Page 134 - Textos de Matemática Vol. 39
P. 134
124 JOA˜O FILIPE QUEIRO´
And so on. This gives an idea of how to find the extra restrictions for all values of n and s. It is not clear to me at the moment how to go about proving the sufficiency part in the resulting statements. It seems natural to try to take advantage of the recursive description of Horn’s inequality list.
References
[1] P. Belkale, Local systems on P1\S for S a finite set, Compositio Math. 129 (2001), 67-86.
[2] R. Bhatia, Linear algebra to quantum cohomology: the story of Alfred Horn’s inequali-
ties, Amer. Math. Monthly 108 (2001), 289-318.
[3] A. H. Dooley, J. Repka and N. J. Wildberger, Sums of adjoint orbits, Linear and Mul-
tilinear Algebra 36 (1993), 79-101.
[4] W. Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bul-
letin of the AMS 37 (2000), 209-249.
[5] A. Horn, Eigenvalues of sums of Hermitian matrices, Pacific J. Math. 12 (1962), 225-241.
[6] C.R. Johnson, Precise intervals for specific eigenvalues of a product of a positive definite
and a hermitian matrix, Lin. Alg. Appl. 117(1989), 159-164.
[7] A. Klyachko, Stable bundles, representation theory and hermitian operators, Selecta
Mathematica 4 (1998), 419-445.
[8] A. Knutson, The symplectic and algebraic geometry of Horn’s problem, Lin. Alg. Appl.
319 (2000), 61-81.
[9] A. Knutson and T. Tao, The honeycomb model of GLn(C) products I: Proof of the
saturation conjecture, J. Amer. Math. Soc. 12 (1999), 1055-1090.
[10] A. Knutson, T. Tao and C. Woodward, The honeycomb model of GLn tensor products
II: Facets of the Littlewood-Richardson cone, J. Amer. Math. Soc. 17 (2004), 19-48.
[11] J. F. Queiro´ and E. Marques de Sa´, Singular values and invariant factors of matrix sums
and products, Lin. Alg. Appl. 225 (1995), 43-56.
[12] A. P. Santana, J. F. Queir´o and E. Marques de S´a, Group representations and matrix
spectral problems, Linear and Multilinear Algebra 46 (1999), 1-23.
[13] R.C. Thompson, Matrix Spectral Inequalities - Lecture Notes, Johns Hopkins University,
Baltimore, 1988.
[14] R.C. Thompson, The singular value range of a matrix sum or product, Inst. Math. Acad.
Sinica 3 (1975), 275-281.
Departamento de Matema´tica Universidade de Coimbra 3001-454 Coimbra, Portugal E-mail address: jfqueiro@mat.uc.pt

