorithm implemented in LAMPAK [55] refers to the Lam’s method [59], there
row and column interchanges are used to avoid fill-in but only row elimination is
performed throughout. This technique has been applied in the analysis of beam
structures [14] and its numerical stability is discussed in [73]. Some finite differ-
ence methods [37, 56] yield linear systems with an almost block diagonal structure
where the overlap is between two consecutive column blocks. Code ROWCOL [36]
use alternate row and column elimination to solve directly these kind of systems.
The solution of ABD systems arising from OSC with monomial spline basis [10],
applied to a BVODE with separated boundary conditions, has also been consid-
ered. Since COLROW and ARCECO, as SOLVEBLOK, use fill-in to solve these
systems, [63, 64] introduce the algorithm ABDPACK. It uses an alternate row and
column elimination that, exploiting the special pattern of these systems, avoids the
unnecessary fill-in. The same authors have implemented ABBPACK [63, 64], a spe-
cial case of ABDPACK, which solves ABD systems with an upper block diagonal
with identity matrices arising, for example, in implicit Runge-Kutta methods, in
multiple shooting methods [1] and from condensation [10] applied to the original
ABD system solved by ABDPACK.

Serial solvers for BABD systems

Due to the difficulty of treating boundary blocks, the solution of BABD systems
has not received as much consideration. To our knowledge, the unique sequen-
tial algorithm designed specifically for BABD systems is the algorithm BABDCR
[3, 4], described in Chapter 3. Other codes are written directly for parallel architec-
tures, as RSCALE [49], that uses eigenvalue rescaling in order to ensure numerical
stability for a wider class of BABD systems. In the sequential PASVAR codes
[60, 61, 78], the routines DECOMP and SOLVE are used for the factorization and
the back-substitution phase, respectively. These two routines have been written for
ABD systems but they can handle even BABD systems. A detailed description of
the various stable (and non) techniques for solving BABD systems is considered in
[38]. One stable technique consists in writing the BABD system as ABD system of
approximately twice the size, and then, in using ABD or banded matrix algorithms.
This technique implies high computational cost due to doubling the dimension of
the system and inefficiency, taking no account of the structure within the rewrit-
ten system. Alternative techniques consist in using algorithms for solving general
bordered systems. As an example, BEMW [44] employes a recursive bordering
technique to build up a solution of a bordered system from the solution of a much
simpler system. Numerical tests [38, 79] prove the instability of such approach in
some circumstances. Vice versa, a stable and efficient technique consists in using
orthogonal factorization directly on the BABD matrix, storing Householder ma-
trix in vector form to save memory. However, even this technique results in high
computational cost.
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ABD solvers in ODE and PDE packages

There are nonlinear boundary value ODE (BVODE) packages and nonlinear initial-
boundary value PDE packages that employ the solution of ABD systems.

As BVODE package, COLSYS [6, 7, 8] uses SOLVEBLOK for solving the
ABD linear systems which arise from the application of the Orthogonal Spline
Collocation (OSC) to the given BVODE at Gaussian points with a B-spline basis.
COLNEW [13] and PCOLNEW [16] uses modified versions of SOLVEBLOK for
solving the ABD linear systems which arise from OSC applied to the BVODE at
Gaussian points with a monomial spline basis. Its NAG version, D02TKF, uses the
ABD solver code F01LHF. If applied to linear systems generated from OSC with
monomial basis, COLROW and SOLVEBLOK generate fill-in while ABDPACK no
requires additional storage.

ABD linear systems can be solved in two manner. The first is to solve it di-
rectly using some variant of Gaussian elimination, the second is to condense it, in
the sense described in [10], and then to solve directly a smallest ABD linear sys-
tem with the common structure in Figure 2. In COLNEW it is implemented this
last process, it uses codes from LINPACK [32] to perform the condensation and
SOLVEBLOK to solve the condensed linear systems. If the condensed linear sys-
tem is solved using ABBPACK no significant savings are obtained. It is preferable
to use the condensation process on shared memory machines for its high paral-
lel performance with respect to the direct solution. We discuss the condensation
process for the serial code GBABDCR in Section 4.4.

The Mono Implicit Runge Kutta (MIRK) code with defect control MIRKDC
[33, 34] uses the ABD solver COLROW. A modified version of MIRKDC is pre-
sented in Section 3.6.1, it handles BVODE problems with non-separated boundary
condition using the BABD solver BABDCR.

Three BVODE packages use modified versions of COLROW: TWPBVP [26],
a deferred correction code; COLMOD [75], a modified version of COLNEW, and
ACDC [25] that uses automatic continuation and OSC at Lobatto points to solve
singularly perturbed BVODEs.

All the PDEs packages using ABD codes, solve systems of initial-boundary
value PDEs in one space variable. They use a method of lines (MOL) where the
OSC is used for the discretization of the spatial variable.

The codes PDECOL [62] and its variant EPDCOL [57], both using B-spline as
basis functions for the spline collocation, solve the ABD systems resulting from the
collocation, with SOLVEBLOK and COLROW, respectively. A MOL code, cited in
[70], is based on spline collocation with monomial bases and uses ABDPACK for
solving the resulting ABD systems. See [35] for a complete list of PDE packages
using ABD solvers.





Chapter 1

Solution techniques for BVPs

We describe solution techniques for Two Point Boundary Value Problems
which yield BABD linear systems. In the first section, we introduce the concept of
well conditioning of Initial and Boundary Value Problems for Ordinary Differen-
tial Equations and we analyze necessary and sufficient conditions which guarantee
well conditioning of the problem.

BABD linear systems arise from using various techniques, like Multiple Shoot-
ing [9, 48, 58, 71] , and difference methods [1, 9, 23, 58], applied to a BVP for
ODEs. A brief description of these approaches is given. We analyze, particu-
larly, the Orthogonal Spline Collocation (OSC) method as an effective technique
for approximating the solution of boundary value problems for ODE. This tech-
nique is also exceedingly efficient to approximate the solution of boundary value
problems with time dependent PDEs, using the method of lines [70]. The BABD
structure arising depends on the spline basis used. B-spline and monomial spline
basis [10, 18] cases are considered.

All the above ODE techniques can be applied to a general mth order nonlinear
ODE

Dmu(x) = F (x, z(u(x))), u(x) ∈ R, x ∈ [a, b], (1.1)

with the boundary conditions

g(z(u(a)), z(u(b))) = 0, (1.2)

where
z(u(x)) := (u(x), Du(x), D2u(x), . . . , Dm−1u(x))T ,

F (x, z) : [a, b]× Rm → R,

and
g(z,w) : Rm × Rm → Rm.

While OSC is applied directly to (1.1)-(1.2), in the case of Multiple Shooting
or Finite Difference Methods, it is convenient to consider an equivalent model

y′ = f(x,y(x)),
g(y(a),y(b)) = 0,

(1.3)

7
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where

y(x) = (y1(x), . . . , ym(x))T ∈ Rm, yi(x) = Di−1u(x),

that is y(x) = z(u(x)).
Using the above cited techniques, Boundary Value Problems (BVPs) with non-

separated boundary conditions, as in (1.3), produce BABD linear systems, whereas
BVPs with separated boundary conditions,

Bay(a) = da, Bby(b) = db,

yield linear systems which have the ABD form shown in Figure 2.
For what concerns the numerical solution (see from Section 1.2 to the end of

chapter), we can reduce the nonlinear problem (1.1)-(1.2), using a quasilineariza-
tion process [15, 71], to a sequence of mth order linear differential equations

L(u)(x) := Dmu(x)−
m∑

l=1

cl(x)Dl−1u(x) = f(x),

Baz(u(a)) + Bbz(u(b)) = d.

(1.4)

Moreover, quasilinearization approaches 1 reduce any first order nonlinear sys-
tem (1.3) to a sequence of linear differential systems in the form

y′ = A(x)y(x) + q(x),
Bay(a) + Bby(b) = d.

(1.5)

Thus in the next sections, we describe most of the discretization techniques for
BVODEs in the linear form (1.4) or (1.5), this allows also a consistent analysis of
the well-conditioning of the problem.

1.1 Conditioning in IVPs and BVPs

We discuss the conditioning of linear Initial and Boundary Value Problems for
Ordinary Differential Equations in order to begin the numerical approximation.

1.1.1 Well-conditioned problem

We consider Initial Value Problem (IVP) and Boundary Value Problem (BVP) for
ODEs, respectively, in the form

y′ = A(x)y(x) + q(x), a ≤ x ≤ b,
y(a) = da,

(1.6)

1An approach is the Quasi-Linearization Method (QLM) that applied to (1.3) generates the se-
quence of linear BVODE

y′n+1(x) = f(x,yn(x)) + (yn+1(x)− yn(x))
∂f

∂y
(x,yn(x)),

using the Newton iteration applied to F (y) = y′ − f(x,y).
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and
y′ = A(x)y(x) + q(x), a ≤ x ≤ b,
Bay(a) + Bby(b) = d,

(1.7)

where y : [a, b] −→ Rn, A(x), Ba, Bb ∈ Rn×n,q(x),d,da ∈ Rn.

Definition 1.1.1. Considered as a BVP or an IVP, a problem is well-conditioned,
if ‘small’ changes in the data produce ‘small’ changes in the solution and it is
ill-conditioned otherwise.

1.1.2 Theoretical solution of a problem

In order to express analytically the solution of an ODE system with initial and
boundary conditions, we introduce the basic concept of fundamental solution. We
suppose that the functions A(x) and q(x) in (1.6) are continuous, which guarantees
the existence and uniqueness of the solution in [a, b]. In fact, the continuity of
A(x) and q(x) yields f(x,y(x)) = A(x)y(x) + q(x) is continuous and satisfies
the Lipschitz conditions on y: given a vector norm ‖.‖ an M > 0 exists such that
for any y1,y2 ∈ Rn, x ∈ [a, b],i = 1, . . . , n

|fi(x,y1)− fi(x,y2)| ≤ M‖y1 − y2‖,
where f(x,y) = (f1(x,y), . . . , fn(x,y)), hence, see [72], existence and unique-
ness of the solution are proved.

Definition 1.1.2. A fundamental solution of problem (1.6) (or (1.7)) is any matrix
function Y (x) solution of the homogeneous ODE

y′ = A(x)y,

such that, for any x ∈ [a, b], Y (x) ∈ Rn×n has n linear independent columns.

Therefore any fundamental solution Y (x) satisfies Y ′(x) = A(x)Y (x). If
Φ(x) is another fundamental solution, a constant nonsingular n×n matrix R exists
satisfying Φ(x) = Y (x)R. In particular, if Φ(x) denotes the unique fundamental
solution satisfying Φ(a) = I , then R = (Y (a))−1 and Φ(x) = e

R x
a A(s)ds. Then in

the constant coefficient case A(x) = A, we get Φ(x) = e(x−a)A 2.

Definition 1.1.3. A particular solution yp(x) of problem (1.6) (or (1.7)) satisfies
y′p = A(x)yp(x) + q(x), yp(a) = 0.

2etA with t ∈ Rn, A ∈ Rn×n, denotes the matrix exponential etA = UDU−1 where U =
[u1, . . . ,un] is the eigenvector matrix associated to A and

D =

0
BBB@

eλ1t 0 · · · 0

0 eλ2t · · · 0
...

...
. . . 0

0 0 · · · eλnt

1
CCCA ,

where λ1, . . . , λn are the eigenvalues of A.
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Proposition 1.1.4. Suppose that A(x) and q(x) are continuous, the unique solution
of the Initial Value Problem (1.6) can be expressed in the form

y(x) = Φ(x)da + Φ(x)
∫ x

a
Φ−1(t)q(t)dt.

The existence of the unique solution of the BVP (1.7) is more difficult to obtain.
In fact, it is easy to prove that, considering the IVP

w′ = A(x)w + q(x), a ≤ x ≤ b,
w(a) = s,

(1.8)

the BVP
w′ = A(x)w + q(x), a ≤ x ≤ b,
Baw(a) + Bbw(b) = d,

(1.9)

admits as many solutions w(x) as the number of zeros of the equation

Bas + Bbw(b) = d. (1.10)

That is, each solution of the BVP (1.9) is the solution w(x) of the IVP (1.8) with
s = w(a) that satisfies (1.10), where Ba can be singular. This approach is used in
the Shooting methods presented in Section 1.4. We can express the unique solution
(if it exists), by means of the following

Proposition 1.1.5. A solution y(x) of the BVP (1.7) is unique if and only if, given
a fundamental solution Y (x) of the BVP, the matrix Q = BaY (a) + BbY (b) is
nonsingular. Moreover the solution is

y(x) = Y (x)Q−1

(
d−BbY (b)

∫ b

a
Y −1(t)q(t)dt

)
+ Y (x)

∫ x

a
Y −1(t)q(t)dt.

If Φ̃(x) is the fundamental solution such that BaΦ̃(a) + BbΦ̃(b) = I, we have

y(x) = Φ̃(x)d +
∫ b

a
G(x, t)q(t)dt, (1.11)

where

G(x, t) =
{

Φ̃(x)BaΦ̃(a)Φ̃−1(t), t ≤ x,

−Φ̃(x)BbΦ̃(b)Φ̃−1(t), t > x.

If Φ(x) is the fundamental solution such that Φ(a) = I and Q ≡ BaΦ(a)+BbΦ(b)
then

y(x) = Φ(x)Q−1d +
∫ b

a
G(x, t)q(t)dt, (1.12)

with

G(x, t) =
{

Φ(x)Q−1BaΦ(a)Φ−1(t), t ≤ x,
−Φ(x)Q−1BbΦ(b)Φ−1(t), t > x.

Let p ∈ N, u : [a, b] → Rn we define ‖u‖p ≡
(∫ b

a ‖u(t)‖p
2dt

) 1
p . The equation

(1.12) allows us to determine that any solution y of the BVP (1.7) satisfies
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Proposition 1.1.6.
‖y‖∞ ≤ k1‖d‖∞ + k2‖q‖p, (1.13)

where 1
p + 1

q = 1, k1 = ‖Y (x)Q−1‖∞ and k2 = max
a≤x≤b

‖G(x, ·)‖q.

Proof. Given p, q ∈ N, for the Cauchy-Schwartz inequality we have

max
a≤x≤b

∫ b

a
‖G(x, t)q(t)‖2dt ≤ max

a≤x≤b
‖G(x, ·)‖q‖q‖p;

then from (1.12),

‖y‖∞ ≤ ‖Y (x)Q−1‖∞‖d‖∞ + ‖G(x, ·)‖q‖q‖p.

This inequality will be used to prove in the next paragraph the well-conditioning
of the problem.

1.1.3 Uniform asymptotic stability and dichotomy

In the case of the Initial Value Problem (1.6) we have a well-conditioned problem
with ‖q‖ limited if and only if the null solution of the homogeneous equation
y′ = A(x)y is uniformly asymptotically stable, that is for any ε > 0 and x0 ∈ [a, b]
there exists δ = δ(ε) > 0 such that for all y0 ∈ Bδ = {y ∈ Rn | ‖y‖ < δ} the
solution y(x) of the homogeneous equation, with y(x0) = y0, satisfies y(x) ∈ Bε

with x ≥ x0.
In fact, let ỹ the solution of the perturbed IVP

z′ = (A(x) + δA(x))z + q(x) + δq(x),
z(a) = da + δda,

with δA(x), δq(x) and δda small perturbations in norm, and let y(x) be the so-
lution of the non-perturbed IVP, we have that e(x) = ỹ(x) − y(x) satisfies the
equation e′(x) = A(x)e(x) + δq(x) + δA(x)z(x), with e(a) = δda; thus, for the
Proposition 1.1.4, it follows that

e(x) = Φ(x)δda +
∫ x

a
Φ(x)Φ(t)−1(δq(t) + δA(t)z(t))dt.

Since the null solution is uniformly and asymptotically stable, it can be proven that
the norm ‖Φ(x)(Φ(t))−1‖tends to zero as x → +∞ for all t ≥ a, see [9]. For
example, if A(x) = A is a constant matrix, it implies that ‖Φ(x)(Φ(t))−1‖ =
‖e(x−t)A‖ and if A has eigenvalues λ with Re(λ) < 0, then e(x) is bounded by a
small perturbation on data and in particular e(x) → 0 for x → +∞.

Let us consider well-conditioning in the case of BVP (1.7). The exponential
dichotomy for a BVP plays the same role of uniform asymptotic stability for an
IVP; that is, exponential dichotomy is equivalent to well-conditioning.
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Definition 1.1.7. Let Y (x) be a fundamental solution for the ODE y′ = A(x)y,
with A(x) continuous in [a, b]. The ODE has an exponential dichotomy if there
exists a constant orthogonal projection matrix P (that is P is an orthogonal matrix
and P 2 = P ) of rank p, 0 ≤ p ≤ n and K, λ, µ > 0 with K not too large such that

‖Y (x)PY −1(t)‖ ≤ Ke−λ(x−t), x ≥ t,

‖Y (x)(I − P )Y −1(t)‖ ≤ Ke−µ(t−x), x < t,
(1.14)

for any a ≤ x, t ≤ b.

We observe that exponential dichotomy, if exists, it is satisfied for any fun-
damental solution. This property allows to separate the space of solutions of the
homogeneous ODE into two subspaces, one containing the decreasing solutions
(decreasing modes) and the other containing the increasing solutions (increasing
modes). Indeed, given a fundamental solution Y (x) of the ODE, if

S = {Y (x)c| c ∈ Rn}
is the set of the solutions then

S = S1 + S2,

where
S1 = {Y (x)Pc| c ∈ Rn},

and
S2 = {Y (x)(I − P )c| c ∈ Rn};

for the exponential dichotomy, it follows that for any u(x) ∈ S1 and w(x) ∈ S2

we get 3

‖u(x)‖
‖u(t)‖ ≤ Ke−λ(x−t), x ≥ t (u(x) is a decreasing mode),

‖w(x)‖
‖w(t)‖ ≤ Ke−µ(t−x), x < t (w(x) is an increasing mode).

It is possible determine a fundamental solution with the decreasing modes sepa-
rated by the increasing modes.

Proposition 1.1.8. If the ODE has an exponential dichotomy with 0 ≤ p ≤ n, then
there exists a fundamental solution Z(x) = (Z1(x) Z2(x)) ∈ Rn×n of the ODE
with Z1(x) ∈ Rn×p and Z2(x) ∈ Rn×(n−p) such that

‖Z1(x)PZ−1
1 (t)‖ ≤ Ke−λ(x−t), x ≥ t,

‖Z2(x)(I − P )Z−1
2 (t)‖ ≤ Ke−µ(t−x), x < t,

3Since P 2 = P we have,

‖u(x)‖
‖u(t)‖ =

‖Y (x)PPc‖
‖Y (t)Pc‖ =

‖Y (x)PY −1(t)Y (t)Pc‖
‖Y (t)Pc‖ ≤ ‖Y (x)PY −1(t)‖ ≤ Ke−λ(x−t).

The second inequality follows in a similar manner because (I − P )2 = (I − P ).
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with P =
(

0 0
0 Ip

)
where Ip is the p× p identity matrix.

In the constant coefficient case, A(x) = A, we can characterize the exponential
dichotomy as a function of the eigenvalues of A.

Proposition 1.1.9. The ODE y′ = Ay has an exponential dichotomy if and only
if A has eigenvalues with nonnull real parts. Moreover the orthogonal projection

P =
(

0 0
0 Ip

)
is of rank p where

p = card{λ ∈ C|Re(λ) < 0} and n− p = card{λ ∈ C|Re(λ) > 0}.

Now we prove that, for any BVP, exponential dichotomy of the homogeneous
equation implies well-conditioning of the problem.

Theorem 1.1.10. If the homogeneous equation y′ = A(x)y has an exponential
dichotomy, then the corresponding BVP (1.7) is well-conditioned.

Proof. Let K be the positive bounded constant used in Definition 1.1.7 concerning
the exponential dichotomy and k1 = ‖Y (x)Q−1‖∞, k2 = max

a≤x≤b
‖G(x, ·)‖∞ be

the constants used in Proposition 1.1.6, for q = +∞. We first prove that

k2 ≤ K(2k1 + 1).

For any x ≤ t, the function G(x, t) and the fundamental solution Φ(x) in (1.12)
satisfy

‖G(x, t)‖ = ‖Φ(x)Q−1BbΦ(b)Φ−1(t)‖
≤ ‖Φ(x)Q−1BbΦ(b)PΦ−1(t)‖

+‖Φ(x)Q−1BbΦ(b)(I − P )Φ−1(t)‖,
where P is the orthogonal projection matrix of rank p. Without any loss of general-
ity, we suppose that max{‖Ba‖, ‖Bb‖} = 1. Since Q−1BbΦ(b) = I−Q−1BaΦ(a)
and ‖Φ(x)PΦ−1(t)‖ ≤ Ke−λ(x−t), it follows that

‖G(x, t)‖ ≤ K‖Φ(x)Q−1‖(‖Bb‖e−λ(b−t) + ‖Ba‖e−µ(t−a)) + Ke−µ(t−x)

≤ k1K(e−λ(b−t) + e−µ(t−a)) + Ke−µ(t−x).

Alternatively, since x > t then

‖G(x, t)‖∞ ≤ k1K(e−λ(b−t) + e−µ(t−a)) + Ke−λ(x−t),

then k2 = max
a≤x,t≤b

‖G(x, t)‖∞ ≤ K(2k1 + 1). Therefore, for the inequality (1.13)

with q = +∞ we get

‖y‖∞ ≤ k1‖d‖∞ + K(2k1 + 1)‖q‖∞,

and the BVP is well-conditioned.
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Conversely, if we suppose that the BVP is well-conditioned, it has a dichotomy
which results from the boundary conditions. For example, in the case of separated
boundary conditions

y′ = A(x)y + q(x),
Bay(a) = da, Bby(b) = db,

with Ba ∈ Rp×n, Bb ∈ R(n−p)×n the problem has an exponential dichotomy with
an orthogonal projection of rank p.

Definition 1.1.11. Let C, D ∈ Rm×m, we denote with rank[C|D] the rank of the
matrix

(
C D

)
of size m× 2m.

In the BVP case (1.7), the next proposition is satisfied

Proposition 1.1.12. If rank[Ba|Bb] = n, then there exist p ∈ N, 0 ≤ p ≤ n and
a nonsingular matrix S such that Ba = SD1Q1 and Bb = SD2Q2, where Q1, Q2

are orthogonal matrices, and

D1 =
(

D11 0
0 Ip

)
, D2 =

(
In−p 0

0 D22

)
,

with D11 ∈ R(n−p)×(n−p), D22 ∈ Rp×p containing only elements 0 or 1.

