Departamento de Matemática - Universidade de Coimbra

Exame de Teoria das Categorias Licenciatura em Matemática

07/07/2005 Duração: 2h 30m

- 1. Na categoria $\mathcal{POC}onj$, dos conjuntos parcialmente ordenados e das funções monótonas, descreva
 - (a) Isomorfismo.
 - (b) Monomorfismo.
 - (c) Produtos e coprodutos binários.
 - (d) O igualizador e o co-igualizador dos morfismos $u, v : (\mathbb{N}_0, \leq) \to (\mathbb{Z}, \leq)$, definidos por u(n) = 3n e v(n) = 0, para $n \in \mathbb{N}_0$.
 - (e) Um functor fiel e representável $G: \mathcal{POC}onj \to \mathcal{C}onj$.
- 2. Defina e dê um exemplo de
 - (a) categoria completa.
 - (b) equivalência de categorias.
 - (c) imersão de Yoneda.
- 3. Prove que
 - (a) Existe uma categoria que tem como objectos os conjuntos, como morfismos $\alpha:A\to B$ as relações binárias, i.e. $\alpha\subseteq A\times B$, sendo a composição definida por

$$\beta \circ \alpha = \{(a,c) | (a,b) \in \alpha \in (b,c) \in \beta \text{ para algum } b \in B\},$$

para
$$\alpha \subseteq A \times B$$
 e $\beta \subseteq B \times C$.

- (b) Um functor fiel e pleno cria isomorfismos.
- (c) Sendo $U: \mathcal{M}on \to \mathcal{C}onj$ o functor de esquecimento da categoria dos monóides na dos conjuntos, a função que a cada monóide M faz corresponder o produto cartesiano $U(M) \times U(M)$ é função de objectos de um functor $U \times U: \mathcal{M}on \to \mathcal{C}onj$.
- (d) A multiplicação de qualquer monóide $M=(M,\cdot,e)$ define a componente $\sigma_M:U(M)\times U(M)\to U(M)$ de uma transformação natural $\sigma:U\times U\to U$.
- (e) O functor de esquecimento da categoria dos semigrupos na categoria dos conjuntos tem adjunto à esquerda. (Unidade? Co-unidade?).