Esquema de Resolução do Exame de Teoria das Categorias de 20/07/2005

- 1. Na categoria $\mathcal{PC}onj$ dos conjuntos pontuados e das funções que preservam o ponto base, descreva
 - (a) Objecto zero.
 - (b) Monomorfismos.
 - (c) O produto e o coproduto de $(\mathbb{N}, 1)$ por $(\mathbb{Z}, 0)$.
 - (d) Uma subcategoria não trivial.
 - (e) Uma categoria equivalente, mas não isomorfa, a $\mathcal{PC}onj$.
 - 1.(a) $(\star, \{\star\})$ é objecto zero visto ser simultaneamente objecto terminal e objecto inicial. De facto existe um só morfismo t em $\mathcal{PC}onj$ de (X, x_0) em $(\star, \{\star\})$ que é definido por $t(x) = \star$ para todo o $x \in X$. Também existe um só morfismo i em $\mathcal{PC}onj$ de $(\star, \{\star\})$ para (X, x_0) definido por $i(\star) = x_0$, por definição de morfismo nesta categoria.
 - (b)Dado $f:(X,x_0)\to (Y,y_0)$

fé uma função injectiva $\Rightarrow f$ é monomorfismo.

Dados $u, v : (Z, z_0) \to (X, x_0)$ se $f \cdot u = f \cdot v$ então f(u(z)) = g(v(z)) para todo o $z \in Z$. Logo, pela injectividade do f vem que u(z) = v(z) para todo o $z \in Z$, o que significa que u = v.

f é monomorfismo $\Rightarrow f$ uma função injectiva.

Se f(x) = f(x') então para $u, v : (\{0, 1\}, 0) \to (X, x_0)$ definidos por $u(1) = x, u(0) = x_0$ e $v(1) = x', v(0) = x_0$ temos que $f \cdot u = f \cdot v$. Como f é monomorfismo vem que u = v portanto x = x'. Logo f uma função injectiva.

(c) O produto de $(\mathbb{N},1)$ por $(\mathbb{Z},0)$ é $(\mathbb{N}\times\mathbb{Z},(1,0))$ com as projecções usuais visto serem funções que preservam o ponto de base: $p_{\mathbb{N}}((1,0))=1$ e $p_{\mathbb{Z}}((1,0))=0$. De facto, se $f:(X,x_0)\to (\mathbb{N},1)$ e $g:(X,x_0)\to (\mathbb{Z},0)$ então existe um único morfismo $h:(X,x_0)\to (\mathbb{N}\times\mathbb{Z},(1,0))$ tal que $p_{\mathbb{N}}\cdot h=f$ e $p_{\mathbb{Z}}\cdot h=g$: é exactamente o morfismo definido por h(x)=(f(x),g(x)).

O coproduto de $(\mathbb{N}, 1)$ por $(\mathbb{Z}, 0)$ é a reunião disjunta $\mathbb{N} \uplus \mathbb{Z}$ identificando 1 e 0, ou seja é o conjunto quociente $\mathbb{N} \uplus \mathbb{Z}/\sim$ sendo \sim a menor relação de equivalência que contém o par (1,0), tendo como ponto assinalado a classe $[1] = [0] = \{0,1\}$ (todas as outras classes são conjuntos singulares: $[n] = \{n\}$), com as inclusões evidentes $i_{\mathbb{N}}(n) = [n]$ e $i_{\mathbb{Z}}(n) = [n]$.

Dados $f:(\mathbb{N},1)\to (X,x_0)$ e $g:(\mathbb{Z},1)\to (X,x_0)$ existe um único morfismo $h:\mathbb{N}\uplus\mathbb{Z}/\sim\to (X,x_0)...$

- (d) Exemplos (basta um + justificação):
- a subcategoria dos conjuntos pontuados finitos e dos morfismos entre eles;
- a subcategoria dos conjuntos pontuados e dos monomorfismos;
- a subcategoria dos conjuntos pontuados e dos epimorfismos.
- (e) A categoria das funções parciais $\mathcal{P}fn$ porque podemos definir functores F e G (ver apontamentos) tais que $F \cdot G = Id$ e $G \cdot F$ naturalmente isomorfo mas diferente da identidade. De facto...
- 2. Defina e dê um exemplo de
 - (a) Colimite
 - (b) Categoria de functores $Conj^{\mathcal{D}}$
 - (c) Functor representável.
 - 2. Ver apontamentos.
- 3. Prove que

- (a) Se g tem inverso à direita então g é um epimorfismo regular. Enuncie o dual.
 - 3. (a) Dado $g:A\to B$, se existe um morfismo f tal que $g\cdot f=1_B$ então g é um epimorfismo: se $u\cdot g=v\cdot g$ então $u=u\cdot g\cdot f=v\cdot g\cdot f=v$.