The hypothesis of unique solution of the BVP requires that

rank[Ba|Bb] = n.

In fact, if the BVP (1.7) has a unique solution, from proposition 1.1.5 it follows
that rank(Q) = n, and therefore, since rank(A+B) ≤ rank(A)+ rank(B), if we
suppose rank[Ba|Bb] < n we get rank(Ba) + rank(Bb) ≤ rank[Ba|Bb] < n and

n = rank(Q) ≤ rank(BaY(a)) + rank(BbY(b)) = rank(Ba) + rank(Bb) < n.

Theorem 1.1.13. If the BVP (1.7) is well-conditioned and
rank[Ba|Bb] = n, then it has an exponential dichotomy with projection matrix of
rank p, where p is determined as in the previous Proposition.

As a corollary, we have the following

Proposition 1.1.14. Suppose that the BVP has boundary conditions Btopy(a) =
da and Bboty(b) = db, where Btop ∈ Rm×n and Bbot ∈ R(n−m)×n with rank(Btop) =
m and rank(Bbot) = n − m. Then, well-conditioning implies an exponential di-
chotomy with rank p = m.

Proof. Let Ba =
(

Btop

0

)
and Bb =

(
0

Bbot

)
; then we have Bay(a) +

Bby(b) =
(

da

db

)
, with rank[Ba|Bb] = n. Therefore, from the previous the-

orem, the problem has the exponential dichotomy with rank p = m.
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1.2 Difference methods

Linear multistep difference schemes

k∑

l=0

αlyi+l = hΦ(xi; yi, . . . , yi+k; h)

can be used to get high order accuracy in the approximation of solutions of BVODEs.
The most popular and simplest methods are the (implicit) Midpoint rule and the
Trapezoidal rule which have both highest order (second) in the class of linear one-
step difference schemes [45, 58]. We show that, considering the linear BVODE
(1.5) on [a, b], both schemes give BABD systems. Let

∆ : a = x0 < x1 < · · · < xN−1 < xN = b (1.15)

be a partition of [a, b] with stepsize hi = xi+1 − xi and

xi+ 1
2

=
xi + xi+1

2
. Using the (implicit) Midpoint rule we have

yi+1 = yi + hiA(xi+ 1
2
)
yi + yi+1

2
+ hiq(xi+ 1

2
), i = 0, . . . , N − 1,

that is, we obtain

Siyi + Ri+1yi+1 = fi+1, i = 0, . . . , N − 1,

with
Si = −I − hi

2 A(xi+ 1
2
), Ri+1 = I − hi

2 A(xi+ 1
2
), and

fi+1 = hiq(xi+ 1
2
).

Using the trapezoidal rule, we have for i = 0, . . . , N − 1,

yi+1 = yi +
hi

2
(A(xi+1)yi+1 + q(xi+1) + A(xi)yi + q(xi)),

that is, we obtain the linear equations

Siyi + Ri+1yi+1 = fi+1, i = 0, . . . , N − 1,

with
Si = −I − hi

2 A(xi), Ri+1 = I − hi
2 A(xi+1), and

fi+1 =
hi

2
(q(xi+1) + q(xi)).

In both cases, the linear system obtained has the following structure



Ba Bb

S0 R1

S1 R2

. . . . . .
SN−1 RN







y0

y1
...

yN−1

yN




=




d
f1
...

fN


 .
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1.3 The Mono-Implicit Runge Kutta formulae

Runge Kutta schemes, presented in Appendix, have been considered for the numer-
ical solution of IVODE. In particular some recent works have focused on a subclass
of implicit RK schemes called Mono Implicit Runge Kutta (MIRK) schemes [23],
see [66] for a complete reference, which are also used for the numerical solution
of BVODE.

The Mono Implicit Runge Kutta formulae (MIRK) are determined choosing
a Runge Kutta scheme with an ulterior coefficient vector v := {vr}s

r=1 and the
associated scheme is

yi+1 = yi + hi

s∑

r=1

brKi,r,

with the stages

Ki,r = f(ti + crhi, (1− vr)yi + vryi+1 + hi

r−1∑

j=1

xrjKi,j), r = 1, . . . , s.

(1.16)
Thus, the corresponding Butcher array is

c v X
b

. (1.17)

In order to describe how BABD systems arise from MIRK formulae, we discuss
their application in the code MIRKDC.

1.3.1 The code MIRKDC

The code [34] solves BVPs

y′ = f(t,y(t)), t ∈ [a, b], (1.18)

where y ∈ Rm and f : R× Rm → Rm, with separated BCs

g(y(a),y(b)) =
(

g0(y(a))
g1(y(b))

)
= 0, (1.19)

where g : Rm×Rm → Rm, g0 : Rm → Rm0 , g1 : Rm → Rm1 and m0+m1 = m.
It uses MIRK formulae to discretize (1.18) on a given subdivision {ti}N

i=0 of
[a, b]. A continuous solution approximation u = u(t) is obtained using a Con-
tinuous MIRK (CMIRK) scheme [67], to provide defect control and mesh selec-
tion capabilitie, see the Appendix where the scheme MIRK/CMIRK employed in
MIRKDC is described in detail.

The MIRK scheme yields the nonlinear system

Φ(Y) = 0,
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which is solved using the Newton iteration

Y(q+1) = Y(q) + ∆Y(q), q = 0, 1, . . . .

where [
∂Φ(Y(q))

∂Y

]
∆Y(q) = −Φ(Y(q)), (1.20)

given Y(0).
If the boundary conditions are separated, the Jacobian matrix in (1.20) has the ABD
form

∂Φ(Y(q))
∂Y

=




Btop

S0 R1

S1 R2

. . . . . .
SN−1 RN

Bbot




with Btop = dg0(y
(q)
0 )

dy0
and Bbot = dg1(y

(q)
N )

dyN
, on the contrary, if the boundary con-

ditions are non-separated, it has the BABD form

∂Φ(Y(q))
∂Y

=




Ba Bb

S0 R1

S1 R2

. . . . . .
SN−1 RN




with Ba = ∂g(y
(q)
0 ,y

(q)
N )

∂y0
and Bb = ∂g1(y

(q)
0 ,y

(q)
N )

∂yN
and in both cases for i = 0, . . . , N−

1,

Si = −I − hi

s∑

r=1

br

(
∂Kr,i

∂yi

)
and Ri+1 = I − hi

s∑

r=1

br

(
∂Kr,i

∂yi+1

)
.

MIRKDC employees COLROW to solve systems (1.20). The paralle version PMIRKDC
[68] of the MIRKDC code uses the RSCALE algorithm for solving linear systems
(1.20).

1.4 Multiple shooting method

Given a partition (1.15) of the time interval [a, b] of the BVP (1.5), the multiple
shooting method solves the BVP using a fundamental solution Yi(x) ∈ Rm×m

and a particular solution yp,i(x) ∈ Rm (see definitions 1.1.2 and 1.1.3 ) on each
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subinterval [xi, xi+1], for i = 0, . . . , N − 1. Therefore, Yi(x) and yp,i(x) satisfy,
for any x ∈ [xi, xi+1]

Y ′
i = A(x)Yi(x), Yi(xi) = I,

y′p,i = A(x)yp,i(x) + q(x), yp,i(xi) = 0.

Then, in order to obtain a solution of the BVP (1.5) in [a, b], the method find
si = y(xi) ∈ Rm such that the solution

y(x) = Yi(x)si + yp,i(x), x ∈ [xi, xi+1],

of the ODE
y′ = A(x)y(x) + q(x),

satisfies the boundary conditions

Bas0 + BbsN = d,

and preserves the continuity in the internal points x1, . . . , xN−1, which means

si+1 = Yi(xi+1)si + yp,i(xi+1).

We obtain the following BABD linear system with {si}N
i=0 as unknowns




Ba Bb

−Y0(x1) I
−Y1(x2) I

. . . . . .
−YN−1(xN ) I







s0

s1
...

sN−1

sN




=




d
f1
...

fN


 ,

(1.21)
with fi+1 := yp,i(xi+1), for i = 0, . . . , N − 1.

From the properties of fundamental solutions presented in Section 1.1.2, we
obtain, in the constant coefficient case A(x) = A,

Yi(x) = e(x−xi)A.

Hence, if hi = xi+1−xi is constant through the partition, a constant lower diagonal
appears in (1.21) with

Yi(xi+1) = ehiA, i = 0, . . . , N − 1.

1.5 Splines

The approximation of a function u(x), in a finite interval [a, b], by an interpolating
polynomial p(x), gives an approximation error ‖u − p‖, which can be controlled
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by choosing the degree of the approximating polynomial sufficiently large and par-
ticular interpolating nodes, see [39]. In this case, the approximating function is
generated by a polynomial basis.

Another way to approximate u(x) is to use a function generated by a spline
function basis. We start by considering the partition ∆ = {xi}N

i=0 in (1.15), upon
the interval of approximation [a, b] and by using low-degree polynomials on each
subinterval [xi, xi+1], called splines. Let Sk+m,m−1

∆ , also briefly denoted as S∆, be
the set of Cm−1 splines of order k + m, see appendix, defined on partition ∆

Sk+m,m−1
∆ :=

{
s(x) ∈ Cm−1[a, b] : s(x)|[xi,xi+1] ∈ Pk+m, i = 0, . . . , N − 1

}
,

we find, in the approximation using splines, a function s(x) ∈ S∆ which reduces
the approximation error ‖u − s‖ by decreasing the fineness h of the partition ∆
where

h := max
i=0,...,N−1

hi,

hi := xi+1 − xi, i = 0, . . . , N − 1.
(1.22)

The expression of the approximation error depends on the choice of the spline
basis. Splines, as piecewise polynomials, permit us to approximate a function with
varying behavior over its domain, better than using a single polynomial. Moreover,
since splines s(x) have a certain number of continuous derivatives in [a, b] (i.e.
m − 1, for s(x) ∈ S∆), this choice is preferable to other less smooth piecewise
polynomials in the solution of Boundary Value Problems for ODEs of order m.
We note that the dimension of S∆ is kN +m [18], because the set of the piecewise
polynomials, see appendix,Pk+m,∆ (of order k+m) is of dimension (k+m)N and
we impose m(N − 1) continuity conditions on the internal points x1, . . . , xN−1.

1.6 Spline collocation at Gaussian points

Collocation is a technique for approximating a function u(x) on an interval [a, b],
where u(x) is given (implicitly) as the solution of a general mth ordinary linear
differential equation (1.4) with m non-separated boundary conditions.

It is assumed that, a sufficiently smooth, unique solution u(x) exists and satis-
fies for some c > 0

max
a≤x≤b

|Diu(x)| ≤ c, i = 0, . . . ,m.

Spline collocation, applied to (1.4), determines a spline approximation u∆(x) ∈
Sk+m,m−1

∆ to the exact solution u(x) on the given mesh ∆, defined in (1.15), which
satisfies the boundary conditions and the differential equation (1.4) on the given
kN interior collocation points

{ξi,j}1≤i≤N, 1≤j≤k.
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That is, u∆(x) satisfies the collocation equations

L(u∆)(ξi,j) = f(ξi,j), 1 ≤ i ≤ N and 1 ≤ j ≤ k, (1.23)

and
Baz(u∆(a)) + Bbz(u∆(b)) = d. (1.24)

We choose the collocation equally distributed in each subinterval with k points per
subinterval, that is, given

0 ≤ ρ1 < · · · < ρk ≤ 1, (1.25)

we set the collocation points

ξi,j = xi−1 + ρj(xi − xi−1), 1 ≤ i ≤ N and 1 ≤ j ≤ k. (1.26)

We note that usually k is chosen such that k ≥ m, see the examples in [10].
As proved in [19] and mentioned in [10, 18], if {ρj}k

j=1 are chosen such that any
polynomial p(x) ∈ Pn, with m ≤ n ≤ k, satisfies

∫ 1

0
p(x)

k∏

j=1

(x− ρj)dx = 0, (1.27)

then Diu∆(x) approximates Diu(x) to optimal order

‖Di(u− u∆)‖ ≤ chk+m−i, 0 ≤ i ≤ m,

and the approximation is of order better than optimal order (super-convergent)

|Di(u− u∆)(xj)| ≤ chk+n, 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ N,

at the mesh points xj , where h is the fineness of the partition ∆, defined in (1.22).
Note that the zeros {ρi}i=1,...,k of the kth orthogonal polynomial in [0, 1], i.e. the
kth Legendre polynomial, called Gaussian points, satisfy the orthogonality relation
(1.27). Thus, if we choose n = k and an orthogonal polynomial pn(x) in (1.27),
we obtain the maximum order of convergence

|Di(u− u∆)(xj)| ≤ ch2k, 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ N.

1.7 B-spline and monomial spline collocation

We derive the BABD structures which arise from spline collocation using a B-
spline basis and a monomial spline basis, applied to the differential equation of
order m on [a, b] with non-separated boundary conditions (1.4). Given k Gaussian
points (1.25), this approximation is defined by requiring:

(C1) u∆(x) is a polynomial of order k + m,
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(C2) u∆(x) ∈ Cm−1[a, b],

(C3) u∆(x) satisfies (1.23) at the kN collocation points (1.26),

(C4) u∆(x) satisfies the m boundary conditions (1.24).

Depending on the choice of the spline basis, these conditions impose a linear
system of particular dimension and structure in the coefficients αl, where u∆(x) =∑

αlΦl(x) and the Φl(x) are basis functions.

1.7.1 B-splines

The choice of B-splines satisfies the demand to construct a basis for S∆ with the
smallest possible support [65]. This is effective in approximation problems as
surface fitting and curve design [18]. A possible basis {Φi,j(x)} has the truncation
power functions [18, 65],

Φi,j(x) := (x− xi−1)
j
+, i = 1, . . . , N and j = µi, . . . , k + m− 1,

where

µi =
{

0 if i = 1,
m elsewhere.

Each Φi,j(x) has support [xi−1,+∞[. The B-spline basis {Bl(x)}kN+m
l=1 of S∆

derives from the truncation power basis

Bl(x) := (tl+k+m − tl)[tl, tl+1, . . . , tl+k+m](· − x)k+m−1
+ , l = 1, . . . , kN + m

see Appendix, where (·−x)k+m−1
+ is a function f such that f(y) = (y−x)k+m−1

+ ;
{tl}(kN+m)+k+m

l=1 is a nondecreasing sequence which contains (k +m) times x0 =
a, xN = b, and k times each interior point x1,. . . ,xN−1. This means

tl :=





x0 if l = 1, . . . , k + m,
xj if l = jk + m + 1, . . . , (j + 1)k + m, for j = 1, . . . , N − 1,
xN if l = kN + m + 1, . . . , (k + 1)N + 2m.

We note that Bl(x) has small support, supp(Bl) = [tl, tk+m+l]. Indeed, since the
function (· − x)k+m−1

+ is a polynomial of order k + m, using a property of the
(k + m)th divided difference, we have

[tl, tl+1, . . . , tl+k+m](· − x)k+m−1
+ = 0.

It follows that in each interval [tl, tl+1], for l = 1, . . . , N , only k + m B-splines
{Bi(x)}l

i=l−(k+m)+1 might be nonzero, which implies that in each interval [xi, xi+1]
only k + m B-splines might be nonzero. Thus, let u∆(x) ∈ S∆, then there exists
some {yl}kN+m

l=1 [18] such that for any i = 1, . . . , N

u∆(x) =
ik+m∑

l=(i−1)k+1

ylBl(x), x ∈ [xi−1, xi]. (1.28)
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Concerning the collocation, since the spline space has dimension kN + m and
each combination

u∆(x) =
kN+m∑

l=1

ylBl(x), x ∈ [a, b], (1.29)

satisfies implicitly the continuity conditions (C2) in [a, b], then each spline u∆(x)
has kN + m free parameters which can be determined by imposing the condi-
tions (C3)-(C4). As shown in [18, 19], the equations associated to the conditions
(C3)-(C4) can be solved using a Newton’s iteration, which determines a sequence
{ur,∆(x)} with

ur,∆(x) =
kN+m∑

l=1

yr,lBl(x)

that converges to the solution u∆(x), for an initial guess u0,∆(x) sufficiently close
to u∆(x). The Newton iteration is

L(ur+1,∆)(ξi,j) = f(ξi,j)−
m∑

l=1

cl(x)Dl−1ur,∆(x),

Baz(ur+1,∆(a)) + Bbz(ur+1,∆(b)) = d,

(1.30)

where i = 1, . . . , N and j = 1, . . . , k. An efficient implementation of B-splines
in the collocation code COLSYS, described in [5, 8], imposes directly the conditions
(C3)-(C4) on (1.29), that yields

L(u∆)(ξi,j) =
kN+m∑

l=1

ylL(Bl)(ξi,j) = f(ξi,j), 1 ≤ j ≤ k and 1 ≤ i ≤ N,

Baz(u∆(a)) + Bbz(u∆(b)) = d.
(1.31)

Both the equations (1.30) and (1.31) correspond to a BABD linear system

Ay = f ,

with the structure

A =




Da Db

W1,1 W1,2 W1,3

W2,1 W2,2 W2,3

. . .

WN,1 WN,2 WN,3




,

(1.32)
where for any i = 1, . . . , N , the ith row block

Vi = (Wi,1 Wi,2 Wi,3)
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is of size k × (k + m), with Wi,1,Wi,3 ∈ Rk×m and Wi,2 ∈ Rk×(k−m). The ith
row block corresponds to the k collocation equations (1.31) in ξi,j ∈ [xi−1, xi],
j = 1, . . . , k. Since, u∆(x)|[xi−1,xi] depends only on the k + m coefficients
{yl}ik+m

l=(i−1)k+1, see (1.28), and the corresponding row block equation is

Wi,1zi,1 + Wi,2zi,2 + Wi,3zi+1,1 = fi,

for i = 1, . . . , N , where

zT
i,1 =

(
y(i−1)k+1, . . . , y(i−1)k+m

)T ∈ Rm,

zT
i,2 =

(
y(i−1)k+m+1, . . . , yik

)T ∈ Rk−m,

and
fT = (d, fT

1 , . . . , fT
N )T ,

with fT
i =

(
f(ξi,1), f(ξi,2), . . . , f(ξi,k)

)
. In COLSYS, this results in

Wi,1 := (W j,r
i,1 )1≤j≤k, 1≤r≤m, Wi,2 := (W j,r

i,2 )1≤j≤k, 1≤r≤k−m,

and Wi,3 := (W j,r
i,3 )1≤j≤k, 1≤r≤m,

where for any j = 1, . . . , k and r = 1, . . . , m,

W j,r
i,1 = L(B(i−1)k+r)(ξi,j), W j,r

i,3 = L(Bik+r)(ξi,j),

and for any j = 1, . . . , k and r = 1, . . . , k −m,

W j,r
i,2 = L(B(i−1)k+m+r)(ξi,j).

Therefore, Wi,3 overlaps exactly the columns of Wi+1,1 corresponding to the un-
knowns zi+1,1. The blocks Da and Db in (1.32) correspond to the boundary con-
ditions in (1.31),

Da = Ba




B1(a) · · · Bk+m(a)
DB1(a) · · · DBk+m(a)

...
...

Dm−1B1(a) · · · Dm−1Bk+m(a)




and

Db = Bb




B(k−1)N+1(b) · · · BkN+m(b)
DB(k−1)N+1(b) · · · DBkN+m(b)

...
...

Dm−1B(k−1)N+1(b) · · · Dm−1BkN+m(b)


 .
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1.7.2 Monomial splines

Until the 1980s, the most popular approach in spline collocation was to use a B-
spline basis, anyway recently in [10], it has been shown that the B-spline basis
is inferior, in the computational cost and conditioning, with respect to a mono-
mial basis when low continuity piecewise polynomials are used. We determine
a monomial spline basis for the set S∆ using a monomial basis of the piecewise
polynomials set Pk+m. A monomial basis for Pk+m has (k + m)N polynomials

{Φj(x− xi−1)}1≤i≤N,1≤j≤m ,

{
hm

i Ψj

(
x− xi−1

hi

)}

1≤i≤N,1≤j≤k

,

each with support over only one subinterval [xi−1, xi] with amplitude hi := xi −
xi−1, i = 1, . . . , N . The first m polynomials are monomials locally

Φj(x− xi−1) =
(x− xi−1)j−1

(j − 1)!
, i = 1, . . . , N and j = 1, . . . , m,

with each Φj(x) defined on [0, 1]. The other k polynomials {Ψj(x)}k
j=1 are chosen

to satisfy the conditions

• Ψj(x) is a polynomial of order k + m defined on [0, 1],

• dΨl−1
j

dxl−1
(0) = 0, l = 1, . . . , m and j = 1, . . . , k.

One choice is to use monomials

Ψj(x) =
xm+j−1

(m + j − 1)!
, j = 1, . . . , k. (1.33)

Other choices can define completely {Ψj(x)}k
j=1, by specifying the other k condi-

tions, for example,

dmΨj(ρr)
dxm

= δj,r r = 1, . . . , k,

where δj,r is the Kronecker delta. This last choice, used in [70], yields a collo-
cation scheme that is equivalent to using an implicit Runge Kutta method [12].
Its benefits over the choice (1.33) have been shown in [9]. To construct the cor-
responding monomial basis of S∆, we impose m continuity conditions on each
internal xi, for i = 1, . . . , N − 1. Thus, let u∆(x) ∈ S∆, then there exists
some {zi,j}1≤i≤N,1≤j≤m and {wi,j}1≤i≤N,1≤j≤k such that for any x ∈ [xi−1, xi],
i = 1, . . . , N, we get u∆(x) = ui,∆(x) where

ui,∆(x) :=
m∑

j=1

zi,jΦj(x− xi−1) + hm
i

k∑

j=1

wi,jΨj

(
x− xi−1

hi

)
, (1.34)
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and where {zi,j}1≤i≤N,1≤j≤m and {wi,j}1≤i≤N,1≤j≤k are chosen such that the
m(N − 1) continuity conditions

dl−1ui,∆

dxl−1
(xi) =

dl−1ui+1,∆

dxl−1
(xi), i = 1, . . . , N − 1 and l = 1, . . . ,m

(1.35)
are satisfied. This yields

zi,r = Dr−1u∆(xi−1), i = 2, . . . , N and r = 1, . . . , m.

