Esquema de Resolução do Exame de Teoria das Categorias de 07/07/2005

- 1. Na categoria $\mathcal{POC}onj$, dos conjuntos parcialmente ordenados e das funções monótonas, descreva
 - (a) Isomorfismo.
 - (b) Monomorfismo.
 - (c) Produtos e coprodutos binários.
 - (d) O igualizador e o co-igualizador dos morfismos $u, v : (\mathbb{N}_0, \leq) \to (\mathbb{Z}, \leq)$, definidos por u(n) = 3n e v(n) = 0, para $n \in \mathbb{N}_0$.
 - (e) Um functor fiel e representável $G: \mathcal{POC}onj \to \mathcal{C}onj$.
 - 1. (a) $f:(X,\leq)\to (Y,\leq)$ é um isomorfismo se e só se existe um $g:(Y,\leq)\to (X,\leq)$ tal que $g\cdot f=1_{(X,\leq)}$ e $f\cdot g=1_{(Y,\leq)}$. Portanto f tem de ser uma função monótona e bijectiva cuja função inversa é também monótona, isto é $g\in\mathcal{POConj}$. Então, f é um isomorfismo se e só se é uma função bijectiva tal que

$$x \le x' \iff f(x) \le f(x').$$

(Explicar)

- (b) $f:(X,\leq)\to (Y,\leq)$ é monomomorfismo $\iff f$ é injectiva.
- Se f é injectiva e $f \cdot u = f \cdot v$, para $u, v : (Z, \leq) \to (X, \leq)$, então para todo o $z \in Z$ temos que f(u(z)) = f(v(z)). Pela injectividade de f, vem que u(z) = v(z), para $z \in Z$, o que significa que u = v.

Reciprocamente, se f(x) = f(x') para $x, x' \in X$ então $f \cdot g = f \cdot h$ para $g, h : (\{*\}, \leq) \to (X, \leq)$ definidas por g(*) = x e h(*) = x' que são funções monótonas. Como f é monomorfismo vem que g = h. Portanto x = x' e, consequentemente, f é injectiva.

- (c) O produto binário de (X, \leq) e (Y, \leq) é $\{(X \times Y, \leq); p_X, p_Y\}$ onde
- $X \times Y$ é o produto cartesiano;
- $(x,y) \le (x',y')$ se e só se $x \le x'$ e $y \le y'$;
- as projecções são as usuais: elas pertencem à categoria pois são monótonas $p_X: (X \times Y, \leq) \to (X, \leq)$ e $p_Y: (X \times Y, \leq) \to (Y, \leq)$.

O coproduto binário de (X, \leq) e (Y, \leq) é $\{(X \uplus Y, \leq); i_X, i_Y\}$ onde

- $(X \uplus Y)$ é a reunião disjunta;
- $(x,0) \le (x',0)$ se e só se $x \le x'$ em X, $(y,1) \le (y',1)$ se e só se $y \le y'$ e não existem outras relações entre os restantes elementos;
- as inclusões $i_X: X \to (X \uplus Y)$ e $i_X: X \to (X \uplus Y)$ são funções monótonas.

É fácil provar que satisfazem as propriedades universais correspondentes.

(d) O igualizador de (u, v) é o subconjunto $E = \{n | u(n) = v(n)\}$ de \mathbb{N}_0 , com a ordem induzida, e a inclusão $i : (E, \leq) \to (\mathbb{N}_0, \leq)$. Temos que 3n = 0 se e só se n = 0, portanto $(E, \leq) = (\{0\}, \leq)$. Qualquer função monótona $h : (X, \leq) \to (\mathbb{N}_0, \leq)$ tal que $u \cdot h = v \cdot h$ é a função constante nula. Portanto existe um e um só morfismo $h' : (X, \leq) \to (\{0\}, \leq)$ tal que $i \cdot h' = h$.

Qualquer função que co-igualize (u, v) é constante:

$$g \cdot u = g \cdot v \text{ para } g : (\mathbb{Z}, \leq) \to (Y, \leq)$$

vem que

$$g(3k) \le g(3k+1) \le g(3k+2) \le g(3k+3) = g(3k)$$
 para todo o $k \in \mathbb{Z}$

logo, como a relação é anti-simétrica,

$$g(3k) = g(3k+1) = g(3k+2)$$
 para todo o $k \in \mathbb{Z}$

o que significa que g tem a mesma imagem para todo o $n \in \mathbb{Z}$. Portanto a função constante

$$c: (\mathbb{Z}, \leq) \to (\{*\}, \leq)$$

pertence a $\mathcal{POC}onj$ porque é monótona, co-igualiza (u,v) e qualquer $g \in \mathcal{POC}onj$ tal que $g \cdot u = g \cdot v$ se factoriza segundo $c, g' \cdot c = g$, para um único g'.