Além disso $g = co - ig(1_A, f \cdot g)$ porque

- 1. $g \cdot 1_A = g \cdot f \cdot g$;
- 2. Se $h \cdot 1_A = h \cdot f \cdot g$ então existe $h' = h \cdot f$ tal que $h' \cdot g = h$ que é o único morfismo a satisfazer essa condição porque g é epimorfismo.

Dual: se q tem inverso à esquerda então ele é monomorfismo regular.

- (b) Numa categoria \mathcal{C} são equivalentes
 - (i) $f: A \to B$ é um monomorfismo;
 - (ii) C(X, f) é injectiva para todo o objecto $X \in C$.
 - (b) Como $\mathcal{C}(X,f):\mathcal{C}(X,A)\to\mathcal{C}(X,B)$ é definida por $\mathcal{C}(X,f)(g)=f\cdot g$ temos que

$$C(X, f)(u) = C(X, f)(v) \iff f \cdot u = f \cdot v$$

Portanto $(i) \iff (ii)$.

- (c) Uma categoria com produtos binários e igualizadores tem produtos fibrados.
 - (c) Ver apontamentos sobre limites.
- (d) O functor $G = Conj(\mathbb{N}, -)$ tem adjunto à esquerda $F = \mathbb{N} \times -$ (Unidade? Co-unidade?) mas F não tem adjunto à esquerda.
 - (d) Uma forma de provar:

A função $\varepsilon_X: FG(X) = \mathbb{N} \times Conj(\mathbb{N}, X) \to X$ definida por $\varepsilon_X(n, f) = f(n)$ para $f \in Conj(\mathbb{N}, X)$ e $n \in \mathbb{N}$ é universal de F para X. De facto, dada uma função $h: F(Y) = \mathbb{N} \times Y \to X$ existe uma única função $h': Y \to Conj(\mathbb{N}, X)$ tal que $\varepsilon_X \cdot 1_{\mathbb{N}} \times h' = h$: temos, para cada $y \in Y$, $h'(y): \mathbb{N} \to X$ tem de ser definida por h'(y)(n) = h(n, y) para $n \in \mathbb{N}$.

Portanto a co-unidade é a transformação natural ε . A unidade η vai ter por componente em cada conjunto Y a única função $\eta_Y: Y \to \mathcal{C}onj(\mathbb{N}, \mathbb{N} \times Y)$ tal que

$$\varepsilon_{FY} \cdot F(\eta_Y) = 1_{FY}.$$

Daí se conclui que $\eta_Y: Y \to \mathcal{C}onj(\mathbb{N}, \mathbb{N} \times Y)$ faz corresponder a cada $y \in Y$ a função $\eta_Y(y): \mathbb{N} \to \mathbb{N} \times Y$ definida por $\eta_Y(y)(n) = (n, y)$.

- (e) Se o functor $H: \mathcal{A} \to \mathcal{B}$ é uma equivalência de categorias então H é fiel e pleno.
 - (e) Seja $F:\mathcal{B}\to\mathcal{A}$ um functor, $\alpha:Id_{\mathcal{A}}\to FH$ e $\beta:HF\to Id_{\mathcal{B}}$ isomorfismos naturais. Dados $f,g:A\to A'$ tais que H(f)=H(g) em \mathcal{B} então

$$\alpha_{A'} \cdot f = FH(f).\alpha_A = FH(f').\alpha_A = \alpha_{A'} \cdot f'$$

o que implica que f = f' visto que $\alpha_{A'}$ é isomorfismo. Portanto H é fiel.

De forma análoga se prova que F é fiel.

Dado um morfismo $g: H(A) \to H(A')$ em \mathcal{B} então $f = \alpha_{A'}^{-1} \cdot F(g) \cdot \alpha_A$ é um morfismo da categoria \mathcal{A} e, como

$$FH(f) \cdot \alpha_A = \alpha_{A'} \cdot f = F(q) \cdot \alpha_A$$

vem que H(f) = g (α_A é isomorfismo e F é fiel), o que prova que H é pleno.