The remaining
(k + m)N −m(N − 1) = kN + m

free parameters in the representation (1.34) are determined by imposing on u∆(x)
the conditions (C3)-(C4). To obtain a linear system with BABD structure, we
choose m new variables

zN+1,r := Dr−1u∆(xN ), r = 1, . . . ,m.

Thus, the boundary conditions (C4) are equivalent to

Baz1 + BbzN+1 = d, (1.36)

and the kN collocation conditions (C3) on the points ξi,j are equivalent to

Hizi + Giwi = fi,

where Hi = (Hj,r
i ), Gi = (Gj,r

i ) with

Hj,r
i = L(Φr)(hiρj), j = 1, . . . , k and r = 1, . . . , m,

Gj,r
i = hm

i L(Ψr)(ρj), j = 1, . . . , k and r = 1, . . . , k,

and
fT
i = (f(ξi,1), . . . , f(ξi,k))T ,

zT
i = (zi,1, . . . , zi,m)T ,

wT
i = (wi,1, . . . , wi,k)T .

The (N − 1)m continuity equations (1.35) are equivalent to

−Eizi − Fiyi + zi+1 = 0, i = 1, . . . , N.

For the definition of zN+1 we have

−ENzN − FNyN + zN+1 = 0,

where Ei = (Ej,r
i ), Fi = (F j,r

i ) with

Ej,r
i = Dj−1Φr(hi) =

hr−j
i

(r − j)!
, j = 1, . . . ,m and r = 1, . . . , m,

F j,r
i = hm+1−j

i Dj−1Ψr(1), j = 1, . . . ,m and r = 1, . . . , k.
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Note that Ei is an upper triangular matrix. The resulting BABD linear system
has the structure




Ba Bb

H1 G1

−E1 −F1 I

. . . . . . . . .

HN GN

−EN −FN I







z1

w1

z2
...
...

zN

wN

zN+1




=




d
f1
0
...

fN
0




.

(1.37)
with the ith row block

Vi =
(

Hi Gi

−Ei −Fi I

)
.



Chapter 2

Algorithms for ABD and BABD
systems

We discuss the most important numerical techniques for solving ABD systems and
BABD systems. We consider ABD and BABD coefficient matrices in the form
shown in Figure 2 and 3, respectively, except in paragraph 2.5.1. We measure and
compare the computational cost of these techniques in terms of the total number
of flops, where each flop represents one of the four arithmetic floating point opera-
tions.

Most of the algorithms are effective and stable only for the solution of ABD
systems, because the effect of the right-upper block in the BABD structures could
result in instability, high computational cost and fill-in. For this reason, codes,
like SOLVEBLOK, COLROW and ABDPACK are written for solving only ABD
linear systems. Since there were no stable serial available algorithms designed
specifically for BABD systems, we transform BABD systems into equivalent ABD
systems, see Section 2.2, which can be solved stably with a stable existing ABD
solver.

Instability for BABD systems can arise for techniques based on LU factoriza-
tion, as results in the following example.

2.1 The Wright example

The Wright example [77] shows how a simple well conditioned BABD matrix

Ā =




I I
−C I

−C I
. . . . . .

−C I




, (2.1)

may give rise to instability when it is factored by means of the LU factorization

27
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with row partial pivoting. If all the elements of C have modulus less than 1 then no
permutation is ever performed in the partial pivoting algorithm and the right-upper
corner block implies fill-in in the last block column of the matrix U , with elements
C, C2, C3, . . .

L =




I
−C I

−C I
. . . . . .

−C I




U =




I I
I C

. . .
...

I CN−1

I + CN




.

(2.2)
The resulting fill-in is of size Nm2. If at least one of the eigenvalues of C has
modulus greater than 1, then there is an exponential growth in the elements of the
last block column of U , and the solution becomes incorrect even if a moderate
number of meshpoints (N + 1) is used.

As an example, the matrix (2.1) can arise from the numerical solution of the
well conditioned BVODE with non-separated BCs

y′(x) = Ay(x) + r(x), x ∈ [0, 60],

y(0) + y(60) = η,

A =
( −1

6 1
1 −1

6

)
,

(2.3)

by means of multiple shooting, discussed in Section 1.4. Hence, C becomes the
fundamental solution ehA, see Section 1.1.2, where h is the stepsize of each of
N subintervals used to discretize the ODE problem. Also, the matrix Ā has a
condition number in the infinity norm cond∞(Ā) which satisfies

cond∞(Ā) ≤ (‖ehA‖+ 1)(1 + N). (2.4)

If h = 0.3 (and N = 60
h = 200) then

C = ehA =
(

0.99436 0.28967
0.28967 0.99436

)
,

and matrix Ā in (2.1) is well conditioned because the bound in (2.4) is equal to
459. Since the elements of C have modulus less than 1, the LU factorization with
row partial pivoting in (2.2) is obtained. We note that A in (2.3) has eigenvalues

λ1 = −7
6 , λ2 = 5

6 with respectively eigenvectors v1 =
(

0.7071
−0.7071

)
and v2 =

(
0.7071
0.7071

)
. Therefore, C has eigenvalues ehλ1 = 0.7047, and ehλ2 = 1.284.
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Since one of the eigenvalues is greater than 1, the LU factorization becomes an
unstable procedure. In fact, we note that the elements of CN are very large

CN = V

(
ehλ1N

ehλ2N

)
V T = V

(
4 · 10−31

5 · 1021

)
V T

= 1021

( −2.6 2.6
−2.6 2.6

)
,

where V is the matrix (v1,v2) having the eigenvectors of A as columns.
The same drawback appears when (2.3) is approximated by means of the trape-

zoidal rule, thus obtaining a BABD coefficient matrix (2.1) with C = (I−hA/2)−1(I+
hA/2).

For this reason, Garrett and Gladwell in [38] suggest solving BABD systems
by means of an orthogonal factorization, thus obtaining a stable factorization but
with a larger computational cost and memory requirement. In fact, QR is much
more expensive than LU factorization and, in addition, since this algorithm is not
specifically designed for BABD matrices, it implies fill-in on the last block column
and on a further upper diagonal of the matrix R of the factorization. In such a case,
a block scaling of the coefficient matrix (in order to obtain some blocks equal to the
identity) before computing the QR factorization, reduces the number of operations
but may be dangerous if performed on ill conditioned blocks.

2.2 Rewriting a BABD system as an ABD system

The techniques, that will be described in this chapter, except for RSCALE pre-
sented in Section 2.6, have been designed for solving ABD linear systems directly.
However, they can be also used for BABD systems by rewriting them as ABD sys-
tems of approximately twice the size. Thus, if we use a stable ABD algorithm, it is
possible to solve a BABD linear system through the solution of an equivalent ABD
linear system.

This transformation is based on a BVODE technique, cited in [11], that con-
verts nonseparated boundary conditions into separated form. In fact, we start by
supposing that the BABD linear system (in Figure 3) arises from the discretization
of a nonlinear BVP

y′ = f(x,y(x)), x ∈ [a, b],
Day(a) + Dby(b) = d.

(2.5)

We add trivial differential equation with associated initial condition:

z′ = 0, z(a) = y(a). (2.6)

Let ∆ = {xi}N
i=0 be the partition (1.15) of [a, b] associated with (2.5), and x0 := a,

we get from (2.6)

z(xi)− z(xi−1) = 0, i = 1, . . . , N − 1,
z(x0) = y(x0).
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Then, from zi := z(xi) the boundary conditions Day0 + DbyN = d can be set in
the form

DazN + DbyN = d,

and the resulting ABD linear system is




−I I
S0 0 R1

−I 0 I

. . . . . . . . .

SN−1 0 RN

−I 0 I
Db Da







y0

z0

y1

z1
...

yN

zN




=




0
f1
0
...

fN
0
d




.

(2.7)
This block tridiagonal system may be solved using standard, stable linear algebra
algorithms either for banded systems or for ABD systems.

2.3 Gaussian elimination with partial pivoting

The algorithm applies Gaussian elimination with row partial pivoting (in the fol-
lowing, referred to as conventional elimination) to an ABD linear system, rep-
resented in Figure 2. It is implemented in SOLVEBLOK [20, 21]. Similar re-
sults can be obtained with column partial pivoting. The package requires (2N +
1)m2 + 2Nmtopm memory allocations A1, A2, . . . , AN ∈ R(m+mtop)×2m, and
AN+1 ∈ Rm×m

A1 =




Dtop ∗
V1


 ,

Ai =




∗ ∗
Vi


 , i = 2, . . . , N,

AN+1 =

(
∗

Dbot

)
,

which store the block rows

Vi =
(

Si−1 Ri

) ∈ Rm×2m, i = 1, . . . , N,

Dtop ∈ Rmtop×m, Dbot ∈ R(m−mtop)×m,

of the given ABD linear systems, represented in Figure 2. The resulting fill-in
(that is, the extra memory requirement) is of size 2Nmtopm. In fact, in each Ai,
i = 2, . . . , N , there are 2mtopm extra allocations, represented by

( ∗ ∗ )
, over
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each block Vi, and in A1, AN+1 there are arrays
( ∗ )

of size mtop × m, which
are filled by the resulting factorization of the algorithm.

In SOLVEBLOK, the N + 1 blocks Ai are stored consecutively in a vector of
length (2N + 1)m2 + 2Nmtopm, containing first all the elements of A1 followed
by those of A2 and so on.

The elimination phase in SOLVEBLOK has the following algorithm:

1. Apply m steps of conventional elimination to A1;

2. for i = 2, . . . , N

a) Take the mtop rows not yet used in the factorization of Ai−1 followed
by the first m−mtop (non-null) rows of Ai and shift them into the first
m×m memory allocations of Ai,

b) Apply m steps of conventional elimination to Ai,

end;

3.

a) Take the mtop rows not yet used in the factorization of AN followed
by the first m−mtop (non-null) rows of AN+1 and shift them into the
m×m memory allocations of AN+1,

b) Apply m− 1 steps of conventional elimination to AN+1,

The computational cost of the elimination phase is

N

(
5
3
m3 + 3mtopm

2 − 3
2
m2 − 1

6
m

)
+

(
2
3
m3 − 1

2
m2 − 1

6
m

)
,

and the computational cost of the back-substitution phase is

N(4m2 + 2mtopm−m).

2.4 Alternating row and column elimination

Based on an approach of Varah [74], alternating row and column elimination, also
denoted by ARCE, generates no fill-in for ABD linear systems. We consider an
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ABD coefficient matrix with the structure:

A =




Dtop

V1

V2

. . .
. . .

VN

Dbot




. (2.8)

In contrast of conventional elimination described as in the previous section, we
generate no fill-in alternating row eliminations with column eliminations. First,
mtop column eliminations with column interchanges are performed in the first mtop

columns of the ABD matrix. Then, we obtain the matrix A(1) ∈ Rm×(2m−mtop)

in V1, and the matrix
(

C(0)

M (1)

)
∈ R(mtop+m)×mtop with C(0) ∈ Rmtop×mtop a

lower triangular matrix and M (1) ∈ Rm×mtop , see Figure 2.1. As in conventional
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Figure 2.1: First mtop column eliminations, the shaded area represents potentially
nonzero elements and the dotted lines represents the profile of the original row
blocks

column elimination2 procedure, the multipliers associated are stored in the first
mtop rows of U (0) ∈ Rm×m a unit upper triangular matrix placed in the first mtop

columns of the ABD matrix, see Figure 2.1. Thus, no fill-in is generated.
2We refer to conventional column elimination the Gaussian elimination where column elimination

with column interchanges are performed instead of row eliminations with row interchanges as in row
partial pivoting.
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The algorithm proceeds with m−mtop row eliminations with row interchanges,
that eliminates rows in A(1) without any fill-in. In fact, the rows of the adjacent
block V2 are not affected by these row interchanges. This is a major benefit with
respect to conventional elimination described in Section 2.3.

This step is applied to the row block
(

M (1) A(1)
)

and generates: the matrix
A(2) ∈ Rmtop×m and

(
R(1) N (1)

)
(corresponding to the m−mtop eliminated

rows in A(1)) with R(1) ∈ R(m−mtop)×(m−mtop) an upper triangular matrix and
N (1) ∈ R(m−mtop)×m, see Figure 2.2.

Since the row eliminations are applied to M (1), this block is modified and
will be denoted by M̃ (1), for future reference. The multipliers associated with the
mtop row eliminations are stored in the first m −mtop columns of the unit lower
triangular matrix L(1) ∈ Rm×(m−mtop).

M (1) A(1) −→ M̃ (1)
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Figure 2.2: m − mtop row eliminations, the shaded area represents potentially
nonzero elements and the dotted lines represent the profile of the original row block

We repeat this process:

1. mtop column eliminations with column interchanges,

2. m−mtop row eliminations with row interchanges,

until elimination takes place in the block Dbot, at this point m−mtop row elimina-
tions with row interchanges are performed. These row eliminations determine the
blocks: M̃ (N) of size (m−mtop)×mtop, R(N+1) of size (m−mtop)×(m−mtop)
and L(bot) ∈ R(m−mtop)×(m−mtop) a unit lower triangular matrix. We note that, the
ith column elimination step modifies also the coefficients of the block N (i−1) that
will be denoted by Ñ (i−1).

In matrix form, this strategy leads to a decomposition

A = PLB̃UQ (2.9)

where
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• P is a permutation matrix recording the row interchanges, with the following
structure

P =




I

P (1)

. . .
P (N)

P (bot)




,

with I is the identity matrix of dimension mtop, P (i) ∈ Rm×m and P (bot) ∈
R(m−mtop)×(m−mtop).

• L is the unit lower triangular matrix

L =




I

L(1)

. . .
L(N)

L(bot)




,

containing the row elimination multipliers. Each L(i) is a square unit lower
triangular matrix of dimension m, see Figure 2.2, and L(bot) is a square unit
lower triangular matrix of dimension m −mtop. The identity matrix I is of
dimension mtop.

• B̃ is the reduced matrix

B̃ =




B̃top

B̃1,1 B̃1,2

B̃2,1 B̃2,2

. . .
B̃N,1 B̃N,2

B̃bot




, (2.10)

where

B̃i,1 =


 M̃ (i)

R(i)

O


 , M (i) ∈ Rm×mtop , R(i) ∈ R(m−mtop)×(m−mtop),

B̃i,2 =




Ñ (i)

C(i) O


 , Ñ (i) ∈ R(m−mtop)×m, C(i) ∈ Rmtop×mtop ,
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and

B̃top =
(

C(0) O
)
, B̃bot =

(
M̃ (N+1) R(bot)

)
.

• U is a unit upper triangular matrix

U =




U (0)

U (1)

. . .
U (N)


 ,

which contains the column elimination multipliers. Each U (i) is a square
unit upper triangular matrix of dimension m, see Figure 2.1.

• Q is a permutation matrix recording the column interchanges, with the fol-
lowing structure

Q =




Q(0)

Q(1)

. . .
Q(N)


 ,

with Q(i) ∈ Rm×m, for i = 0, . . . , N .

The solution of Ay = f with the ABD coefficient matrix A of dimension
(N + 1)m decomposed as in (2.9) consists in five steps:

1) Py(1) = f ,

2) Ly(2) = y(1),

3) B̃y(3) = y(2),

4) Uy(4) = y(3),

5) Qy = y(4).

(2.11)

The system in step 3) is solved using a forward recursion for some unknowns
and a backward recursion for the others. In the forward recursion, the lower tri-
angular linear systems in B̃y(3) = y(2) involving the coefficient matrices C(i) are
solved, starting at i = 0. In the backward recursion, upper triangular linear sys-
tems associated with the coefficient matrices R(i) are solved, starting by the use of
R(bot) in the last row of B̃, see (2.10).
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The computational cost of the elimination phase is

N(5
3m3 + 4m2mtop − 4mm2

top − 3
2m2 −mmtop + m2

top − 1
6m)

+2
3m3 + m2mtop − 1

2m2 −mmtop − 1
6m.

and the computational cost of the solution phase (the five steps 1-5) is

N(4m2 −m) + 2m2 −m.

2.5 Modified alternate row and column elimination

A modification of ARCE has been developed and implemented in the code COL-
ROW for ABD linear systems with block rows of the same size and in ARCECO for
general ABD linear systems with block rows of different size. This modification,
called MARCE, reduces the computational cost with respect to ARCE by applying
the eliminations only to part of the matrix obtained with ARCE as in the previous
section.

For example, considering the first mtop column eliminations, the resulting ma-
trix has the form

B1 = AQ1U1 =




C(0) O

M (1)

A1

O


 , (2.12)

where the blocks C(0), M (1) are defined in Section 2.4. The matrix A1 is square
of dimension (N + 1)m−mtop and is almost block diagonal. Q1 is a permutation
matrix (of size (N + 1)m× (N + 1)m), associated with the column interchanges.
The matrix

U1 =

(
U (0)−1

I

)
∈ R(N+1)m×(N+1)m

contains the multipliers associated with the column eliminations. This procedure
applies the successive m − mtop row eliminations only to the submatrix A1 and
therefore with respect to ARCE, we save the computations used there for modify-
ing M (1). The second step yields

L1P1A1 =
(

R(1) N (1) O

O A2

)
,

where the blocks R(1), N (1) are defined in Section 2.4. The matrix A2 is square
and almost block diagonal. Q1 is a permutation matrix associated with the row
interchanges, the matrix

L1 =

(
L(1)−1

I

)

contains the multiplier associated with the row eliminations.
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Analogously, when in the next step, mtop column eliminations are used, they
are applied only to A2 and therefore N (1) is not changed. Finally, after N suc-
cessive steps, each formed by with mtop column eliminations and m −mtop row
eliminations, the following reduced matrix B is obtained

B =




Btop

B1,1 B1,2

B2,1 B2,2

. . .
BN,1 BN,2

Bbot




, (2.13)

where Bi,1 =


 M (i)

R(i)

O


 , Bi,2 =




N (i)

C(i) O


 , i = 1, . . . , N,

Btop =
(

C(0) O
)
, Bbot =

(
M (N+1) R(bot)

)
.

This structure corresponds to that of B̃ in (2.13), with M (i) and N (i) in place of
M̃ (i) and Ñ (i), respectively.

The decomposition of the ABD coefficient matrix A, obtained with this proce-
dure, cannot be written in the form (2.9) since eliminations involve only parts of
the rows or columns. Therefore, the system

Ay = f ,

with

y =




y0

y1
...

yN


 , f =




da

f1
...

fN
db




,

is solved with a different procedure to that used for ARCE in Section 2.4. The steps
1)-5) in (2.11) are performed with the operations summarized in the algorithm in
Figure 2.3.

The computational cost of the elimination phase is:

N
(

5
3m3 + m2mtop −mm2

top +−3
2m2 + mmtop −m2

top − 1
6m

)

+2
3m3 + 2mm2

top −m3
top − 1

2m2 −m2
top − 1

6m

We save with respect to ARCE

N(3mmtop(m−mtop)− 2mtop(m−mtop)) + mtop(m−mtop)(m−mtop − 1)
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% Solution phase

let yi =
(

y22,i

y3,i

)

% Forward recursion

solve C(0)x(0)
1 = da

for i = 1, . . . , N

compute c(i) = fi −M (i−1)x(i−1)
1

solve P (i)L(i)d(i) = c(i)

solve C(i)x(i)
1 = d(i)

2 , where d(i) =

(
d(i)

1

d(i)
2

)

end

compute c(bot) = db −M (N)x(N)
1

solve P (bot)L(bot)d(bot) = c(bot)

% Backward recursion

solve R(bot)x(N)
2 = d(bot)

for i = N, . . . , 1

solve U (i)Q(i)y3,i = x(i), where x(i) =

(
x(i)

1

x(i)
2

)

compute e(i) = d(i)
1 −N (i)y3,i

solve R(i)y2,i = e(i), where y2,i =

(
x(i−1)

2

y22,i

)

end

solve U (0)Q(0)y0 =

(
x(0)

1

x(0)
2

)

Figure 2.3: Solution phase for the technique MARCE
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flops. This number of flops is greater than zero because m > mtop.
The computational cost of the solution phase, described in the algorithm in

Figure 2.3, is the same of that described for ARCE, that is

N(4m2 −m) + 2m2 −m.

2.5.1 The ABDPACK algorithm

The techniques described above can be applied to ABD linear systems arising from
spline collocation with the structure in (1.32). For this system, COLROW does not
introduce any fill-in, in contrast SOLVEBLOK does. See [29], where the MARCE
technique used in COLROW and applied to systems with structure (1.32) is de-
scribed in more detail.

Now, let



Dtop

H1 G1

−E1 −F1 I

. . . . . . . . .

HN GN

−EN −FN I
Dbot




, (2.14)

be the coefficient matrix associated with to linear systems arising from spline col-
location using a monomial spline basis, see Section 1.7.2. The blocks in (2.14)
have the following sizes: Dtop ∈ Rmtop×m, Dbot ∈ R(m−mtop)×m, Hi ∈ Rk×m,
Gi ∈ Rk×k, Ei ∈ Rm×m, Fi ∈ Rm×k and I is the unitary matrix of dimension
m. The code SOLVEBLOK for the structure in (2.14), requires an extra memory
of length (N − 1)(mtop(k + 2m) + km) + mtopm, see [64]. In contrast, COL-
ROW needs Nkm memory locations more than the necessary storage for the matrix
(2.14). This fill-in corresponds to the null blocks of size k ×m over each identity
matrix I in (2.14).

In 1992, the papers [63, 64] introduce a code, ABDPACK, which uses the
MARCE technique that, exploiting the special pattern of systems with coefficient
matrices (2.14), does not generate fill-in.

The technique has the following phases:

1. perform mtop column eliminations with column interchanges in Dtop

2. in each block row
(

Hi Gi

−Ei −Fi I,

)
perform

• k column eliminations with column interchanges,

• m−mtop row eliminations with row interchanges,
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• row interchanges to preserve the lower triangular form of the block
corresponding to the identity matrix in the row block,

• mtop column eliminations with column interchanges,

3. m−mtop − 1 row eliminations on the bottom block Dbot.

The computational cost of the elimination phase is:

N(2
3k3 + 2k2m + 2km2 + 5

3m3 −mm2
top − k2mtop − km2

top + m2mtop − 1
2k2 − km

−3
2m2 − kmtop + mmtop −m2

top − 1
6k − 1

6m)
+2kmmtop + 2

3m3 − km2
top + 2mm2

top −m3
top

−kmtop − 1
2m2 −m2

top − 1
6m.

