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Reasoning about information, its potential incompleteness, uncertainty, and contradictori-
ness need to be dealt with adequately. Separately, these characteristics have been taken into
account by various appropriate logical formalisms and (classical) probability theory. While
incompleteness and uncertainty are typically accommodated within one formalism, e.g. within
various models of imprecise probability, contradictoriness and uncertainty less so — conflict or
contradictoriness of information is rather chosen to be resolved than to be reasoned with. To
reason with conflicting information, positive and negative support—evidence in favour and evi-
dence against—a statement are quantified separately in the semantics. This two-dimensionality
gives rise to logics interpreted over twist-product algebras or bi-lattices, the well known Belnap-
Dunn logic of First Degree Entailment being a prominent example [2, 8]. Belnap-Dunn logic
with its double-valuation frame semantics can in turn be taken as a base logic for defining var-
ious uncertainty measures on de Morgan algebras, e.g. Belnapian (non-standard) probabilities
[11] or belief functions [15, 6].

In a spirit similar to Belnap-Dunn logic, we can introduce many-valued logics suitable to
reason about such uncertainty measures. They are interpreted over twist-product algebras
based on the [0, 1] real interval as their standard semantics and can be seen to account for the
two-dimensionality of positive and negative component of (the degree of) belief or likelihood
based on potentially contradictory information, quantified by an uncertainty measure. The
logics presented in this talk include expansions of  Lukasiewicz or Gödel logic with a de-Morgan
negation which swaps between the positive and negative semantical component. The expansions
of Gödel logic, which can be equipped with a natural double-valuation frame semantics, relate
to the extensions of Nelson’s paraconsistent logic N4 [12, 13], or Wansing’s paraconsistent
logic I4C4 [14], with the prelinearity axiom. The resulting logics inherit both (finite) standard
completeness properties, and decidability and complexity properties of  Lukasiewicz or Gödel
logic respectively, and allow for an efficient reasoning using the constraint tableaux calculi
formalism [3].

Two-layered logics for reasoning under uncertainty of classical events were introduced in [9,
10], and developed further within an abstract algebraic framework by [7] and [1]. They sepa-
rate two layers of reasoning: the inner layer consists of a logic chosen to reason about events
or evidence, the connecting modalities are interpreted by a chosen uncertainty measure on
propositions of the inner layer, typically a probability or a belief function, and the outer layer
consists of a logical framework to reason about probabilities or beliefs. The modalities apply
to inner level formulas only, to produce outer level atomic formulas, and they do not nest.
Logics introduced in [9] use classical propositional logic on the inner layer, and reasoning with
linear inequalities on the outer layer. [10] on the other hand use  Lukasiewicz logic on the outer
layer, to capture the quantitative reasoning about probabilities within a propositional logical
language.

Our main objective is to utilise the apparatus of two-layered modal logics for the formalisa-
tion of reasoning with uncertain information, which itself might be non-classical, i.e., incomplete
or contradictory. Many-valued logics with a two-dimensional semantics mentioned above are
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used on the outer layer to reason about belief, likelihood or certainty based on potentially in-
complete or contradictory evidence, building on Belnap-Dunn logic of First Degree Entailment
as an inner logic of the underlying evidence. This results in two-layered logics suitable for vari-
ous scenarios: expansions of  Lukasiewicz logic are adequate in cases when aggregated evidence
yields a Belnapian probability measure [4] or a belief function (on a De Morgan algebra) [6],
while expansions of Gödel logic are useful to reason about comparative uncertainty in cases
where it is not so, or to capture reasoning about qualitative probability [5].
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