(e) O functor de esquecimento $U:\mathcal{POC}onj\to\mathcal{C}onj$ é fiel e é representado por $(\{*\},\leq)$. De facto, existe um isomorfismo natural $\alpha:U\to\mathcal{POC}onj((\{*\},\leq),-)$, sendo cada componente $\alpha_{(X,\leq)}:U(X,\leq)\to\mathcal{POC}onj((\{*\},\leq),(X,\leq))$ a função que faz corresponder a cada $x\in X$ o morfismo definido por $*\vdash x$. Prova-se que $\alpha_{(X,\leq)}$ é um isomorfismo (uma função bijectiva) para todo o (X,\leq) e que a transformação é natural $(\mathcal{POC}onj((\{*\},\leq),f)\cdot\alpha_{(X,\leq)}=\alpha_{(Y,\leq)}\cdot U(f),$ para todo o $f:(X,\leq)\to(Y,\leq)$).

2. Defina e dê um exemplo de

- (a) categoria completa.
- (b) equivalência de categorias.
- (c) imersão de Yoneda.

Ver apontamentos.

3. Prove que

(a) Existe uma categoria que tem como objectos os conjuntos, como morfismos $\alpha:A\to B$ as relações binárias, i.e. $\alpha\subseteq A\times B$, sendo a composição definida por

$$\beta \circ \alpha = \{(a,c) | (a,b) \in \alpha \in (b,c) \in \beta \text{ para algum } b \in B\},\$$

para $\alpha \subseteq A \times B$ e $\beta \subseteq B \times C$.

- (b) Um functor fiel e pleno cria isomorfismos.
- (c) Sendo $U: \mathcal{M}on \to \mathcal{C}onj$ o functor de esquecimento da categoria dos monóides na dos conjuntos, a função que a cada monóide M faz corresponder o produto cartesiano $U(M) \times U(M)$ é função de objectos de um functor $U \times U: \mathcal{M}on \to \mathcal{C}onj$.
- (d) A multiplicação de qualquer monóide $M = (M, \cdot, e)$ define a componente $\sigma_M : U(M) \times U(M) \to U(M)$ de uma transformação natural $\sigma : U \times U \to U$.
- (e) O functor de esquecimento da categoria dos semigrupos na categoria dos conjuntos tem adjunto à esquerda. (Unidade? Co-unidade?).
- (a) A composição é associativa:

Para
$$\alpha \subseteq A \times B$$
, $\beta \subseteq B \times C$ e $\gamma \subseteq C \times D$

$$\gamma \cdot (\beta \cdot \alpha) = \{(a,d) | (a,c) \in \beta \cdot \alpha \text{ e } (c,d) \in \gamma, \text{ para algum } c \in C\}$$

que é igual a

$$\delta = \{(a,d) | (a,b) \in \alpha, (b,c) \in \beta, (c,d) \in \gamma \text{ para algum } b \in B, c \in C\}$$

Analogamente se prova que $(\gamma \cdot \beta) \cdot \alpha = \delta$.

Para cada conjunto A a relação diagonal $1_A = \{(a, a) | a \in A\}$ é a identidade de A.

(b) Se $f: FA \to FB$ é isomorfismo em \mathcal{B} para um functor fiel e pleno $F: \mathcal{B} \to \mathcal{A}$ então existe um único $f' \in \mathcal{A}$ tal que F(f') = f.

Analogamente, para o inverso g de f em \mathcal{B} existe um único g' em \mathcal{A} tal que F(g') = g.

Daqui se conclui que f' é um isomorfismo em \mathcal{A} com inverso g':

$$F(f' \cdot g') = F(f') \cdot F(g') = f \cdot g = 1_{FB} = F(1_B),$$

o que implica que $f' \cdot g' = 1_B$ porque F é fiel. De forma semelhante se conclui que $g' \cdot f' = 1_A$.

- (c) Para cada morfismo de monóides $f: M \to M'$, define-se $U \times U(f) = Uf \times Uf$, portanto $Uf \times Uf(x,y) = (f(x),f(y))$. Verifica-se que
- $U \times U(1_M) = 1_{UM \times UM}$
- $-U \times U(g \cdot f) = U \times U(g) \cdot U \times U(f)$

portanto que, desta forma, se define um functor.

(d) Dado $f: M \to M'$ em $\mathcal{M}on$ temos que provar que

$$\sigma_{M'} \cdot U \times U(f) = Uf \cdot \sigma_M$$
:

Para todo o par (x, y),

$$\sigma_{M'} \cdot Uf \times Uf(x,y) = f(x) \cdot f(y)$$
, e

$$Uf \cdot \sigma_M(x, y) = f(x \cdot y),$$

que são iguais - $f(x \cdot y) = f(x) \cdot f(y)$ - porque f é homomorfismo de monóides.

- (e) Seja $U: \mathcal{SG}rp \to \mathcal{C}onj$ o functor de esquecimento. Para um conjunto X, denote-se por F(X) o semigrupo das sequências finitas e não vazias de elementos de X, as palavras não vazias do alfabeto X, para a operação de "concatenação".
- O morfismo $\eta_X : X \to U(F(X))$ que a cada elemento x faz corresponder a palavra < x >é universal de X para U.

Daí se conclui que existe uma única forma de definir um functor F adjunto à esquerda de U com unidade η . A co-unidade ϵ , para cada semigrupo $S = (S, \star)$, é o homomorfismo $\epsilon_S : FU(S) \to S$ definido por

$$\epsilon_S(\langle x_1x_2\cdots x_k\rangle) = x_1\star x_2\star\cdots\star x_k$$

.