The computational cost for the solution phase is

N(m2 + 2km + 2mmtop − k2 + 2m2
top + 2mtopk − k −m)

+2km− 2mtopk −m2
top − 3m2 −m

2.6 The RSCALE algorithm

The parallel code PMIRKDC [68] uses the parallel RSCALE algorithm [49] for
solving the Jacobian linear systems which are generated by the use of the Mono
Implicit Runge Kutta formulae described in Section 1.3. RSCALE is based on block
eigenvalue rescaling applied to the a BABD linear system with coefficient matrix
and right hand side:




Da Db d
S0 R1 f1

S1 R2 f2
. . . . . .

...
SN−1 RN fN




, (2.15)

where the blocks Da, Db, Si and Ri are of size m×m.
We describe the serial version of the algorithm RSCALE, as it is presented in

[49]. Numerical tests of RSCALE in Section 3.7 are relative to this serial version.
The factorization phase is divided into two levels. In the first level, local trans-

formations are applied to the linear system. These transformations do not modify
the dimension of the linear system. When there are row transformations, the right
hand side associated with the coefficient matrix is modified consequently.

The first step modifies all the block rows of the coefficient matrix through the
matrix multiplication




Da Db

S0 R1

S1 R2

. . . . . .
SN−1 RN







I −I
I −I

. . . . . .
I −I

I




=
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


Da −Da Db

S0 R1 − S0 −R1

. . . . . . . . .

SN−2 RN−1 − SN−2 −RN−1

SN−1 RN − SN−1




. (2.16)

This step can be summarized by the sequence of operations

for i = N, . . . , 0
column(i+1)=column(i+1)-column(i)

end

where column(i) is the ith block-column of the coefficient matrix in (2.15). Also,
we indicate by row(i) the ith block-row of the coefficient matrix in (2.15). Let

y =




y0
...

yN


 ∈ Rm(N+1)

be the vector of unknowns associated with the initial BABD linear system (2.15),
then the linear system associated with the coefficient matrix (2.16) has

ỹ =




I I . . . I
I . . . I

. . .
...
I


y (2.17)

as vector of unknowns.
The next two block-operation steps modify only the last two block rows

[
SN−2 RN−1 − SN−2 −RN−1

SN−1 RN − SN−1

fN−1

fN

]

of the linear system with coefficient matrix (2.16):

1. row(N+1) = (RN − SN−1)−1 row(N+1),

this operation transforms the block RN−SN−1 (of row(N+1)) into the iden-
tity matrix I

[
SN−2 RN−1 − SN−2 −RN−1

S̃N−1 I

fN−1

f̃N

]

where S̃N−1 = (RN − SN−1)−1SN−1, f̃N = (RN − SN−1)−1fN .
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2. row(N) = row(N) + RN−1 row(N+1),

this operation annihilates −RN−1 in row(N)

[
SN−2 RN−1(I + S̃N−1)− SN−2

S̃N−1 I

f̃N−1

f̃N

]

where f̃N−1 = fN−1 + RN−1f̃N .

The algorithm proceeds by performing the operations of the two steps de-
scribed above, for each pair of block rows (row(i),row(i+1)) moving upward with
i running from N − 1 to 1.

These operations can be summarized by the sequence

for i = N − 1, . . . , 0
let the pair of block rows (row(i),row(i+1)) be in the form[

Si−2 Ri−1 − Si−2 −Ri−1

Si−1 R̃i

fi−1

f̃i

]

scale row(i+1) with respect to R̃i through the operation
row(i+1) = (R̃i)−1 row(i+1)

annihilate −Ri−1 through the operation
row(i) = row(i) + Ri−1row(i+1)

end

The final row operation in this first level is

row(1) = row(1) + Darow(2),

which annihilates −Da in the first row.
The resulting linear system has now the form




D̃a Db d̃
S̃0 I f̃1

S̃1 I f̃2
. . . . . .

...
S̃N−1 I f̃N




. (2.18)

As mentioned in [49], numerical experiments and preliminary analysis indicate
that the blocks S̃i in (2.18) have bounded eigenvalues and norms satisfying

1. |λi| ≤ 1 + ε1, ∀λi eigenvalue of S̃i,

2. ‖S̃i‖ ∈ (1− ε2, 1 + ε3),
(2.19)

where i = 1, . . . , N , and ε1, ε2, ε3 are positive constants which can be reduced
arbitrarily using a suitable choice of parameter during the rescaling phase. In fact,
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in the first level of factorization (2.16), the user can choose a suitable parameter σ
such that the matrix to multiply to the input BABD coefficient matrix is




I −σI
I −σI

. . . . . .
I −σI

I




,

instead of that resulting from the case σ = 1 used above.
From properties 1-2 of S̃i, see (2.19), the system (2.18) can be solved stably

using the successive cyclic reduction steps, assumed N is a power of 2:

1. each row(i) of (2.18), with i even, is premultiplied by S̃i+1 and then it is
subtracted from the row(i+1), obtaining a reduced linear system with a co-
efficient matrix of size (N

2 + 1)m× (N
2 + 1)m




D̃a Bb

−S̃1S̃0 I

−S̃3S̃2 I
. . . . . .

−S̃N−1S̃N−2 I




, (2.20)

2. step (1) is applied to the linear system with coefficient matrix (2.20) obtain-
ing a coefficient matrix of size (N

4 + 1)m× (N
4 + 1)m; this step is repeated

cyclically log2(N) times. This yields a 2m× 2m linear system with coeffi-
cient matrix 


D̃a Db

(−1)N
N∏

i=1

S̃N−i I


 . (2.21)

In the solution phase, we compute the solutions of the log2(N) linear systems
starting with the 2m×2m linear system with coefficient matrix (2.21), thus, finally
determining the solution ỹ, see (2.17), of the linear system (2.18). For more details
about back-substitution phase, see Chapter 3.

Finally, the solution y of the initial linear system (2.15) is determined through
the matrix vector product

y =




I −I
I −I

. . . . . .
I −I

I




ỹ. (2.22)
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The cost of the first level of factorization phase, not involving the operation on
the right hand side is N

(
14
3 m3

)
+ 2m3, for the second level (the cyclic reduction)

is (N − 1)(2m3 −m2), thus the total cost of the factorization phase is

N

(
20
3

m3 −m2

)
+ m2.

The cost for the transformation of the right hand side during the first level of
the factorization phase is N

(
4m2 −m

)
+ 2m2. The cost of the reduction of the

right hand side during the second level of the factorization is (N − 1)(2m2 −m)
and of the multiplication (2.22) is Nm, thus the total cost of the solution phase is

N(6m2 −m) + m.



Chapter 3

An algorithm for the solution of
BABD systems based on cyclic
reduction

We describe the use of the new sequential computing package BABDCR [3],
[4] for the solution of BABD systems Ay = f with the following structure




Da Db

S0 R1

S1 R2

. . . . . .
SN−1 RN







y0

y1

y2
...

yN




=




d
f1
f2
...

fN




. (3.1)

This package is based on the cyclic reduction algorithm, originally proposed in [2]
to be implemented on a parallel computer. LU factorization is used to reduce the
system. It is well known that cyclic reduction applied to block tridiagonal (or ABD)
systems is extremely competitive only on parallel computers. However, since the
presence of the right-upper block Db implies fill-in and a higher computational
cost in all direct methods, we show that the cyclic reduction algorithm can also be
effective on a sequential computer. A parallel version of the package BABDCR has
also been implemented, see Chapter 5.

Note that, as we have shown in Chapter 1, the BABD structure (3.1), with
blocks Si, Ri, Da and Db of the same size, arises frequently in BVP solvers.

3.1 The cyclic reduction algorithm

The idea of this code is to reduce (3.1) cyclically in order to derive systems of lower
dimension (involving less unknowns) with the same BABD structure. We suppose
that each block in the BABD matrix is of size m×m. Since operations involving
the boundary block Db would create fill-in, all the reduced systems always keep y0

45
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and yN among the unknowns, and leave unchanged the first row of (3.1). For this
reason, the first reduction produces the linear system of dimension dN/2e+ 1:




Da Db

S′0 R′
2

S′2 R′
4

. . . . . .
S′N−2 R′

N







y0

y2

y4
...

yN







d
f ′2
f ′4
...

f ′N




.

There are several ways to derive the above reduced system from (3.1). But,
since the original matrix is essentially block bidiagonal (the first block row is not
modified), each row of the reduced block system may be obtained from two adja-
cent rows in (3.1). That is, for i = 2j− 1 odd, j = 1, 2, . . . , bN/2c, the subsystem

(
Si−1 Ri

Si Ri+1

)


yi−1

yi

yi+1


 =

(
fi

fi+1

)
(3.2)

is transformed in order to obtain one row in the reduced system involving only the
unknowns yi−1 and yi+1

S′i−1yi−1 + R′
i+1yi+1 = f ′i+1. (3.3)

If Ri is nonsingular, this can be achieved by multiplying (3.2) on the left by
(

I

−SiR
−1
i I

)
, (3.4)

thus obtaining (3.3) with S′i−1 = −SiR
−1
i Si−1, R′

i+1 = Ri+1 and f ′i+1 = fi+1 −
SiR

−1
i fi.
However, this procedure may be unstable (see section 3.2). For this reason, we

perform a partial pivoting LU factorization of the 2m × m matrix containing the
overlapping columns:

Pi

(
Ri

Si

)
=

(
Li

Hi

)
Ui =

(
I
Gi

)
LiUi =

(
I
Gi I

)(
LiUi

O

)
, (3.5)

where Gi = HiL
−1
i and Pi is a 2m × 2m permutation matrix representing the m

row interchanges. The reduction step leads to

S′i−1 =
( −Gi I

)
Pi

(
Si−1

O

)
,

R′
i+1 =

( −Gi I
)
Pi

(
O

Ri+1

)
,

f ′i+1 =
( −Gi I

)
Pi

(
fi

fi+1

)
.

(3.6)
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Formulae (3.6) are obtained by multiplying (3.2) by Pi and by the inverse of the
lower triangular matrix in (3.5)

(
I
Gi I

)−1

=
(

I
−Gi I

)
.

In fact,
(

I
−Gi I

)
Pi

(
Si−1 Ri

Si Ri+1

)
=

(
Ŝi−1 LiUi R̂i+1

S′i−1 R′
i+1

)
(3.7)

and (
I
−Gi I

)
Pi

(
fi

fi+1

)
=

(
f̂i

f ′i+1

)
. (3.8)

Taking into account the second row in (3.7) and (3.8) yields equation (3.3) of
the reduced system. The first row of (3.7) and (3.8)

Ŝi−1yi−1 + LiUiyi + R̂i+1yi+1 = f̂i

is used in the back-substitution phase to compute yi from yi−1 and yi+1. The
elements Ŝi−1, R̂i+1 and f̂i are obtained by simple permutations with the matrix
Pi. Therefore the total number of nonzero rows in the two blocks Ŝi−1 and R̂i+1 is
at most m. We note also that in the computation of S′i−1 and R′

i+1 some operations
are not actually performed because of the sparsity structure of the matrices involved
(i.e. there are some null rows in the matrices multiplied by Gi).

In general, after k steps of reduction, the reduced block matrix has dN/se +
1 block rows, where s = 2k, and it can be further reduced by combining two
consecutive rows, for each i = (2j − 1)s, with j = 1, 2, . . . , bdN/se/2c

(
S

(k)
i−s R

(k)
i

S
(k)
i R

(k)
i+s

)


yi−s

yi

yi+s


 =

(
f (k)
i

f (k)
i+s

)
(3.9)

so as to obtain

S
(k+1)
i−s yi−s + R

(k+1)
i+s yi+s = f (k+1)

i+s . (3.10)

In analogy with (3.7) and (3.8), from (3.9) we also deduce G
(k)
i = H

(k)
i (L(k)

i )
−1

(which is used in the reduction of the right hand side) and the following equality

Ŝ
(k)
i−syi−s + LiUiyi + R̂

(k)
i+syi+s = f̂ (k)

i , (3.11)

which is used in the back-substitution phase to compute yi from yi−s and yi+s.
The reduction ends after p = dlog2(N)e steps when the 2 × 2 block linear

system
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(
Da Db

S
(p)
0 R

(p)
N

) (
y0

yN

)
=

(
d

f (p)
N

)
(3.12)

is obtained. The algorithm proceeds with the solution of (3.12) using Gaussian
Elimination, obtaining y0 and yN . The other unknowns are computed through the
back-substitution phase.

The following algorithm summarizes the operations performed:

% Factorization of the coefficient matrix
% Reduction of the coefficient matrix

p = dlog2(N)e
for k = 0, . . . , p− 1

s = 2k

for j = 1, 2, . . . , bdN/se/2c
i = (2j − 1)s

Pi

(
R

(k)
i

S
(k)
i

)
=

(
Li

Hi

)
Ui

G
(k)
i = HiL

−1
i(

Ŝ
(k)
i−s

S
(k+1)
i−s

)
=

(
I

−G
(k)
i I

)
Pi

(
S

(k)
i−s

O

)

(
R̂

(k)
i+s

R
(k+1)
i+s

)
=

(
I

−G
(k)
i I

)
Pi

(
O

R
(k)
i+s

)

end
end

% Factorization of the final 2× 2 block linear system

P̂

(
Da Db

S
(p)
0 R

(p)
N

)
= L̂Û

% Solution of the linear system
% Reduction of the right hand side
for k = 0, . . . , p− 1

s = 2k

for j = 1, 2, . . . , bdN/se/2c
i = (2j − 1)s(

f̂ (k)
i

f (k+1)
i+s

)
=

(
I

−G
(k)
i I

)
Pi

(
f (k)
i

f (k)
i+s

)

end
end

% Solution of the final 2× 2 block linear system(
y0

yN

)
= (L̂Û)−1P̂

(
d

f (p)
N

)
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% Back substitution
for k = p− 1, . . . , 0

s = 2k

for j = bdN/se/2c, . . . , 2, 1
i = (2j − 1)s
yi = (LiUi)−1

(
f̂ (k)
i − Ŝ

(k)
i−syi−s − R̂

(k)
i+syi+s

)

end
end

The code BABDCR requires the storage of: N factorizations 1 Li\Ui associ-
ated with each of the N −1 reductions and the factorization of the final 2×2 block
linear system (3.12); the m nonzero rows of blocks Ŝ

(k)
i−s, R̂

(k)
i+s, denoted by F

(k)
i ;

the m ×m matrices G
(k)
i . There are N − 1 matrices F

(k)
i , G

(k)
i , each associated

with a reduction step.

3.2 Computational cost and required memory

We measure the computational cost of the BABDCR algorithm in terms of total
number of flops, where each flop represents one of the four arithmetic floating
point operations.

The factorization of the coefficient matrix requires N−1 reductions from (3.9)
to (3.10) and the partial pivoting LU factorization of the 2 × 2 block matrix in
(3.12).

The cost of each reduction is 14
3 m3− 3

2m2− 1
6m floating point operations and

the 2 × 2 block factorization 16
3 m3 − 2m2 − 1

3m flops. Thus, the factorization
requires 14

3 m3N flops to leading order in powers of m and N .
Solving the linear system (3.1) when the matrix is already factorized requires

N−1 reductions of the right hand side from (3.9) to (3.10), N−1 back-substitutions
(3.11) to compute the unknown yi from yi−s and yi+s (previously determined),
and the solution of the 2× 2 block linear system (3.12) previously factorized. The
cost of each reduction is 2m2 flops, that of each back–substitution step is 4m2, and
of the solution of 2 × 2 block linear system is 8m2 flops. Therefore the solution
cost of a linear system with the BABDCR algorithm is approximately 6m2N flops.

The computational cost of the BABDCR algorithm does not change if the fac-
torization and solution steps are performed together. However, the memory re-
quirement changes dramatically. If the reduction phase of the coefficient matrix
and of the right hand side are carried on at the same time, then the relevant part
of the factorization of the matrix is stored in place of the original coefficient ma-
trix and the algorithm does not require fill-in. To compute the factorization only
once and solve several linear systems, we need to store the permutation matrices,

1Li\Ui denotes a square matrix containing the non null part of the lower triangular matrix Li and
of the upper triangular Ui without its unit diagonal.
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all the computed N factorizations Li\Ui and the N − 1 blocks G
(k)
i and F

(k)
i .

This means that the algorithm requires a fill-in array, that is an extra memory array,
of size m2(N − 1) (which is almost one half of the memory required to store the
coefficient matrix) and an integer array of size 2mN . This is because all the factor-
izations Li\Ui and G

(k)
i can be saved in place of the initial non-factorized matrix

that requires 2m2(N + 1) allocations.

3.3 Stability

We now discuss the stability of our algorithm in the special case Si = S and
Ri = R for each i = 1, . . . , N . Such a situation arises, for example, when an
autonomous BVODE is discretized using constant stepsize. Let λ and x be one
eigenvalue and the corresponding eigenvector of the matrix pencil (S, R), see [43].
Then, from (3.5) and (3.6) (the indices i have been neglected because of the con-
stant blocks) we has

S′x =
( −G I

)
P

(
S
0

)
x = λ

( −G I
)
P

(
R
0

)
x

= −λ
( −G I

)
P

(
0
S

)
x = −λ2

( −G I
)
P

(
0
R

)
x

= −λ2R′x,

where we have used
(

R
0

)
=

(
R
S

)
−

(
0
S

)
and

( −G I
)
P

(
R
S

)
= 0.

Hence, as the reduction process goes on, the eigenvalues with modulus less
than 1 approach 0 and the eigenvalues with modulus greater than 1 approach in-
finity. Hence the reduction by means of (3.4) may be unstable because there is
no control on the growth (in modulus) of the elements in S(k) (obtained after k
steps of reduction). In contrast, the BABDCR algorithm should be stable because
all the elements of both Hi and Li have modulus less or equal to 1. Therefore,
we expect that the rows of G

(k)
i tend quickly to zero, and the matrices S(k) and

R(k) to converge to S∗ and R∗. Observe that if one row in S∗ is nonzero than the
corresponding in R∗ is zero.

As an example, we analyze the reduction process in the BABDCR algorithm on
the Wright example [77], see Section 2.1 where the Wright example is presented.
The BABDCR algorithm does not exhibit instability when it is applied to the Wright
problem. In fact, the first step of reduction gives a matrix with the same structure
as (2.1) and C2 instead of C (Pi = I and Gi = −C in (3.5)). Similarly, the
successive steps give matrices S(k) with increasing powers of C (Cs, s = 2k, after
k steps), until the elements of the blocks become larger than 1 in modulus. At this
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point, since row pivoting is performed on the 2m ×m block
(

I
Cs

)
, the partial

pivoting allows control of the growth of the elements of the new reduced matrices.
For example, if h = 0.3, there is no permutation for the first step and the matrices
S(k) and R(k) converge to

S∗ =
( −1.6487 −1.6487

0 0

)
and R∗ =

(
0 0
−1 1

)
.

Due to the use of the partial pivoting LU factorization, “pathological” cases
may occur; however in such cases the growth of the elements of S(k) and R(k)

depends on m ¿ N and is restricted only to one step of reduction.

3.4 Solution of transposed BABD systems

To determine the condition number [46] of the given BABD coefficient matrix,
many packages [54] for linear systems Ay = f use the factorization of A for
solving the transposed system

AT z = f , (3.13)

see also [50], [51], [52]. We analyze the solution of (3.13) starting from the cyclic
reduction described in Section 3.1. The linear system in (3.13) has the structure




DT
a ST

0

RT
1 ST

1

RT
2 ST

2
. . . . . .

RT
N−1 ST

N−1

DT
b RT

N







z0

z1
...

zN


 =




f0
...

fN


 , (3.14)

that is, it is still a BABD linear system with boundary blocks in the last row. We
prove that cyclic reduction applied to (3.14) gives reduced linear systems with
coefficient matrices equal to the transpose of the coefficient matrices obtained
by cyclic reduction applied to the original system (3.1). Let i = 2j − 1, for
j = 1, 2, . . . , bN/2c, from the permutation in (3.5) we perform a partial column
pivoting LU factorization of the (i + 1)th row of the coefficient matrix in (3.14):

(
RT

i ST
i

)
P T

i = UT
i

(
LT

i HT
i

I

)

=
(

UT
i LT

i O
) (

I GT
i

I

)
,

where Gi = HiL
−1
i . Now, considering the transpose of the matrices in equation

(3.7) we obtain



ST
i−1

RT
i ST

i

RT
i+1


P T

i

(
I −GT

i

I

)
=




ŜT
i−1 S′i−1

T

UT
i LT

i

R̂T
i+1 R′

i+1
T


 , (3.15)
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where Li, Ui, S′i−1, R′
i+1, Ŝi−1, R̂i+1 are the same blocks as in (3.7), and there-

fore S′i−1
T and R′

i+1
T are the transposes of the blocks (3.6) obtained in the re-

duction described in Section 3.1. Thus, multiplying (3.15) by
(

I GT
i

I

)
=

(
I −GT

i

I

)−1

and Pi the following equality




ST
i−1

RT
i ST

i

RT
i+1


 =




ŜT
i−1 S′i−1

T

UT
i LT

i

R̂T
i+1 R′

i+1
T




(
I GT

i

I

)
Pi (3.16)

is satisfied. Let (
z′i

z′i+1

)
=

(
I GT

i

I

)
Pi

(
zi

zi+1

)
, (3.17)

where i = 2j − 1, for j = 1, 2, . . . , bN/2c, using (3.16)-(3.17) the first three rows




DT
a ST

0

RT
1 ST

1

RT
2 ST

2







z0

z1

z2

z3


 =




f0
f1
f2




of the system (3.14) are transformed into the form




DT
a ŜT

0 S′0
T

UT
1 LT

1

R̂T
2 R′

2
T ST

2







z0

z′1
z′2
z3


 =




f0
f1
f2


 . (3.18)

Now, we transform sequentially each adjacent triple of rows, for i = 2j − 1, with
j = 2, . . . , bN/2c − 1,




R̂T
i−1 R′

i−1
T Si−1

T

RT
i ST

i

RT
i+1 ST

i+1







z′i−2

z′i−1

zi

zi+1

zi+2




=




fi−1

fi
fi+1




in the form




R̂T
i−1 R′

i−1
T ŜT

i−1 S′i−1
T

UT
i LT

i

R̂T
i+1 R′

i+1
T ST

i+1







z′i−2

z′i−1

z′i
z′i+1

zi+2




=




fi−1

fi
fi+1


 . (3.19)
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Finally, supposing that N is even, the last term




R̂T
N−2 R′

N−2
T SN−2

T

RT
N−1 ST

N−1

DT
b RT

N







z0

z′N−3

z′N−2

zN−1

zN




=




fN−2

fN−1

fN




of the system (3.14) yields




R̂T
N−2 R′

N−2
T ŜT

N−2 S′N−2
T

UT
N−1L

T
N−1

DT
b R̂T

N R′
N

T







z0

z′N−3

z′N−2

z′N−1

z′N




=




fN−2

fN−1

fN


 .

