Page 115 - Textos de Matemática Vol. 39
P. 115
NONNEGATIVE INVERSE EIGENVALUE PROBLEM 105
systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), Lecture Notes
in Math., vol. 819, Springer, Berlin, 1980, pp. 18–34.
[2] Alberto Borobia, On the nonnegative eigenvalue problem, Linear Algebra Appl. 223/224
(1995), 131–140, Special issue honoring Miroslav Fiedler and Vlastimil Pt´ak.
[3] Mike Boyle, Symbolic dynamics and matrices, Combinatorial and graph-theoretical problems in linear algebra (Minneapolis, MN, 1991), IMA Vol. Math. Appl., vol. 50,
Springer, New York, 1993, pp. 1–38.
[4] Mike Boyle and David Handelman, The spectra of nonnegative matrices via symbolic
dynamics, Ann. of Math. (2) 133 (1991), no. 2, 249–316.
[5] J. C. Butcher and P. Chartier, The effective order of singly-implicit Runge-Kutta meth-
ods, Numer. Algorithms 20 (1999), no. 4, 269–284.
[6] Miroslav Fiedler, Eigenvalues of nonnegative symmetric matrices, Linear Algebra and
Appl. 9 (1974), 119–142.
[7] Shmuel Friedland, On an inverse problem for nonnegative and eventually nonnegative
matrices, Israel J. Math. 29 (1978), no. 1, 43–60.
[8] Charles R. Johnson, Row stochastic matrices similar to doubly stochastic matrices, Lin-
ear and Multilinear Algebra 10 (1981), no. 2, 113–130.
[9] Charles R. Johnson, Thomas J. Laffey, and Raphael Loewy, The real and the symmet-
ric nonnegative inverse eigenvalue problems are different, Proc. Amer. Math. Soc. 124
(1996), no. 12, 3647–3651.
[10] Ki Hang Kim, Nicholas S. Ormes, and Fred W. Roush, The spectra of nonnegative
integer matrices via formal power series, J. Amer. Math. Soc. 13 (2000), no. 4, 773–806
(electronic).
[11] Thomas J. Laffey, Extreme nonnegative matrices, Linear Algebra Appl. 275/276 (1998),
349–357, Proceedings of the Sixth Conference of the International Linear Algebra Society
(Chemnitz, 1996).
[12] , Realizing matrices in the nonnegative inverse eigenvalue problem, Matrices
and group representations (Coimbra, 1998), Textos Mat. S´er. B, vol. 19, Univ. Coimbra,
Coimbra, 1999, pp. 21–32.
[13] Thomas J. Laffey and Eleanor Meehan, A characterization of trace zero nonnegative
5 × 5 matrices, Linear Algebra Appl. 302/303 (1999), 295–302, Special issue dedicated
to Hans Schneider (Madison, WI, 1998).
[14] Thomas J. Laffey and Helena Sˇmigoc, Construction of nonnegative symmetric matrices
with given spectrum, Submitted for publication.
[15] , Nonnegative realization of spectra having negative real parts, Linear Algebra
Appl. 416 (2006), no. 1, 148–159.
[16] R. Loewy and J. J. McDonald, The symmetric nonnegative inverse eigenvalue problem
for 5 × 5 matrices, Linear Algebra Appl. 393 (2004), 275–298.
[17] Raphael Loewy and David London, A note on an inverse problem for nonnegative ma-
trices, Linear and Multilinear Algebra 6 (1978/79), no. 1, 83–90.
[18] Hazel Perfect, On positive stochastic matrices with real characteristic roots, Proc. Cam-
bridge Philos. Soc. 48 (1952), 271–276.
[19] Helena Sˇmigoc, The inverse eigenvalue problem for nonnegative matrices, Linear Algebra
Appl. 393 (2004), 365–374.
[20] , Construction of nonnegative matrices and the inverse eigenvalue problem, Lin-
ear Multilinear Algebra 53 (2005), no. 2, 85–96.
[21] George W. Soules, Constructing symmetric nonnegative matrices, Linear and Multilin-
ear Algebra 13 (1983), no. 3, 241–251.
[22] H. R. Sule˘ımanova, Stochastic matrices with real characteristic numbers, Doklady Akad.
Nauk SSSR (N.S.) 66 (1949), 343–345.