(3.20)

The second row of (3.18)-(3.20) is used to compute

z′i = (LiUi)−T fi (3.21)

and thus to reduce the linear system (3.14) to



DT
a S′0

T

R′
2
T S′2

T

R′
4
T S′4

T

. . . . . .
R′

N−2
T S′N−2

T

DT
b R′

N
T







z0

z′2
z′4
...

z′N




=




f ′0
f ′2
...

f ′N


 ,

(3.22)
where

f ′0 = f0 − ŜT
0 (L1U1)−T f1,

f ′N = fN − R̂T
N (LN−1UN−1)−T fN−1,

f ′i = fi − R̂T
i (Li−1Ui−1)−T fi−1 − ŜT

i ((Li+1Ui+1)T )−1fi+1,

(3.23)

for i = 2, 4, . . . , N − 2. The algorithm proceeds with the reduction of the linear
system (3.22) using the procedure described for (3.14). The reduction ends after
p = dlog2(N)e steps when the 2× 2 block linear system

(
DT

a S
(p)
0

T

DT
b R

(p)
N

T

)(
z0

z(p)
N

)
=

(
f0
f (p)
N

)
(3.24)

is obtained. Observe that the coefficient matrix in (3.24) is the transpose of the 2×2
block coefficient matrix in (3.12) obtained in cyclic reduction applied to Ay = f .
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The algorithm proceeds with the solution of (3.24) using Gaussian Elimination, ob-
taining z0 and z(p)

N . The other unknowns are computed through the back-substitu-
tion phase. Given z(k+1)

i , z(k+1)
i+s , in the (p − k)th step, for k = p − 1, . . . , 1, the

unknowns z(k)
i , z(k)

i+s are determined, using (3.17) and (3.21), from

z(k)
i = P T

i

(
(LiUi)−T f (k)

i −G
(k)
i

T
z(k+1)

i+s

z(k+1)
i+s

)
, (3.25)

for i = (2j − 1)s, j = bdN/se/2c, . . . , 2, 1, with s = 2k. Note that, z
(k)
0 = z0 is

satisfied for any k.
The following algorithm summarizes the operations performed on the right

hand side f of the system (3.13), the reduction steps for the coefficient matrix are
the same as executed in the factorization of A:

% Solution of the transposed linear system
% Reduction of the right hand side

p = dlog2(N)e
for k = 0, . . . , p− 1

s = 2k

f (k+1)
0 = f (k)

0 − ŜT
0 (L1U1)−T f (k)

1

f (k+1)
2 = f (k)

2 − R̂T
2 (L1U1)−T f (k)

i

for j = 2, . . . , bdN/se/2c
i = (2j − 1)s

f (k+1)
i−s = f (k+1)

i−s − ŜT
i−s(LiUi)−T f (k)

i

f (k+1)
i+s = f (k)

i+s − R̂T
i+s(LiUi)−T f (k)

i

end
end

% Solution of the final 2× 2 block linear system(
z0

z(p)
N

)
=

(
DT

a S
(p)
0

T

DT
b R

(p)
N

T

)−1

P̂

(
f0
f (p)
N

)

% Back substitution
for k = p− 1, . . . , 0

s = 2k

for j = bdN/se/2c, . . . , 2, 1
i = (2j − 1)s

z(k+1)
i = (LiUi)−T f (k)

i −G
(k)
i

T
z(k+1)

i+s(
z(k)

i

z(k)
i+s

)
= P T

i

(
z(k+1)

i

z(k+1)
i+s

)

end
end
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3.5 Description of the software

The BABDCR package is written in Fortran 90 and available in double precision.
It has four main subroutines:

• BABDCR FACT factorizes the BABD coefficient matrix in (3.1);

• BABDCR SOLV solves the linear system (3.1) with a coefficient matrix fac-
torized by BABDCR FACT;

• BABDCR SOLVT solves the transposed linear system ATz = f with the
coefficient matrix A factorized by BABDCR FACT;

• BABDCR FACTSOLV factorizes the BABD coefficient matrix and at the
same time solves the linear system (3.1).

The last subroutine is convenient if only a single BABD linear system needs to
be solved. The original coefficient matrix is replaced with part of the factorization
and can no longer be used. On the other hand, the first two subroutines solve system
(3.1) in two successive steps: BABDCR FACT factorizes the coefficient matrix and
BABDCR SOLV uses the output of BABDCR FACT to compute the solution of
(3.1), the arrays containing the cyclic reduction factorization are not modified by
successive calls to BABDCR SOLV. Thus, the solution of q linear systems with the
same coefficient matrix can be computed by means of one call to BABDCR FACT
followed by q calls to BABDCR SOLV. This procedure yields a great decrease in
the number of operations compared to the multiple use of BABDCR FACTSOLV;
however, it requires fill-in vectors (see below). Finally, if A is factorized with
BABDCR FACT, then BABDCR SOLVT uses its output to solve the linear system
ATz = f . This subroutine is mainly used to compute the 1-norm of the inverse
of the coefficient matrix in order to determine the condition number of the BABD
coefficient matrix. This can be obtained by means of the subroutine DONEST [47],
which needs in order to evaluate the 1-norm of the matrix A−1: the product A−1x
(for example, computed by means of BABDCR SOLV) and the product (A−1)Tx
(for example, computed by means of BABDCR SOLV) for a given vector x.

The package requires that the coefficient matrix in input is given as in Figure
3.1, that is, the block rows

Vi := (Si−1, Ri) (3.26)

must be given sequentially in an m×m× 2N three-dimensional array MATR A;
boundary blocks are saved in two m×m arrays LFTBLK and RGTBLK. The right
hand side f must be assigned in an m× (N + 1) array VECT B.

The structure of BABDCR FACT and BABDCR SOLV is represented in Fig-
ures 3.2-3.3. Dashed blocks contain the Fortran 90 intrinsic procedure RESHAPE,
the BLAS routines DGER, DTRSM, DGEMV and DDOT, and the Lapack routines
DGETRF and DGETRS.

BABDCR FACT involves calls to REASSEMBLE and REDUCE BLOCK.
The subroutine REASSEMBLE allows us to assemble a 2m × m block from
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MATR A =
(

V1 V2 . . . VN

)

LFTBLK =
(

Da

)
RGTBLK =

(
Db

)

Figure 3.1: Structure of the input coefficient matrix
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Figure 3.2: BABDCR FACT subroutine hierarchy

two consecutive blocks of size m × m. The output obtained is used by RE-
DUCE BLOCK which applies one step of reduction to obtain one block row from
two consecutive ones (see (3.9)-(3.10)). The operations performed in REDUCE BLOCK
are summarized in Figure 3.5, where the variables considered have the same mean-
ing of those in Section 3.1.

Since the reduction is also applied to the right hand side, we need to save,
after each step of the coefficient matrix reduction, the block Gi which is used
in REDUCE RHS; moreover, we need to save the matrices Li and Ui of the LU

factorization of the 2m×m block

(
R

(k)
i

S
(k)
i

)
(computed by the LAPACK routine

DGETRF) and the fill-in block Fi of size m by m containing the nonzero rows
of Ŝ

(k)
i−s and R̂

(k)
i+s which are used in SOLVE BLOCK. Finally, S

(k)
i−s and R

(k)
i+s are

replaced by the blocks of the new reduced matrix, namely S
(k+1)
i−s and R

(k+1)
i+s .

On exit, BABDCR FACT outputs two new arrays containing the fill-in blocks
Fi and the permutations, saved in a m × m × (N − 1) array and in a 2m × N
integer array, respectively. The arrays containing the coefficient matrix now have
the structure in Figure 3.5: the first and the last block of MATR A and the boundary
blocks contain the LU factorization of the matrix in (3.12) (see Figure 3.6), whereas
each LUGi block contains Li, Ui and Gi (saved as in Figure 3.5) reshaped as a
2m×m array.
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BABDCR SOLV

REDUCE RHS DGETRS SOLVE BLOCK

DGEMV DDOT DGETRS
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Figure 3.3: BABDCR SOLV subroutine hierarchy
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Figure 3.4: Operations performed in REDUCE BLOCK

The subroutine BABDCR SOLV uses the subroutines REDUCE RHS to com-
pute the right hand side of (3.10) from (3.9), and SOLVE BLOCK to back-solve,
that is, to compute xs from (3.11) (xi−s and xi+s are known values). The LAPACK
routine DGETRS solves the final 2×2 block linear system factorized by DGETRF.

The subroutine BABDCR SOLVT uses the subroutine REDUCE RHST to de-
termine the right hand side of (3.22), it uses the subroutine DGETRS for solving
linear systems and DAXPY for performing the multiplications in (3.23). The un-
knowns are determined in SOLVE BLOCKT which performs the operations in
(3.25) using the BLAS routine DGEMV. The routine DGETRS also performs the
solution of the final 2 × 2 block linear system (3.24) factorized by DGETRF in
BABDCR FACT.

Finally, the subroutine BABDCR FACTSOLV uses the subroutines REDUCE
(which include the subroutines REDUCE BLOCK and REDUCE RHS), REASSEM-

MATR A =
(

A3 LUG1 LUG2 . . . LUGN−1 A4

)

LFTBLK =
(

A1

)
RGTBLK =

(
A2

)

Figure 3.5: Structure of the coefficient matrix on exit from BABDCR FACT
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


A1 A2

A3 A4




Figure 3.6: Structure of the LU factorization of (3.12)

BLE and SOLVE BLOCK. Since the linear system is solved step by step with the
factorization, the block Gi is used immediately after it is computed and so does not
need to be saved. For this reason, the fill-in block Fi is saved in place of Gi and the
subroutine essentially does not generate fill-in. The coefficient matrix is modified
by the subroutine. It cannot be used for solving other systems with different right-
hand sides, because the fill-in blocks are not saved and the permutation matrices
are not output.

3.6 Calling sequences

We list the parameters used in the calling sequences of the four main subroutines
of the package BABDCR. Note that, unless otherwise stated, the parameters do not
change on exit.

The subroutine BABDCR FACT has the calling sequence:

CALL BABDCR FACT( m, N , MATR A, LFTBLK,
RGTBLK, PERM, FILL IN, INFO )

where the parameters are defined as follows:

m integer, number of rows of each block Vi, see (3.26), in the coefficient matrix
(3.1).

N integer, number of blocks Vi.

MATR A real, m×m× 2N array. On input, it contains the coefficient matrix of
the BABD system (3.1) which is stored as in Figure 3.1. On exit, it contains
the factorization of the coefficient matrix which is stored as in Figure 3.5.

LFTBLK real, m×m array. On input, it contains the boundary block Da. On exit,
it contains the upper-left block A1, see Figure 3.6, of the LU factorization of
the final 2× 2 block matrix in (3.12).

RGTBLK real, m×m array. On input, it contains the boundary block Db. On exit,
it contains the upper-left block A2, see Figure 3.6, of the LU factorization of
the final 2× 2 block matrix in (3.12).
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PERM integer, 2m × N array. On exit, each column contains the permutation
vector associated with the LU factorization performed by each call to RE-
DUCE BLOCK. The last two columns are associated with the permutation
performed by the factorization of the final 2× 2 block matrix in (3.12).

FILL IN real, m×m× (N − 1) array. On exit, it contains the fill-in blocks F
(k)
i

generated by the factorization (by each call to REDUCE BLOCK).

INFO integer. On exit, this parameter is equal to 0 if the coefficient matrix is
nonsingular, or gives the index2 of the block where breakdown has occurred
if A is singular.

The subroutine BABDCR SOLV has the calling sequence:

CALL BABDCR SOLV( m, N , MATR A, LFTBLK,
RGTBLK, PERM, FILL IN, VECT B )

where the first seven parameters were defined in the subroutine BABDCR FACT
(and contain the output of that subroutine). The last parameter is

VECT B real, m × (N + 1) array. On input, it contains the right hand side f of
system (3.1). On exit, it contains the solution of the system.

The subroutine BABDCR SOLV has the calling sequence:

CALL BABDCR SOLVT( m, N , MATR A, LFTBLK
RGTBLK, PERM, FILL IN, VECT B )

As for BABDCR SOLV, the first seven parameters were defined in the subrou-
tine BABDCR FACT (and contain the output of that subroutine). The last param-
eter is

VECT B real, m × (N + 1) array. On input, it contains the right hand side f of
system ATz = f , see (3.14). On exit, it contains the solution of the system.

Finally, the subroutine BABDCR FACTSOLV has the calling sequence:

CALL BABDCR FACTSOLV( m, N, MATR A, VECT B, INFO )

where the parameters are defined like those used in BABDCR FACT. Since, in
BABDCR FACTSOLV, we do not heap the permutations array and the fill-in blocks,
we cannot use the factorization on exit for solving more linear systems.

2If k (non-negative integer) and j (positive even integer between 2 and N/2k) are such that INFO
= 2k(j − 1) + 1, then the breakdown has occurred in the jth block column of the coefficient matrix
of the linear system obtained after k steps of reduction.
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3.6.1 A new version of MIRKDC

The code MIRKDC, whose algorithm is described in Section 1.3.1, uses the follow-
ing variable names: neqns and Nsub are, respectively, the order m of the system
(1.18) and the number N of subintervals of the current mesh, leftbc is the num-
ber of boundary conditions at the point a, MxNsub is the user defined maximum
number of subintervals of [a, b], and blocks is a vector which contains the blocks
Vi := (Si, Ri+1) of the current BABD coefficient matrix in (1.20), stored column
by column, as for the array MATR A in Figure 3.1.

We present a variant of MIRKDC, called MIRKDC 2, which solves the system
of BVPs (1.18) with general non-separated boundary conditions. The algorithm
uses the discretizations of MIRKDC resulting in linear systems (1.20) with the
BABD form, as in (3.1), that are solved using the BABD solver BABDCR. There-
fore, in MIRKDC 2 we essentially replace COLROW, employed in MIRKDC, with
BABDCR. To do this, we make some modifications of the MIRKDC code:

• the permutation vector array, of length neqns*(MxNsub+1) is replaced
by a vector array of length 2*neqns*MxNsub,

• the array FILL IN, described in Section 3.5, is saved in
(Nsub-1)*(neqns**2) contiguous locations in the array blocks,

• the arrays top and bot contain the blocks Da and Db of the Jacobian in
(1.20), represented in (3.1), which each are of size neqns×neqns instead
of leftbc×neqns and (neqns-leftbc)×neqns, respectively,

• in BABDCR the right hand side associated with the linear system is over-
written by the solution, whereas COLROW doesn’t overwrite the solution.
Therefore, before the call to BABDCR the right hand side occupies the same
locations as for the solution.

3.7 Comparisons among the linear system solvers

We compare BABDCR with COLROW and RSCALE on the ABD and BABD linear
systems generated by the codes MIRKDC and MIRKDC 2. Our tests are executed
on an Alpha-server DS20E with a 667 MHz EV67 processor with a Compaq For-
tran 90 (formerly Digital Fortran 90) compiler. Here and in the next section we use
in MIRKDC and MIRKDC 2 the optimal 3 stages, 4-th order MIRK scheme

0
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1
2
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0 0 0
1
8 −1

8 0
1
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1
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3

and an associated 4-th order, 4 stages CMIRK scheme, see Section and [33]. First,
we discuss the ABD linear systems generated by MIRKDC applied to a linear BVP
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y′ = My(t) with M ∈ Rm×m and linear boundary conditions Dtopy(a) = da ∈
Rmtop and Dboty(b) = db ∈ Rm−mtop .

Here we fix m = 20 and mtop = 10. Both Dtop, Dbot and M are ran-
domly generated full matrices and such that the BVP is well-conditioned. That
is, Dtop, Dbot ∈ R10×20 have rank 10, which guarantees the unicity of the solu-
tion. Also, matrix M is obtained from M = QΛQT , where Q is an orthogonal
matrix arising from the QR factorization of a random matrix and Λ is a diagonal
matrix with 10 positive and 10 negative diagonal values of moderate size. Then
from the Proposition 1.1.10 and 1.1.14, the resulting BVP is well conditioned with
an exponential dichotomy of rank 10.

BABDCR and RSCALE require the simple transformation

Da =
(

Dtop

0

)
∈ Rm×m, Db =

(
0

Dbot

)
∈ Rm×m

and d =
(

da

db

)
∈ Rm,

in order to be applied to a system with the BABD structure in (3.1). The tim-
ings and errors, in Table 3.1, lead us to prefer COLROW over the other algo-
rithms. Indeed, COLROW is more than 2 times faster than BABDCR and more
than 4 times faster than RSCALE. Moreover, the errors for COLROW and BAB-
DCR are similar, but RSCALE is less accurate. These results essentially agree
with the theoretical computational costs of the three solvers. In fact, applied
to the ABD linear system in Fig. 2, to leading order in m, COLROW requires(

5
3m3 + m(m−mtop)mtop

)
N operations and RSCALE

(
20
3 m3

)
N .

Table 3.1: ABD systems generated by MIRKDC applied to a linear problem.

time (secs.) error
N=256 N=512 N=1024 N=256 N=512 N=1024

BABDCR 3.71e-02 7.12e-02 0.152 1.65e-13 2.88e-13 3.46e-13
COLROW 1.46e-02 2.83e-02 6.34e-02 1.55e-13 2.05e-13 7.08e-13
RSCALE 6.83e-02 0.136 0.274 2.54e-12 6.02e-12 3.01e-11

For a comparison on BABD linear systems, we apply MIRKDC 2 to a linear
BVP y′ = My(t) with non-separated boundary conditions Day(a) + Dby(b) =
d ∈ Rm. Again, the size of the problem is m = 20. For M , we investigate two
cases:

1. M is a well-conditioned matrix with eigenvalues -102, -10, -7, -4, -3, -2.5,
-1.3, -1, -0.5, -0.4, 0.2, 0.3, 1, 1, 2, 2.5, 3, 4, 11, 25;

2. M has eigenvalues -9, -3.5, -3, -2, -2, -1.5, -1.5, -1.25, -0.5, -1e-08, 0.25,
0.5, 0.5 , 1, 3, 4, 5, 7, 8, 1e+08.
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For COLROW we re-write the BABD system as an equivalent ABD linear sys-
tem of double size, see 2.7. Then, the computational cost of this solver becomes(

46
3 m3

)
N . This implies that theoretically BABDCR is more than three times faster.

In Tables 3.2-3.3, we compare the errors and timings of the three linear solvers.
From the results in Table 3.2 on the cases 1.-2., BABDCR is approximately 3 times
faster than COLROW and more than 1.5 times faster than RSCALE. Timings associ-
ated with COLROW include converting the linear system from the BABD structure
to the ABD structure 2.7. The errors associated with BABDCR and COLROW are
similar, and RSCALE is the least accurate algorithm. The errors of the three meth-
ods, applied to case (2), are given in Table 3.3. Note that these errors are large,
because the BVP is ill-conditioned for the presence of a null eigenvalue, see Propo-
sition 1.1.9 and Theorem 1.1.10. Finally, observe that BABDCR and COLROW are
significantly more accurate than RSCALE.

Table 3.2: Times in seconds for the solution of BABD systems generated by
MIRKDC 2 applied to a linear 20× 20 BVP.

N=256 N=512 N=1024
BABDCR 3.61e-02 7.03e-02 0.151
COLROW 0.102 0.224 0.464
RSCALE 6.83e-02 0.136 0.287

Table 3.3: Errors for the solution of BABD systems generated by MIRKDC 2 ap-
plied to a linear 20× 20 BVP.

case (1) case (2)
N=256 N=512 N=1024 N=256 N=512 N=1024

BABDCR 7.62e-13 1.22e-12 1.19e-12 6.28e-04 2.22e-04 8.00e-05
COLROW 7.53e-13 4.10e-13 1.25e-12 2.80e-04 2.16e-04 9.25e-05
RSCALE 5.17e-12 2.90e-11 6.02e-11 1.90e-02 8.55e-03 1.08 e-02

3.8 Comparisons of the two versions of MIRKDC

In order to better emphasize the advantages of using BABDCR, Tables 3.4-3.5 give
statistics for calls to MIRKDC 2 (that uses BABDCR) and to MIRKDC (using COL-
ROW) applied to the BVP of double size y′ = My(t), z′ = 0 with separated
boundary conditions y(a) − z(a) = 0 and Daz(b) + Dby(b) = d. Both codes
are applied to the problem with M having eigenvalues as in case (1) using the
MIRK/CMIRK scheme of order 4 [34]. From Tables 3.4 and 3.5, BABDCR in
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Table 3.4: MIRKDC 2 (using BABDCR) for the linear problem in case (1) with an
initial mesh of 256 points and tolerance 1e-07

MESH ]FACTs time (secs.) ]SOLVEs time (secs.)
256 1 0.32e-01 2 0.98e-02
224 1 0.25e-01 2 0.78e-02
246 1 0.29e-01 2 0.78e-02

Total: 3 0.87e-01 6 0.25e-01

Total monitored Linear Algebra time: 0.11 secs.
Total monitored Nonlinear Algebra time: 0.12 secs.

Table 3.5: MIRKDC (using COLROW) for the linear problem of double size in case
(1) with an initial mesh of 256 points and tolerance 1e-07.

MESH ]FACTs time (secs.) ]SOLVEs time (secs.)
256 1 0.11 2 0.16e-01
224 1 0.75e-01 2 0.12e-01
246 1 0.82e-01 2 0.14e-01

Total: 3 0.27 6 0.41e-01

Total monitored Linear Algebra time: 0.31 secs.
Total monitored Nonlinear Algebra time: 0.12 secs.

MIRKDC 2 saves more than one half of the linear algebra time with respect to
using COLROW. Though this result is valid for the problem considered, results in
Table 3.2 show that, for a general BVP with non-separated boundary conditions,
BABDCR in MIRKDC runs significantly faster than COLROW.





Chapter 4

Algorithms to solve general
BABD linear systems

In Section 1.7, we have determined the BABD structures of the linear systems
arising from Orthogonal Spline Collocation (OSC) applied to a BVODE. In these
structures, see (1.32) and (1.37), the block rows Vi have some columns not over-
lapped with other block rows. Also, the number of columns (or rows) in the blocks
Vi may not be constant. Therefore the code BABDCR, described in the previous
chapter, cannot be applied to these ‘general’ structures. We generalize the cyclic
reduction approach, employed in BABDCR, for solving these BABD systems. Dif-
ferent cyclic reduction approaches are described. In particular, a new technique for
systems arising from spline collocation with a monomial basis, as in (1.37), is in-
troduced. We motivate the choice of an approach with respect to other approaches,
analyzing times, errors and memory requirements. Comparisons with other codes
are also provided.

4.1 Introduction

We consider the BABD linear system

Ay = f , (4.1)
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with the coefficient matrix A having the ‘general’ structure

A =




Da Db

V1

V2

V3

V4

. . .
. . .

VN




.

Since each block row Vi has overlapping columns with the adjacent block rows,
it may be represented with the following structure

Vi =
(

Si−1 Ti Ri

)
, i = 1, . . . , N, (4.2)

where blocks Ri−1 (in Vi−1) and Si−1 (in Vi) contain the overlapping columns
between Vi−1 and Vi. Therefore, the resulting structure may be represented as in
the following

A =




Da Db

S0 T1 R1

S1 T2 R2

. . .
. . .

Si−1 Ti Ri

. . .
. . .

SN−1 TN RN




. (4.3)

Note that, S0 and RN contain the same columns of the boundary blocks Da and
Db, respectively. Also, Ti has no overlapping columns with any other block row.
We set ni×(mi−1 +ki +mi) the size of each block row Vi in (4.2), where ni is the
number of rows, mi is the number of columns of Ri (and Si in Vi+1), and ki is the
number of columns of Ti. Also, n0 is the number of rows of the boundary blocks
Da and Db. Then, supposing that the coefficient matrix A is square of dimension

Ndim =
N∑

i=0

ni, (4.4)
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we obtain
N∑

i=0

ni =
N∑

i=0

mi +
N∑

i=1

ki,

and, for the nonsingularity of the linear system (4.1), we require

ni ≥ ki, i = 1, . . . N,
ni + ni+1 ≥ ki + mi + ki+1, i = 1, . . . , N − 1.

(4.5)

In the proof of conditions (4.5), we state that if ni + ni+1 < ki + mi + ki+1 is
satisfied, then the submatrix 


Ti Ri

Si Ti+1


 (4.6)

of size Ndim × (ki + mi + ki+1) extracted from (4.3), has ki + mi + ki+1 lin-
ear independent columns. Hence, (4.6) has more than ni +ni+1 linear independent
rows. This reductio ad absurdum that some null rows are linear independent. Anal-
ogously, the condition ni ≥ ki is satisfied because the ki (no overlapping) columns
of Ti are linear independent.

As an example, see Section 1.7, the BABD structure (4.3) arises from the nu-
merical solution of two-point boundary value problems with non-separated bound-
ary conditions, as in (1.4). Considering a BVP of order m and using k Gaussian
points in each of the N subintervals, the resulting BABD structure has block rows
(4.2) with

• in the B-spline case (Section 1.7.1):

Si−1 = Wi,1, Ti = Wi,2, Ri = Wi,3, (4.7)

with Wi,1, Wi,3 ∈ Rk×m and Wi,2 ∈ Rk×(k−m),

• in the monomial spline case (Section 1.7.2):

Si−1 =
(

Hi

−Ei

)
, Ti =

(
Gi

−Fi

)
and Ri =

(
0
I

)
, (4.8)

where −Ei ∈ Rm×m, the identity matrix I ∈ Rm×m, Hi ∈ Rk×m, −Fi ∈
Rm×k, and Gi ∈ Rk×k.

We use the following notation for the right hand side f and for the unknown
vector y of system (4.1),

f =
(

dT , fT
1 , . . . , fT

N

)T
,

y =
(

zT
0 , wT

1 , zT
1 , wT

2 , . . . , zT
N−1, wT

N , zT
N

)T
,

(4.9)

where d ∈ Rn0 , fi ∈ Rni , zi ∈ Rmi , and wi ∈ Rki .
We note that, in the numerical discretization of BVODEs, using the techniques
described in Chapter 1, the number of block rows N is usually much larger than
ni, mi, and ki.
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4.2 Cyclic reduction approach for general BABD linear
systems

The cyclic reduction algorithm, described in Chapter 3, can be improved to solve
BABD linear systems (4.1) with structure (4.3). This algorithm yields systems of
lower dimension (involving less unknowns) with the same BABD structure, until
it reaches a small system that is easy to solve directly. After that, using back-
substitution, all the unknowns of the system are determined.

At the first step, for i = 2j − 1, j = 1, 2, . . . , bN/2c, each subsystem

Si−1zi−1 + Tiwi + Rizi = fi
Sizi + Ti+1wi+1 + Ri+1zi+1 = fi+1

(4.10)

involving si = mi−1 + ki + mi + ki+1 + mi+1 unknowns, is transformed in the
equation

S′i−1zi−1 + T ′iw
′
i + R′

i+1zi+1 = f ′i+1, (4.11)

involving only the si − ri (with ri > 0) unknowns: zi−1, zi+1 and w′
i, described

below.
Note that, the blocks S′i−1 and R′

i+1 correspond to the same unknowns associ-
ated to Si−1 and Ri+1, respectively. Therefore, after the first step of the algorithm,
the linear system




Da Db

S′0 T ′1 R′
2

S′2 T ′3 R′
4

. . .

S′N−2 T ′N−1 R′
N







z0

w′
1

z2

w′
3

...
zN−2

w′
N−1

zN




=




d
f ′2
f ′4
...

f ′N




(4.12)

is obtained. The blocks R′
i−1 and S′i−1 lie in the same columns of the BABD

coefficient matrix in (4.12). Also, S′0 contains the overlapping columns of the first
block row with Da and R′

N contains the overlapping columns of the last block row
with Db. If N is odd, the last row of the initial system with coefficient matrix (4.3)
is unchanged, that is

S′N−1 = SN−1, T ′N = TN , R′
N = RN .

Therefore, the number of block rows of the resulting linear system (4.12) is dN/2e+
1.

There are several ways to reduce subsystems (4.10) to (4.11); at least four as
represented in Figure 4.1. In fact, since each matrix (4.6) has ki +mi +ki+1 linear
independent columns, any submatrix Mi, in Figure 4.1, has rank ri ≤ ni + ni+1.
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1. Mi =
(

Ti Ri

Si Ti+1

)
, ri = ki + mi + ki+1, yields to a null vector w′

i,

because T ′i is not determined;

2. Mi =
(

Ri

Si Ti+1

)
, ri = mi + ki+1, yields to w′

i = wi,

T ′i ∈ R(ni+ni+1−ri)×ki ;

3. Mi =
(

Ti Ri

Si

)
, ri = ki + mi, yields to w′

i = wi+1,

T ′i ∈ R(ni+ni+1−ri)×ki+1 ;

4. Mi =
(

Ri

Si

)
, ri = mi leads to w′

i =
(

wi

wi+1

)
,

T ′i ∈ R(ni+ni+1−ri)×(ki+ki+1).

Figure 4.1: Mi, ri and w′
i used in four possible reduction of (4.10) in (4.11)

Thus, using the inverse of an ri × ri matrix extracted from Mi, we can express
explicitly ri unknowns of the subsystem (4.10) as a function of the remaining si −
ri. In the equation (4.11), the unknowns w′

i are those used in (4.10) and different
from zi−1 and zi+1. The unknowns w′

i are of length si − (ri + mi + mi+1) =
ki + mi + ki+1 − ri.

The reduction of any subsystem (4.10) is performed by row partial pivoting LU
factorization applied to Mi:

PiMi =
(

Li

Hi

)
Ui =

(
I
Gi I

)
LiUi.

The permutation matrix Pi is of size (ni + ni+1) × (ni + ni+1), Li and Ui are
respectively lower and upper triangular matrices of dimension ri, Hi is of size
(ni + ni+1 − ri)× ri and Gi = HiL

−1
i ∈ R(ni+ni+1−ri)×ri . The reduced system

(4.12) is obtained by multiplying each pair of block rows (4.10) by Pi and by
(

I
−Gi I

)
,

the inverse of the lower triangular matrix
(

I
Gi I

)
.

Then, in case 4 (Figure 4.1), the reduction yields
(

I
−Gi I

)
Pi

(
Si−1 Ti Ri

Si Ti+1 Ri+1

)
=

(
S̃i−1 T̃i LiUi T̃i+1 R̃i+1

S′i−1 T ′i,1 T ′i,2 R′
i+1

)
.

(4.13)
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The block T ′i in (4.11) is
T ′i =

(
T ′i,1 T ′i,2

)
.

For the other cases in Figure 4.1, since Ti and/or Ti+1 are in Mi, they are not
involved in the operations for determining T ′i .

The right hand side is modified accordingly

(
I
−Gi I

)
Pi

(
fi

fi+1

)
=

(
f̃i

f ′i+1

)
. (4.14)

From (4.13), it follows that the blocks S′i−1 and R′
i+1 satisfy

S′i−1 =
( −Gi I

)
Pi

(
Si−1

O

)
,

R′
i+1 =

( −Gi I
)
Pi

(
O

Ri+1

)
,

(4.15)

where S′i−1 is of size (ni + ni+1 − ri) ×mi−1, and R′
i+1 is of size (ni + ni+1 −

ri)×mi+1.
In any of the four cases represented in Figure 4.1, the blocks S′i−1 and R′

i+1

are determined through the operations in (4.15). In contrast, the block T ′i of size
(ni + ni+1 − ri)× (ki + mi + ki+1 − ri) differs in each case:

1. T ′i does not exist,

2. T ′i =
( −Gi I

)
Pi

(
Ti

O

)
,

3. T ′i =
( −Gi I

)
Pi

(
O

Ti+1

)
,

4. T ′i =
( −Gi I

)
Pi

(
Ti O
O Ti+1

)
.

The right hand side f ′i+1 is of length ni + ni+1 − ri and satisfies

f ′i+1 =
( −Gi I

)
Pi

(
fi

fi+1

)
.

The reduced system (4.12) does not involve at least the unknowns z2j−1, for j =
1, 2, . . . , bN/2c. Since each z2j−1 is of length m2j−1, the dimension Ndim, de-
fined (4.4), of the initial system is reduced by

bN/2c∑

j=1

r2j−1, (4.16)
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which is larger than
bN/2c∑

j=1

m2j−1.

In case 4, the reduced system (4.12) is of dimension Ndim−
bN/2c∑

j=1

m2j−1, while in

the other cases the dimension is much smaller.
Let us describe what happen in the next steps of cyclic reduction. Let s =

2k, after k steps of reduction the coefficient matrix has dN/se + 1 block rows.
The linear system can be further reduced by combining two successive block row
equations (for each i = (2j − 1)s, with j = 1, 2, . . . , bdN/se/2c)

S
(k)
i−szi−s + T

(k)
i w(k)

i + R
(k)
i zi = f (k)

i

S
(k)
i zi + T

(k)
i+sw

(k)
i+s + R

(k)
i+szi+s = f (k)

i+s,

to give

S
(k+1)
i−s zi−s + T

(k+1)
i w(k+1)

i + R
(k+1)
i+s zi+s = f (k+1)

i+s ,

where

S
(k+1)
i−s =

(
−G

(k)
i I

)
P

(k)
i

(
S

(k)
i−s

O

)
,

R
(k+1)
i+s =

(
−G

(k)
i I

)
P

(k)
i

(
O

R
(k)
i+s

)
.

In the cases in Figure 4.1, we have

1. T
(k+1)
i does not exist,

2. T
(k+1)
i =

(
−G

(k)
i I

)
P

(k)
i

(
T

(k)
i

O

)
,

3. T
(k+1)
i =

(
−G

(k)
i I

)
P

(k)
i

(
O

T
(k)
i+s

)
,

4. T
(k+1)
i =

(
−G

(k)
i I

)
P

(k)
i−s

(
T

(k)
i O

O T
(k)
i+s

)
,

and

f (k+1)
i+s =

(
−G

(k)
i I

)
P

(k)
i

(
f (k)
i

f (k)
i+s

)
,
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with G
(k)
i = H

(k)
i

(
L

(k)
i

)−1
and

P
(k)
i M

(k)
i =

(
L

(k)
i

H
(k)
i

)
U

(k)
i =

(
I

G
(k)
i I

)(
L

(k)
i U

(k)
i

O

)
,

where M
(k)
i is one of the possible choices as shown in Figure 4.1.

After p = dlog2(N)e reduction steps, we obtain the system

(
Da Db

S
(p)
0 T

(p)
N
2

R
(p)
N

)


z0

w(p)
N
2

zN


 =

(
d

f (p)
N

)
. (4.17)

The algorithm proceeds with the solution of (4.17) using Gaussian elimination,
obtaining z0, w(p)

N
2

and zN . The other unknowns are computed through the back-

substitution phase in a similar manner to that described in Chapter 3.
The algorithm has been described above in the most possible general way, us-

ing mainly case 4 as an example. However the approach used in case 4, is not
appropriate, because it determines blocks T ′i of a larger size than the other cases.
Also, the computational cost is larger. For example in case 4, the block T

(p)
N
2

is of

size (m0 + mN +
N∑

i=1

ki − n0) × (
N∑

i=1

ki). This yields a system (4.17) of a large

dimension (m0 + mN +
N∑

i=1

ki). In contrast, in the first step of case 1, we obtain

a matrix having no T ′i block and then as in BABDCR in the successive steps only(
Ri

Si

)
is factored. The resulting final system is

(
Da Db

S
(p)
0 R

(p)
N

) (
z0

zN

)
=

(
d

f (p)
N

)
,

it is of dimension m0 + mN . Therefore, the approach in case 4 is never used.
We have described it in detail, because it describes cyclic reduction with more
generality than the others.

In the next sections, we describe algorithms using cyclic reduction as described
in cases 1,2 or 3, which solve linear systems arising from OSC. We show that the
efficiency of these algorithms depends essentially on the BABD structure. In par-
ticular we optimize the algorithm associated with case 1. The resulting algorithm
can easily be implemented also for solving systems with the general structure (4.3).

4.3 An algorithm for BABD systems arising from OSC

As seen in Section 4.1, the discretization of the mth ordinary differential equa-
tion (1.4) on [a, b], using orthogonal spline collocation (OSC) with B-splines or
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monomial splines yields a BABD system




Da Db

S0 T1 R1

S1 T2 R2

. . .

SN−1 TN RN







z0

w1

z1

w2
...

zN−1

wN

zN




=




d
f1
f2
...

fN




.

(4.18)
In (4.18), Si ∈ R(k̃+m)×m, Ti ∈ R(k̃+m)×k̃, Ci ∈ R(k̃+m)×m and Da, Db ∈
Rm×m. If k is the number of Gaussian points in each subintervals used in the
discretization of the ODE, the parameter k̃ used in the dimensions of the blocks
above, is determined as follows:

• B-spline case, see (4.7),
k̃ = k −m > 0,

• Monomial spline case, see (4.8),

k̃ = k.

First, we apply the first step of the reduction in case 1 (Figure 4.1), that is, we
employ Gaussian elimination to each matrix

Mi =
(

Ti Ri

Si Ti+1

)
, i = 2j − 1, for j = 1, . . . , bN/2c. (4.19)

This yields a BABD system



Da Db

S
′
0 R

′
2

S
′
2 R

′
4

. . . . . .
S
′
N−2 R

′
N







z0

z2
...

zN−2

zN




=




d
f ′2
f ′4
...

f ′N




, (4.20)

where S′i, R
′
i+2 ∈ Rm×m, for any i = 0, 2, . . . , N − 2.

The computational cost of this first step is

bN/2c
(

14
3 m3 + 16k̃2m + 16k̃m2 + 16

3 k̃3 − 4k̃m− 3
2m2 − 2k̃2 − 1

3 k̃ − 1
6m

)
.

(4.21)
In the rth step, r = 2, . . . , p = dlog2(N)e, we apply Gaussian elimination to

the matrix

M
(r−1)
i =

(
R

(r−1)
i

S
(r−1)
i

)
, i = (2j − 1)s, for j = 1, . . . , bdN/se/2c,
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where s = 2r−1. The computational cost of these p− 1 steps is

dN/2e
(

14
3

m3 − 3
2
m2 − 1

6
m

)
(4.22)

We call this algorithm GBABDCR-0. From (4.21) and (4.22), the computa-
tional cost of the factorization phase is

N

(
8
3
k̃3 + 8k̃2m + +8k̃m2 +

14
3

m3 − k̃2 − 2k̃m− 3
2
m2 − 1

6
k̃ − 1

6
m

)
.

(4.23)
Note that, in the last p − 1 steps of GBABDCR-0, the system can be solved using
the algorithm BABDCR, described in Chapter 3.

4.4 GBABDCR: an optimized implementation of the cyclic
reduction

The reduction process implemented in GBABDCR-0 can be optimized by taking
into account that the matrix (4.19) is not full and also that the unknowns wi are only
multiplied by Ti. As, we use a condensation step (see [10]) in order to eliminate
the dependence on wi in Vi. This step may be viewed as the first reduction step in
the algorithm that eliminates the even unknowns wi of the solution vector y. We
observe that blocks Ti of size (k̃ + m)× k̃, have full rank k̃ because they have no
overlapping columns with other block rows. Then, we determine the factorization:

P̃iTi =

(
L̃i

H̃i

)
Ũi =

(
I

G̃i I

)(
L̃iŨi

O

)
, (4.24)

where L̃i and Ũi are square matrices of dimension k̃ and G̃i = H̃iL̃
−1
i ∈ Rm×ek.

Multiplying on the left Vi by P̃i and the inverse of the lower triangular matrix
in the last term of (4.24), we obtain

(
I

−G̃i I

)
P̃i

(
Si−1 Ti Ri

)
=

(
S̃i−1 L̃iŨi R̃i

Ŝi−1 R̂i

)
. (4.25)

Analogously, we perform these operations on the right hand side fi to obtain

the vectors

(
f̃i
f̂i

)
. The row with the boundary blocks and the second row of

(4.25), for i = 2j − 1, j = 1, 2, . . . , bN/2c, yields the linear system



Da Db

Ŝ0 R̂1

Ŝ1 R̂2

. . . . . .
ŜN−1 R̂N







z0

z1

z2
...

zN




=




d
f̂1
f̂2
...

f̂N




. (4.26)
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The system (4.26) has dimension (N + 1)m and no longer depends on the un-
knowns wi. These unknowns will be computed in the last step of the cyclic re-
duction back-substitution phase (when all the zi have already been computed) by
using the first row of (4.25)

L̃iŨiwi = f̃i − S̃i−1zi−1 − R̃izi.

Since G̃i may be saved with L̃i and Ũi in place of Ti in the row block
(

Si−1 Ti Ri

)
,

the factorization (4.25) does not require additional memory. Therefore, this con-
densation phase can be considered as a (completely parallelizable) initial step ap-
plicable to BABD systems, in order to simplify their structure before factorization.

The system (4.26) can be further reduced by using the algorithm BABDCR.
When the LU factorization

Pi

(
R̂i

Ŝi

)
=

(
Li

Hi

)
Ui =

(
I
Gi I

)(
LiUi

O

)

is applied to the block rows of index i and i + 1 in (4.26), we have

(
I
−Gi I

)
Pi

(
Ŝi−1 R̂i

Ŝi R̂i+1

)
=

(
S̄i−1 LiUi R̄i

S′i−1 R′
i

)
. (4.27)

The first row may be used to compute zi from zi−1 and zi+1.
This last factorization requires additional memory to store the fill-in blocks

Gi = HiL
−1
i . In fact Gi is used in the reduction of the right hand side of (4.26)

corresponding to the block rows i and i + 1. After this step, we obtain a BABD
system with the same structure of (4.20) but with a number of operations

N(2
3 k̃3 + 2k̃2m + 4k̃m2 − k̃m− 1

2 k̃2 − 1
6 k̃) + bN/2c(14

3 m3 − 3
2m2 − 1

6m).
(4.28)

Hence, we save

N(2k̃3 + 6k̃2m + 4k̃m2 − 1
2
k̃2 − k̃m) (4.29)

operations with respect to GBABDCR-0.
As in BABDCR, iterating the last step on the successively reduced systems, we

obtain, after dlog2 Ne steps, a 2× 2 block linear system
(

Da Db

S∗0 R∗
N

)(
z0

zN

)
=

(
f∗0
f∗N

)
. (4.30)

The solution of (4.30) with Gaussian elimination determines z0 and zN . Succes-
sively, a back-substitution phase allows to compute all the other unknowns. We
call this optimized algorithm GBABDCR.
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The computational cost of GBABDCR, in the factorization phase, is

N(2
3 k̃3 + 2k̃2m + 4k̃m2 + 14

3 m3 − 1
2 k̃2 − k̃m− 3

2m2 − 1
6 k̃ − 1

6m). (4.31)

Since GBABDCR proceeds as GBABDCR-0 after the first two steps described
above, the total saving in the computational cost of the factorization phase of
GBABDCR is again (4.29).

4.4.1 Description of the software

The GBABDCR package has two main subroutines:

• GBABDCR FACT performs the factorization of the coefficient matrix of the
system (4.18);

• GBABDCR SOLV uses the output of GBABDCR FACT to solve (4.18).

The solution of a set of p linear systems with the same coefficient matrix can be
obtained by means of one call to GBABDCR FACT followed by p calls to GBAB-
DCR SOLV with a large saving in computational cost. In Figure 4.4.1, the calling
sequences of the two subroutines are shown.

SUBROUTINE GBABDCR FACT( k̃, m, N , MATR A, LFTBLK,
RGTBLK, PERM, FILL IN, INFO)

SUBROUTINE GBABDCR SOLV( k̃, m, N , MATR A, LFTBLK,
RGTBLK, PERM, FILL IN, VECT B)

Figure 4.2: Calling sequences of the two main subroutines

The package requires that the coefficient matrix in input is given as in Figure
4.3, that is, blocks (Si−1, Ti, Ri+1) must be given sequentially and stored respec-
tively in MATR A which is a three-dimensional array of size (k̃+m)×(k̃+2m)×
N .
The right hand side of (4.35) must be given in a vector VECT B of length (k̃ +
m)N +m, see Figure 4.3. The boundary blocks Da and Db are saved, respectively,
in the arrays LFTBLK and RGTBLK both of size m×m.

The array FILL IN is of size m×m× (N − 1) and contains the fill-in blocks
generated by the factorizations. PERM is an integer array containing the permuta-
tion vectors associated with the LU factorizations.
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MATR A=
(

S0 T1 R1 . . . . . . SN−1 TN RN

)
,

LFTBLK=
(

Da

)
RGTBLK =

(
Db

)
,

VECT B=




d
f1
f2
...

fN




.

Figure 4.3: Structure of the input coefficient matrix and right hand side

Several algorithms are proposed in [1] for solving ABD (or BABD) systems
arising from OSC. As for GBABDCR, some of these algorithms solve only par-
ticular systems in order to become more efficient than those written for general
systems. For example ABDPACK, described in Section 2.5.1, solves only ABD sys-
tems (2.14) arising from OSC with monomial spline basis. In contrast, COLROW
solves ABD systems with the same ‘general’ structure (4.18) used in GBABDCR.
In the following sections, we compare timings and accuracy of our algorithms with
respect to COLROW and ABDPACK.

4.5 Numerical comparisons

First, we compare the two algorithm GBABDCR and GBABDCR-0, based on the
cyclic reduction approaches proposed above. We want to prove, rather than sim-
ply theoretically (GBABDCR requires less computational cost and storage), that
condensation may reduce the execution time.

Second, we compare these codes with COLROW [29], which is one of the
fastest available codes for ABD linear systems with coefficient matrices in the form

A =




Dtop

S0 T1 R1

S1 T2 R2

. . .

SN−1 TN RN

Dbot




, (4.32)

where Si, Ri ∈ R(k̃+m)×m, Ti ∈ R(k̃+m)×k̃, Dtop ∈ Rmtop×m, Dbot ∈ R(m−mtop)×m.
As discussed in Section 2.5, COLROW uses a modified alternate row and col-

umn elimination that generates no fill-in. When applied to (4.32), the computa-
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tional cost of the factorization phase is

N(2
3 k̃3 + 3k̃2m− k̃2mtop − k̃m2

top + 4k̃m2 + 5
3m3 + m2mtop −mm2

top

−1
2 k̃2 − 2k̃m− 3

2m2 + mmtop −m2
top − 1

6 k̃ − 1
6m)

+2
3m3 + 2k̃mmtop + 2mm2

top − k̃m2
top −m3

top − 1
2m2 − k̃mtop −m2

top − 1
6m.

As discussed in Section 2.2, COLROW can solve the BABD system (4.18) if
we rearrange it as follows

Ã =




−I I
S0 0 T1 R1

−I 0 0 I
S1 0 T2 R2

−I 0 0 I
. . .

SN−1 0 TN RN

−I 0 0 I
Db Da




,

x̃ =
(

z0 y0 w1 z1 y1 w2 . . . zN−1 yN−1 wN zN yN

)
,

f̃ =
(

0 d 0 f1 0 f2 . . . 0 fN
)
,

(4.33)
where Si, Ti, Ri, d, fi, zi, wi are the same blocks and vectors as in (4.18) and
vectors yi are new unknowns:

yN = . . . = y1 = y0 = z0.

Then, we can apply COLROW to the ABD linear system (4.33) and compare its re-
sults to those of GBABDCR and GBABDCR-0 applied to the original BABD linear
system (4.18). Now, the cost of COLROW in the factorization phase is

N(2
3 k̃3 + 5k̃2m + 15k̃m2 + 46

3 m3 − 1
2 k̃2 − 4k̃m− 5m2 − 1

6 k̃ − 1
3m)

+3k̃m2 + 25
3 m3 − k̃m− 3m2 − 1

3m.
(4.34)

From (4.34) and (4.31), we note that GBABDCR saves with respect COLROW

N
(
3k̃2m + +11k̃m2 + 32

3 m3 − 3k̃m− 7
2m2 − 1

6m
)

+3k̃m2 + 25
3 m3 − k̃m− 3m2 − 1

3m

flops.
For each test case shown in Tables 4.1-4.2, the coefficients of the BABD coeffi-

cient matrix A have been generated randomly. We use a AlphaServer DS20E with
a 667 MHz EV67 processor and a Compaq Fortran 90 (formerly Digital Fortran
90) compiler. The right hand side f has been set so that the solution is (1, . . . , 1)T .

In Table 4.1, we show the execution times, in seconds, as functions of k̃, m
and N , varying each parameter in turn and fixing the others. The timings confirm
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Table 4.1: Execution times (in seconds) to solve linear systems with varying m, k̃
and N using GBABDCR, GBABDCR-0 and COLROW.

problem GBABDCR GBABDCR-0 COLROW
m = 5, k̃ = 10, N = 2000 6.53e-02 9.86e-02 0.148
m = 10, k̃ = 10, N = 2000 0.156 0.222 0.439
m = 20, k̃ = 10, N = 2000 0.529 0.651 1.581
m = 10, k̃ = 5, N = 2000 0.106 0.135 0.317
m = 10, k̃ = 10, N = 2000 0.156 0.222 0.439
m = 10, k̃ = 20, N = 2000 0.305 0.490 0.733
m = 10, k̃ = 10, N = 1000 7.12e-02 0.105 0.208
m = 10, k̃ = 10, N = 2000 0.156 0.222 0.439
m = 10, k̃ = 10, N = 4000 0.345 0.463 0.876

Table 4.2: Computed errors in the solution of linear systems with varying m, k̃ and
N using GBABDCR, GBABDCR-0 and COLROW.

problem GBABDCR GBABDCR-0 COLROW
m = 5, k̃ = 10, N = 2000 4.12e-07 4.09e-07 9.95e-07
m = 10, k̃ = 10, N = 2000 5.56e-10 9.75e-10 3.53e-10
m = 20, k̃ = 10, N = 2000 1.32e-10 6.40e-11 8.15e-11
m = 10, k̃ = 5, N = 2000 4.72e-11 7.88e-11 3.47e-11
m = 10, k̃ = 10, N = 2000 5.56e-10 9.75e-10 3.53e-10
m = 10, k̃ = 20, N = 2000 4.13e-11 3.41e-11 3.71e-11
m = 10, k̃ = 10, N = 1000 7.08e-11 4.04e-11 4.61e-11
m = 10, k̃ = 10, N = 2000 5.56e-10 9.75e-10 3.53e-10
m = 10, k̃ = 10, N = 4000 5.56e-10 1.09e-09 3.53e-10

our expectations from theory: GBABDCR is faster than GBABDCR-0 and COL-
ROW, though the speed-ups are lower than theory suggests. Moreover, the gap
between GBABDCR and GBABDCR-0 increases for larger values of k̃/m; con-
versely, GBABDCR improves over COLROW when m/k̃ increases. The ratios of
costs between GBABDCR-0 and GBABDCR and between COLROW and GBAB-
DCR are approximately 1.5 and 2.8, respectively. In Table 4.2, we show the errors
of the methods in the same tests used in Table 4.1. Note that the order of the error
is the same for all the methods. The case m = 5, k̃ = 10, N = 2000 gives a slight
larger than expected error, but this is true for all the methods and probably depends
on the chosen random matrix.
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4.6 An approach to solve BABD systems in the monomial
case

We consider the solution of BABD linear systems with structure




Da Db

H1 G1

−E1 −F1 I

. . .

HN GN

−EN −FN I







z1

w1

z2
...
...

zN

wN

zN+1




=




d
f1
0
...

fN
0




,

(4.35)
where −Ei ∈ Rm×m, the identity matrix I ∈ Rm×m, Hi ∈ Rk̃×m, −Fi ∈ Rm×k̃

and Gi ∈ Rk̃×k̃. Those systems arise from OSC with monomial basis functions,
see Section 1.7.2.

4.6.1 The algorithm BABDCR MONO

We describe a particular cyclic reduction approach for solving the BABD system
(4.35), called BABDCR MONO. This algorithm takes advantage of the structure in
(4.35) through factorizations of matrices of smaller dimension with respect to that
used in the cases in Figure 4.1, proposed in Section 4.2. Here the blocks Si−1, Ti

and Ri are those defined in (4.8).
The algorithm transforms each pair of block row equations




Hi Gi

−Ei −Fi I
Hi+1 Gi+1

−Ei+1 −Fi+1 I







zi

wi

zi+1

wi+1

zi+2




=




fi
0

fi+1

0


 , (4.36)

for i = 2j − 1, j = 1, 2, . . . , bN/2c, into one block row equation

(
H ′

i G′
i

−E′
i −F ′

i J ′i+2

) 


zi

wi

zi+2


 =

(
f ′i
g′i

)
, (4.37)

involving only the unknowns zi, wi and zi+2. Blocks H ′
i, G′

i and J ′i+2 have re-
spectively the same number of columns as Hi, Gi and I . The blocks H ′

i (and−E′
i)

overlap the columns of J ′i , that are generated by the reduction of the previous pair
of block rows. Also, J ′i+2 overlaps the columns of H ′

i+2 (and −E′
i+2), that are

generated by the reduction of the successive pair of block rows. To do this, we
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use a cyclic reduction approach similar to that presented in Section 4.2 for Mi in
case 2, Figure 4.1. Since the coefficient matrix (4.35) is non-singular, the columns
overlapped by the (k̃ + 2m)× (k̃ + m) matrix Mi

Mi =




I
Hi Gi

−Ei −Fi




are linear independent. Hence, as previously, we use a row partial pivoting LU
factorization

PiMi =
(

Li

Ci

)
Ui =

(
I

CiL
−1
i I

)(
LiUi

O

)
, (4.38)

where Pi is a (k̃ + 2m) × (k̃ + 2m) permutation matrix, Li and Ui are lower
and upper triangular matrices of dimension (k̃ + m)× (k̃ + m), respectively. We

premultiply (4.36) by
(

I
Pi

)
and the inverse of the lower triangular matrix




I
I

CiL
−1
i I


 , yielding




H ′
i G′

i

Ẽi F̃i LiUi
˜Ji+2

−E′
i −F ′

i J ′i+2


 =




I
I

−CiL
−1
i I




(
I

Pi

)



Hi Gi

−Ei −Fi I
Hi+1 Gi+1

−Ei+1 −Fi+1 I


 .

(4.39)
The corresponding right hand sides are reduced, using the same operations:




f ′i
f̃i
g′i


 =




I
I

−CiL
−1
i I




(
I

Pi

)



fi
0

fi+1

0


 . (4.40)

The blocks in (4.39) have the following sizes: H ′
i ∈ Rk̃×m, G′

i ∈ Rk̃×k̃, −E′
i ∈

Rm×m, −F ′
i ∈ Rm×k̃, J ′i+2 ∈ Rm×m, and Ẽi ∈ R(k̃+m)×k̃, F̃i ∈ R(k̃+m)×k̃,

˜Ji+2 ∈ R(k̃+m)×m. The vectors in (4.40) have length: f ′i ∈ Rk̃, g′i ∈ Rm and
f̃i ∈ Rk̃+m. From (4.39) and (4.40), it is easy to prove that the blocks into the
reduced row block equation (4.37) are determined through the operations

H ′
i = Hi, G′

i = Gi,
( −E′

i −F ′
i

)
=

( −CiL
−1
i I

)
Pi

( −Ei −Fi

O

)
,

J ′i+2 =
( −CiL

−1
i I

)
Pi

(
O
I

)
,
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and

f ′i = fi, g′i =
( −CiL

−1
i I

)
Pi




0
fi
0


 .

Note that J ′i+2 is not an identity matrix.
After l steps of reduction, l = 1, . . . , log2(N)− 2, the coefficient matrix obtained
is of size dN/se(k̃ + m) + m where s = 2l, and it can be further on reduced by
combining two adjacent block row equations (for each i = 2(j − 1)s + 1, with
j = 1, 2, . . . , bN/(2s)c)




H
(l)
i G

(l)
i

−E
(l)
i −F

(l)
i J

(l)
i+s

H
(l)
i+s G

(l)
i+s

−E
(l)
i+s −F

(l)
i+s J

(l)
i+2s







zi

wi

zi+s

wi+s

zi+2s




=




f (l)
i

g(l)
i

f (l)
i+s

g(l)
i+s


 ,

in order to obtain

(
H

(l+1)
i G

(l+1)
i

−E
(l+1)
i −F

(l+1)
i J

(l+1)
i+2s

)


zi

wi

zi+2s


 =

(
f (l+1)
i

g(l+1)
i

)
.

Let p = dlog2(N)e, after p − 1 steps the linear system has the two block row
equations




H
(p−1)
1 G

(p−1)
1

−E
(p−1)
1 −F

(p−1)
1 J

(p−1)
N
2

+1

H
(p−1)
N
2

+1
G

(p−1)
N
2

+1

−E
(p−1)
N
2

+1
−F

(p−1)
N
2

+1
J

(p−1)
N+1







z1

w1

zN
2

+1

wN
2

+1

zN+1




=




f (p−1)
1

g(p−1)
1

f (p−1)
N
2

+1

g(p−1)
N
2

+1




,

(4.41)
it can be further on reduced in order to obtain a system with a full coefficient matrix
of size 2m× 2m

(
Da Db

H
(p)
1 J

(p)
N+1

) (
z1

zN+1

)
=

(
d

f (p)
1

)
. (4.42)
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To do this, we use a row partial pivoting LU factorization

P
(p−1)
1




G
(p−1)
1

−F
(p−1)
1 J

(p−1)
N
2

+1

H
(p−1)
N
2

+1
G

(p−1)
N
2

+1

−E
(p−1)
N
2

+1
−F

(p−1)
N
2

+1




=

(
I

C
(p−1)
1 (L(p−1)

1 )−1 I

) (
L

(p−1)
1 U

(p−1)
1

0

)
,

where P
(p−1)
1 is a 2(k̃ + m) × 2(k̃ + m) permutation matrix, L

(p−1)
1 and U

(p−1)
1

are lower and upper triangular matrices of dimension (2k̃ + m) × (2k̃ + m), and
C

(p−1)
1 is an m× (2k̃ + m) matrix. Afterwards, we premultiply (4.41) by P

(p−1)
1

and by

(
I

C
(p−1)
1 (L(p−1)

1 )−1 I

)−1

. These operations yield

(
H̃1 L

(p−1)
1 U

(p−1)
1 J̃1

H
(p)
1 J

(p)
N+1

)
=

(
I

−C
(p−1)
1 (L(p−1)

1 )−1 I

)
P

(p−1)
1 ·




H
(p−1)
1 G

(p−1)
1

−E
(p−1)
N
2

−F
(p−1)
N
2

J
(p−1)
N
2

H
(p−1)
N
2

+1
G

(p−1)
N
2

+1

−E
(p−1)
N
2

+1
−F

(p−1)
N
2

+1
J

(p−1)
N+1




,

(
f̃1
f (p)
1

)
=

(
I

C
(p−1)
1 (L(p−1)

1 )−1 I

)
P

(p−1)
1




f (p−1)
1

g(p−1)
1

f (p−1)
N
2

+1

g(p−1)
N
2

+1




,

where H̃1, J̃1 ∈ R(2k̃+m)×m, f̃1 ∈ R2k̃+m and H
(p)
1 , J

(p)
N+1 ∈ Rm×m, f (p)

1 ∈
R2k̃+m are the blocks and right hand side into the 2m by 2m system (4.42).

The algorithm proceeds with the solution of (4.42) and the back-substitution
phase where all the other unknowns w1, z2,w2 . . . , zN ,wN are computed.

4.6.2 Description of the software

The BABDCR MONO package has two main subroutines:
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• BABDCR MONO FACT performs the factorization of the coefficient ma-
trix of the system (4.35);

• BABDCR MONO SOLV uses the output of BABDCR MONO FACT for
solving (4.35).

In figure (4.4) the calling sequences of the two subroutines are shown.

SUBROUTINE BABDCR MONO FACT( k̃, m, N , ARRAY1, ARRAY2,
LFTBLK, RGTBLK, PERM, FILL IN, INFO)

SUBROUTINE BABDCR MONO SOLV( k̃, m, N , ARRAY1, ARRAY2,
LFTBLK, RGTBLK, PERM, FILL IN, VECT B)

Figure 4.4: Calling sequences of the two main subroutines

The package requires that the coefficient matrix in input is given as in Figure
4.5, that is, blocks (Hi, Gi, O) and (−Ei,−Fi, I) must be given sequentially and
saved respectively in ARRAY1 and ARRAY2 which are three-dimensional arrays
of size k̃ × (k̃ + 2m)×N and m× (k̃ + 2m)×N .
The right hand side of (4.35) must be given in a vector VECT B of length (k̃ +
m)N + m, see Figure 4.6.2. The boundary blocks Da and Db are stored, in the
arrays LFTBLK and RGTBLK, respectively, both of size m×m.

ARRAY1 =
(

H1 G1 O . . . . . . HN GN O
)

ARRAY2 =
(
−E1 −F1 I . . . . . . −EN −FN I

)

Figure 4.5: Structure of the input coefficient matrix

VECT B = [d, f1, 0, f2, 0, . . . , fN , 0]

Figure 4.6: Structure of the right hand side
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4.7 Comparisons in the monomial case

We compare the code ABDPACK, described in Section 2.5.1, with our algorithms:
GBABDCR and BABDCR MONO. ABDPACK solves ABD linear systems with co-
efficient matrices having the structure in (2.14). Our tests have been employed on
BABD systems with structure (4.35) and on the same machine used in the numer-
ical test in Section 4.5. We apply ABDPACK to the equivalent large ABD linear
system, obtained through a transformation of the initial BABD system (4.35). This
transformation is similar to that shown in (4.33) where the blocks Si−1, Ti and
Ri are those represented in (4.8). We compare its results with respect to GBAB-
DCR and BABDCR MONO applied to the initial system (4.35). We have tested
these methods on randomly generated BABD systems with k̃ = 6, m = 4 and
N = 256, 512, 1024, 2048, 4096.
From Table 4.4, we note that the cyclic reduction method GBABDCR is at least
10% faster than BABDCR MONO. Since ABDPACK is applied to an ABD system,
we have inserted in Table 4.3 the timings for obtaining the double sized ABD sys-
tem from the original BABD system. We note from Tables 4.4 and 4.3, that the code
ABDPACK is slower than the two cyclic reduction algorithms just for the transfor-
mation of the original system. Errors of the three linear solvers, represented in
Table 4.5, depend on the conditioning of the system. This topic needs more testing
and numerical analysis to find how the stability of the codes models the accuracy
of the results. We obtain that, for N large (N > 1024), BABDCR MONO has
an error of order 10−7 , while, the other two methods are slightly more accurate
(the error is of order 10−8). For N < 1024, the more accurate methods are BAB-
DCR MONO and ABDPACK. Hence, it is preferable to use GBABDCR for a large
number of block rows N and BABDCR MONO for small N . This first case is
clearly of interest in most of the BVPs.

If more than one system is solved, it can be convenient to use BABDCR MONO
just because the time spent in the solution phase is less than in GBABDCR, as
shown in Table 4.6.

Concerning memory allocation, we note that BABDCR MONO requires the
same storage size of GBABDCR. ABDPACK requires less storage because it gen-
erates no fill-in and it not requires the null block of ARRAY1 as GBABDCR and
BABDCR MONO do, see Figure 4.5.



Table 4.3: Timings of assemble-phase (converting a BABD in an ABD system) for
the method ABDPACK, with k̃ = 6, m = 4 and N = 256, 512, . . . , 4096

N=256 N=512 N=1024 N=2048 N=4096
ABDPACK 1.95e-03 4.88e-03 8.78e-03 1.95e-02 4.68e-02

Table 4.4: Total timings for the methods BABDCR MONO, GBABDCR, ABD-
PACK, with k̃ = 6, m = 4 and N = 256, 512, . . . , 4096 applied to random BABD
linear systems

N=256 N=512 N=1024 N=2048 N=4096
BABDCR MONO 4.88e-03 1.07e-02 2.15e-02 4.78e-02 8.59e-02

GBABDCR 4.88e-03 9.76e-03 1.95e-02 4.39e-02 7.71e-02
ABDPACK 7.81e-03 1.66e-02 3.22e-02 6.44e-02 0.15

Table 4.5: Errors for the methods BABDCR MONO, GBABDCR, ABDPACK, with
k̃ = 6, m = 4 and N = 256, 512, . . . , 4096 applied to random BABD linear
systems

N=256 N=512 N=1024 N=2048 N=4096
BABDCR MONO 5.15e-10 4.93e-12 1.46e-09 1.35e-07 1.09e-07

GBABDCR 1.42e-09 1.56e-11 3.83e-09 3.47e-08 3.31e-08
ABDPACK 2.54e-10 1.22e-11 4.30e-10 3.90e-08 6.52e-08

Table 4.6: Timings of solution-phase for the methods BABDCR MONO, GBAB-
DCR, ABDPACK, with k̃ = 6, m = 4 and N = 256, 512, . . . , 4096 applied to
random BABD linear systems

N=256 N=512 N=1024 N=2048 N=4096
BABDCR MONO 9.76e-04 2.93e-03 5.86e-03 1.46e-02 2.34e-02

GBABDCR 1.95e-03 2.93e-03 6.83e-03 1.46e-02 2.64e-02
ABDPACK 9.76e-04 2.93e-03 4.88e-03 1.07e-02 2.73e-02



Chapter 5

A parallel algorithm for the
solution of BABD systems using
MPI

We analyze an MPI Fortran 90 package, called PBABDCR, for the solution of
BABD linear systems with the structure




Da Db

S0 R1

S1 R2

. . . . . .
SN−1 RN







y0

y1

y2
...

yN




=




d
f1
f2
...

fN




. (5.1)

The package handles BABD matrices with square blocks Si, Ri, Da and Db all of
size m×m.

5.1 The parallel algorithm

PBABDCR is a parallel implementation on P processors of the cyclic reduction
algorithm BABDCR, described in Chapter 3. The package requires that the coef-
ficient matrix and the right hand side of the system (5.1) are defined as in Figure
5.1: the blocks rows Vi = (Si−1, Ri) and the boundary blocks Da and Db must be
given sequentially in an m×m× 2(N +1) real array MATR A and the right hand
side in an m× (N + 1) real array VECT B.

In the following, we indicate a processor using directly its handle K, where
K = 0, . . . , P − 1.

The algorithm consists in three phases:

1. STARTUP

2. FACTORIZATION

87
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MATR A =
(

V1 V2 . . . VN Da Db

)
,

VECT B =
(

d f1 f2 . . . fN

)

Figure 5.1: Structures of the input coefficient matrix MATR A and of the input
right hand side VECT B.

3. SOLUTION

In the STARTUP phase, proc 0 breaks the blocks

(
V1 V2 . . . VN

)
,

(
f1 f2 . . . fN

)
,

into contiguous parts and distributes them to all the P processors.
As an example, after this block-distribution, proc1 K has N0 = bN/P c block

rows:
VN0K+1, . . . , VN0(K+1),

and the associated right hand sides

fN0K+1, . . . , fN0(K+1).

If N is not a multiple of K, proc P − 1 also has the last N −N0P block rows:

VN0P+1, . . . , VN ,

and the associated right hand sides

fN0P+1, . . . , fN .

Moreover, proc 0 broadcasts to each processor the boundary blocks Da, Db and
the associated right hand side d.

Property 5.1.1. The algorithm requires that each processor K, with K = 0, . . . , P−
2, has number of block rows a power of 2, that is N0 = 2i, for some i ∈ N.

Property 5.1.1 could represent a drawback of the parallel code, if the choice of
the number of processors is user-defined.

For a given parallel architecture and problem size, the algorithm, in the startup
phase, chooses the number of processors to minimize the number of steps in the
factorization and solution phases. This part is described in detail in Section 5.1.3.

1We use the term ’proc’ as an abbreviation for ’processor’
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5.1.1 Factorization phase

The factorization phase consists in log2 N steps which perform the cyclic reduc-
tion, described in Section 3.1, for the algorithm BABDCR. One difference with
respect to BABDCR is that the computation in each step is clearly distributed be-
tween processors and we need to communicate between them to proceed with the
reduction.

Now, set (K, j) = N0K + j, for j = 1, . . . , N0, we start the factorization
supposing that proc K has stored the matrix




S(K,0) R(K,1)

. . .
S(K,N0−1) R(K,N0)


 (5.2)

in its own memory allocations, as described in the previous section.
The log2 N steps of the factorization are grouped in two parts:

• In the first k0 = dlog2(N0)e steps, called the reduction steps, the coefficient
matrix (5.2) is reduced into the block row

(
S

(k0)
(K,0) R

(k0)
(K,N0)

)
, (5.3)

without any communication between processors. This yields, altogether in
the parallel architecture, the BABD coefficient matrix




Da Db

S
(k0)
(0,0) R

(k0)
(0,N0)

. . .

S
(k0)
(P−1,0) R

(k0)
(P−1,N0)




.

• in the next step (called the communication step), each processor K receives
a block row from an adjacent processor (that has handle K − 1, if K is odd,
and K + 1, if K is even). Then, the processors K and K + 1 (with K = 2j,
for j = 0, . . . , bP−2

2 c) have the same pair of block rows2

(
S

(k0)
(K,0) R

(k0)
(K,N0)

S
(k0)
(K+1,0) R

(k0)
(K+1,N0)

)
,

that is reduced into the block row
(

S
(k0+1)
(K,0) R

(k0+1)
(K+1,N0)

)
. (5.4)

In the next step (a communication step), the pairs of processors K,K + 2
and K + 1,K + 3 for K = 4j, j = 0, 1, . . . , interchange their last deter-
mined block rows and reduce the obtained pair of block rows. This algorithm

2Note that (K, N0) = (K + 1, 0)
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proceeds for lnp = dlog2(P )e steps until each processor factorizes the final
2× 2 block coefficient matrix

(
Da Db

S
(k0+lnp)
0 R

(k0+lnp)
N

)
. (5.5)

For more details, see the algorithm listed in Section 5.2.

5.1.2 Solution phase

The SOLUTION phase consists in three parts

• in the first k0 steps (reduction steps), the right hand side is reduced without
any communication between processors. This produces the right hand sides
associated to the coefficient matrices determined in the first k0 steps of the
factorization phase;

• in the next dlog2(P )e steps (communication steps), the right hand side is
reduced after communication between processors (those used in the second
part of the factorization phase);

• finally, the back-substitution phase is performed in each processor. It deter-
mines the unknowns of the system (5.1), without any additional communi-
cation between processors.

5.1.3 A note about the startup

First, we analyze how to choose the number of processors for minimizing the com-
putational time spent in the cyclic reduction. In this analysis, we consider the time
spent for the communications between processors to be negligible.

Given N block rows and a parallel architecture with MAXP processors, the
number of processors P and the number of block rows N0, that minimize the com-
putational time of the reduction, are determined from the following

Proposition 5.1.2. If bN
2 c = l with l ≤ MAXP , then P = l and N0 = 2, in

the first P − 1 processors, and N0 = N − 2(P − 1) in proc P − 1. Otherwise, if
l > MAXP , the number of processors, P , and the number of block rows, N0, is
determined from the following algorithm

l = bN
2 c

n = 0
repeat

l = d l
2e

n = n + 1
until(l ≤ MAXP)
P = l
N0 = 2n+1 for any proc with handle 0, . . . , P − 2
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N0 = N − (P − 1)2n+1 for proc P − 1.

Proposition 5.1.3. Given N block rows, a parallel architecture with MAXP pro-
cessors, and using the approach described in the previous proposition, we need
k0 factorization steps (before the communication phase), with N0 = 2k0 for proc
K with K = 0, . . . , P − 2 and N0 ≤ 2k0 + 1 for proc P − 1. Therefore, the
Proposition 5.1.2 yields an algorithm that satisfies the Property 5.1.1.

Below, we refer to a time step as a single reduction (from a pair of block rows
to one block row), as described in Section 3.1. Also, we refer to timing as the time
spent in a time step.

Proposition 5.1.4. The values P and N0 determined in the Proposition 5.1.2,
yields an algorithm that solves (5.1) with the minimum possible number of time
steps, for a given parallel architecture.

We illustrate the Proposition 5.1.4, using the following two examples. In the
first, we use a parallel architecture with MAXP = 3 processors and a BABD
system (5.1) with N = 5 block rows. If we use all the three processors, in the
algorithm, then P = 3 and in order to satisfy the property 5.1.1, V1 is stored in
proc 0, V2 in proc 1 and V3, V4, and V5 in proc 2. This results in an algorithm
where only proc 2 performs the reduction of its blocks (two reductions), while the
other processors wait for the communication phase. The communication phase
consists of 2 communication steps and therefore 2 additional reductions. Thus in
total (in the parallel machine), we use 4 time steps with 2 communications for
obtaining the final 2 × 2 block linear system with coefficient matrix (5.5) in each
processor. In contrast, if we use, as recommended by Proposition 5.1.2, only two
processors, then P = 2 with V1 and V2 in proc 0 and V3, V4, V5 in proc 1. This
yields one reduction performed in both processors, 2 communication steps and the
associated reductions. Then, we use only 3 time steps and 2 communications.

An other example: we set MAXP = 2 and N = 15. Since l = b15
3 c >

MAXP , from the algorithm in Proposition 5.1.2 we get P = dd l
2e/2e = 2, N0 =

23 = 8 for proc 0 and N0 = 7 for proc 1. This yields, before the communication,
7 time steps (with k0 = 3) and after this, there is one communication step with the
associated reduction. We use a total of 8 time-steps and 1 communication.

In contrast, if we use only one processor this yields N0 = 15 then there are
k0 = 4 reduction steps. These yield 7 time steps in the first reduction step, 4 in
the second step, 2 in the third step and 1 time step in the fourth reduction step.
Therefore we get 14 time steps.

5.2 Code in a pseudo programming language

The algorithm, presented below in a pseudo-programming language, describes the
factorization and the solution phase in the case: P = 2lnp and N0 = 2k0 .
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FACTORIZATION in proc K

k0 = dlog2(N0)e
lnp = dlog2(P )e
% k0 reduction steps
for step = 0, . . . , k0 − 1

s = 2step

for j = 1, 2, . . . , bdN0/se/2c
% reduction of a pair of block rows
l = (K, (2j − 1)s)

Pl

(
R

(step)
l

S
(step)
l

)
=

(
Ll

Tl

)
Ul

G
(step)
l = TlL

−1
l(

Ŝ
(step)
l−s

S
(step+1)
l−s

)
=

(
I

−G
(step)
l I

)
Pl

(
S

(step)
l−s

O

)

(
R̂

(step)
l+s

R
(step+1)
l+s

)
=

(
I

−G
(step)
l I

)
Pl

(
O

R
(step)
l+s

)

end
end
s1 = 2
prod = mod(K, s1)
% lnp communication steps

l1(0) = (K, 0)
l2(0) = (K, N0)
for step = 0, . . . , lnp− 1

IF (prod == 0) THEN
% communication with K + s1

2

send
(

S
(k0+step)
l1(step) R

(k0+step)
l2(step)

)
to proc K + s1

2

m1(step) = (k + s1
2 , 0)

m2(step) = (k + s1
2 , N0)

receive
(

S
(k0+step)
m1(step) R

(k0+step)
m2(step)

)
from proc K + s1

2

l1(step + 1) = l1(step)
l2(step + 1) = m2(step)
m1(step + 1) = l2(step)
m2(step + 1) = m1(step)

ELSE
% communication with K − s1

2

send
(

S
(k0+step)
l1(step) R

(k0+step)
l2(step)

)
to proc K − s1

2

m1(step) = (K − s1
2 , 0)
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m2(step) = (K − s1
2 , N0)

receive
(

S
(k0+step)
m1(step) R

(k0+step)
m2(step)

)
from proc K − s1

2

l1(step + 1) = m1(step)
l2(step + 1) = l2(step)
m1(step + 1) = m2(step)
m2(step + 1) = l1(step)

ENDIF
l = l + 1

Pl

(
R

(k0+step)
m1(step+1)

S
(k0+step)
m2(step+1)

)
=

(
Ll

Tl

)
Ul

G
(k0+step)
l = TlL

−1
l(

Ŝ
(k0+step)
l1(step+1)

S
(k0+step+1)
l1(step+1)

)
=

(
I

−G
(k0+step)
l I

)
Pl

(
S

(k0+step)
l1(step+1)

O

)

(
R̂

(k0+step)
l2(step+1)

R
(k0+step+1)
l2(step+1)

)
=

(
I

−G
(k0+step)
l I

)
Pl

(
O

R
(k0+step)
l2(step+1)

)

% update s1 and prod
s1 = s1 · 2
prod = 1
for I = 0, . . . , 2(step+1) − 1

prod = prod ·mod(K − I, s1)
end

end
% Factorization of the final 2× 2 system

P̂

(
Da Db

S
(lnp+k0)
0 R

(lnp+k0)
N

)
= L̂Û

SOLUTION phase in proc K

% k0 rhs reduction steps
for step = 0, . . . , k0 − 1

s = 2step

for j = 1, 2, . . . , bdN0/se/2c
% reduction of pairs of block rows
l = (K, (2j − 1)s)(

f̂ (step)
l

f (step+1)
l+s

)
=

(
I

−G
(step)
l I

)
Pi

(
f (step)
l

f (step)
l+s

)

end
end
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s1 = 2
prod = mod(K, s1)
% lnp rhs communication steps

for step = 0, . . . , lnp− 1
IF (prod == 0) THEN
% communication with K + s1

2

send f (k0+step)
l2(step) to proc K + s1

2

receive f (k0+step)
m2(step) from proc K + s1

2

ELSE
% communication with K − s1

2

send f (k0+step)
l2(step) to proc K − s1

2

receive f (k0+step)
m2(step) from proc K − s1

2

ENDIF
l = l + 1(

f̂ (k0+step)
m1(step+1)

f (k0+step+1)
l2(step+1)

)
=

(
I

−G
(k0+step)
l I

)
Pl

(
f (k0+step)
m1(step+1)

fk0+step
l2(step+1)

)

% update s1 and prod
s1 = s1 · 2
prod = 1
for I = 0, . . . , 2(step+1) − 1

prod = prod ·mod(K − I, s1)
end

end
% Solution of the final 2× 2 system(

y0

yN

)
= (L̂Û)−1P̂

(
d

f (lnp+k0)
N

)

% Back substitution
for step = lnp− 1, . . . , 0

ym1(step) = (LlUl)−1·(
f̂ (k0+step)
m1(step) − Ŝ

(k0+step)
l1(step) yl1(step) − R̂

(k0+step)
l2(step) yl2(step)

)

l = l − 1
end
for step = k0 − 1, . . . , 0

s = 2step

for j = bdN0/se/2c, . . . , 2, 1
l = (K, (2j − 1)s)
yl = (LlUl)−1

(
f̂ (step)
l − Ŝ

(step)
l−s yl−s − R̂

(step)
l+s yl+s

)

end
end
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5.3 Speedup

In Tables 5.1-5.2, we represent the speedup of the algorithm PBABDCR. That is,
the ratio between the execution time (time of factorization plus time of solution)
on one processor and the execution time on many processors. This implementation
is applied to random BABD linear systems. We use a cluster of 16 (2.4 GHz Intel
Xeon) processors with the Intel Fortran 90/95 compiler. Tables 5.1-5.2 describe
the speedup of the algorithm, for fixed N and varying the dimension m of blocks
and the number P of processors. These data are also represented in Figure 5.2 for
N = 512 and in Figure 5.3 for N = 1024.

In Table 5.2 and in Figure 5.3, where N = 1024, we obtain higher speedup
with increasing the dimension m for fixed P . In fact, since the factorization of an
m ×m matrix is the principal cost in each reduction, this cost (a timing) prevails
over the time spent in the communication for increasing m. This results in a benefit
of the multiprocessing procedure with respect the one processor version.

This happens only if the number of block rows, N , is sufficiently large with
respect to m, especially when m is small (that yields low computational cost). In
fact, for m = 4 and N = 512, see Table 5.1 and Figure 5.2, the speedup decreases
if the number of processors increases. In this case the cost of communication
prevails over the computational cost.

Wright, in [76], suggests a value of m that is at least 50 or 100 for obtaining
better result of multiprocessing with respect to the one processor version.

Finally, for the results obtained in Section 3.8 in the serial case, we remark
that BABDCR could result in a faster MIRKDC package on distributed parallel ar-
chitectures than PMIRKDC [68]. We have not provided a direct comparison with
PMIRKDC because it has been written for shared memory architectures and our
linear solver PBABDCR can be implemented only on distributed memory architec-
ture using MPI.

Table 5.1: Speedup of the code PBABDCR with N = 512.
Problem P = 2 P = 4 P = 8 P = 16
m = 4 1.864 2.592 3.684 2.661
m = 16 1.800 3.715 6.590 10.412
m = 64 1.839 3.649 6.944 11.752

Table 5.2: Speedup of the code PBABDCR with N = 1024.
Problem P = 2 P = 4 P = 8 P = 16
m = 4 1.917 2.951 4.508 6.306
m = 16 1.950 3.615 7.578 12.605
m = 64 2.030 3.912 7.768 14.153
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Figure 5.2: Speedup of PBABDCR with N = 512 and P = 2, 4, 8, 16 processors.
The dashed line is the ideal speedup (speedup for P processors = P ) that could be
obtained, if the communications were instantaneous.
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Figure 5.3: Speedup of PBABDCR with N = 1024 and P = 2, 4, 8, 16 processors.
The dashed line is the ideal speedup (speedup for P processors = P ) that could be
obtained, if the communications were instantaneous.





Chapter 6

Appendix of Numerical Analysis

In this appendix, we state those basic facts about polynomials and Runge Kutta
formulas needed in the previous chapters.

6.1 Polynomials

A polynomial of order n ∈ N or of degree at most n− 1 is a function of the form

p(x) = a1 + a2x + . . . + anxn−1 =
n∑

j=1

ajx
j−1

where aj are real numbers, aj ∈ R. We use the letter Pn to denote the linear space
of all polynomials of order n. We call monomial each polynomial p(x) ∈ Pn of
type p(x) = anxn−1. A sequence {pi(x)}i≥1 of orthogonal polynomials in [a, b],
with pi(x) ∈ Pi has the property

∫ b

a
pi(x)pj(x)dx = 0, i 6= j.

An example are the Legendre polynomials [17] with the kth Legendre polynomial
in [a, b]

pk(x) =
(−1)k

(a + b)kk!
dk

dxk

(
1−

(
2

a + b
x− 1 +

2a

a + b

)2
)k

.

Given k ∈ N, the kth divided difference of a function f at the points sequence
{τl}k+1

l=1 = {τ1, . . . , τk+1} is the value

[τ1, . . . , τk+1]f :=



f (k)(τ)
k!

if τ = τ1 = · · · = τk+1

[τ1, . . . , τi−1, τi+1, . . . , τk+1]f − [τ1, . . . , τj−1, τj+1, . . . , τk+1]f
τj − τi

if τi, τj ∈ {τl}k+1
l=1 are any two distinct points τi 6= τj

99
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In the previous chapters, we use the property of the kth divided difference

[τ1, . . . , τk+1]g = 0

for any g polynomial of order k in [τ1, τk+1], see [18]. The support of a function
f(x), denoted as supp(f) is the set

supp(f) = {x ∈ R|f(x) 6= 0}.

We denote with (x)+ the “truncation” function

(x)+ :=
{

x if x > 0
0 otherwise

.

Other truncated functions are (x)j
+ := x · (x)j−1

+ , j ∈ N, j > 0 and

(x)0+ :=
{

1 if x > 0
0 otherwise

Let ∆ = {xi}N+1
i=1 a partition or subdivision of the interval [a, b] with strictly

increasing sequence of points

∆ : a = x1 < x2 < · · · < xN < xN+1 = b,

we call piecewise polynomial of order n defined on ∆, any function f(x) such that
pi(x) = f(x)|[xi,xi+1] is a polynomial of order n, for i = 1, . . . , N . We denote the
collection of all such piecewise polynomial defined on ∆ with Pn,∆. An important
class of piecewise polynomial is formed by the splines. We will use Sn,m

∆ to denote
the set of Cm splines of order n, n ≥ m, defined on the partition ∆

Sn,m
∆ :=

{
s(x) ∈ Cm[a, b] : s(x)|[xi,xi+1] ∈ Pn, i = 1, . . . , N

}
.

bxc denotes the greater integer less than or equal to x and dxe denotes the smallest
integer greater than or equal to x

6.2 Runge-Kutta formulae

The Runge-Kutta formulae [24] determine approximations of the solution of an
IVODE problem in [a,b]

y′ = f(t,y(t)), y(t) ∈ Rm t ∈ [a, b]
y(t0) = y0

(t0 ≡ a), using the scheme

yi+1 = yi + hi

s∑

r=1

brKi,r
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with the stages

Ki,r = f(ti + crhi,yi + hi

r∑

j=1

xrjKi,j), r = 1, . . . , s.

where s is the number of stages, hi = ti+1−ti is the amplitude of the ith subinterval
of the given mesh {ti}N

i=0 composed by N subintervals. The given coefficients
b = {br}s

r=1, called weight coefficients, the s × s lower triangular matrix X :=
{xr,j}s

r,j=1 and the ascissa vector c := {cr}s
r=1, 0 ≤ cr ≤ 1, determines a unique

Runge-Kutta formula which can be represented with the Butcher array

c X
b

.

If for some r, xrr 6= 0, then the RK formula is called implicit.

6.3 MIRK/CMIRK schemes in the code MIRKDC

Here we summarize the approach used in MIRKDC for employing a MIRK/CMIRK
scheme applied to the BVP system (1.18)-(1.19) of dimension m. The approach
consists of a two-level iteration scheme.

At beginning, the user determines an initial mesh (or partition) {ti}N
i=0 of N

subintervals of [a, b], an associated discrete solution approximation Y(0) and a
MIRK scheme, choosing a suitable Butcher array (1.17). The user defines also
a defect tolerance TOL. The first level-step is the setup and the solution of the
discrete system

Φ(Y) = 0

where

Y = (yT
0 , . . . ,yT

N )T , yj ∈ Rm, j = 0, . . . ,N ,

Φ(Y) = (Φ0(Y)T , . . . ,ΦN (Y)T )T , Φi : Rm(N+1) −→ Rm,

Φi(Y) = yi+1 − yi − hi

s∑

r=1

brKi,r, i = 0, . . . , N − 1,

ΦN = g(y0,yN ).

with stages Ki,r defined in (1.16). The system is solved using the Newton iteration
Y(q+1) = Y(q) + ∆Y(q), for q = 0, 1, . . . , where

[
∂Φ(Y(q))

∂Y

]
∆Y(q) = −Φ(Y(q)) (6.1)

given Y(0). On convergence the Newton iteration gives a discrete solution approx-
imation Ŷ =

(
ŷT

0 , . . . , ŷT
N

)
.
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Then, in the second step-level, we use an associated CMIRK scheme to costruct
a C1 continuous approximation solution over the entire interval [a, b]. The CMIRK
scheme determine for each subinterval [ti, ti+1] a polynomial in [0, 1]

u(ti + θhi) = ŷi + hi

s∗∑

r=1

br(θ)Ki,r, 0 ≤ θ ≤ 1, ti ≤ t ≤ ti+1

with s∗ > s and Ki,r, for r = 1, . . . , s, are those defined in (1.16).
The extra stages

Ki,r = f(ti + crhi, (1− vr)ŷi + vrŷi+1 + hi

r−1∑

j=1

xrjKi,j), r = s + 1, . . . , s∗.

(that is, the remaining coefficients cr,vr and xrj , r = s+1, . . . , s∗, j = 1, . . . , r−
1) and the s∗ polynomials bi(θ) are chosen imposing on u(t), the continuous con-
ditions on the current mesh and, for a given order p,

max
0≤θ≤1

‖y(ti + θhi)− u(ti + θhi)‖ = O(hp+1
i ), i = 0, . . . , N − 1,

where y(t) is the exact solution of the initial ODE y′ = f(t,y(t)) with y(ti) =
u(ti) = ŷi. p is chosen as the order of accuracy of the discrete MIRK scheme
chosen. Then, the approach proceeds with the estimate of the defect

δ(t) := u′(t)− f(t,u(t)), t ∈ [a, b]

on each subinterval δi. If the termination condition

‖δi‖ ≤ TOL, (6.2)

for i = 0, . . . , N − 1 is not satisfied, then it uses the current mesh, defect esti-
mates and TOL to construct new mesh which equidistributes defect estimates with
sufficient refinement to approximately satisfy (6.2).

Finally u(t) is evaluated on the new mesh to set up the new discrete initial
solution approximation, at the new mesh points. More details are described in [33]
and [23].
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