Page 143 - Textos de Matemática Vol. 39
P. 143

Case 3.

MATRIX PENCILS 133
If q = 1, the proof is complete. If q ≥ 2, then, according to the induction assumption, G is strictly equivalent to a pencil containing a zero subpencil of size p × (q − 1). It is easy to complete the proof.
Case 4. Suppose that Ax + B has a row minimal index. Analogous to
References
[1] I. Baragan˜a, Interlacing inequalities for regular pencils, Linear Algebra Appl. 121 (1989), 521–535.
[2] I. Cabral and F. C. Silva, Unified theorems on completions of matrix pencils, Linear Algebra Appl. 159 (1991), 43–54.
[3] I. Cabral and F. C. Silva, Similarity invariants of completions of submatrices, Linear Algebra Appl. 169 (1992), 151–161.
[4] M. Dodig, Feedback invariants of matrices with prescribed rows, Linear Algebra Appl. 405 (2005), 121–154.
[5] M. Dodig, Matrix Completion Problems and Control Theory, Ph. D. Thesis, Universi- dade de Lisboa, Portugal, 2006.
[6] Gantmacher, F. R., The Theory of Matrices, Vol. II, Chelsea, New York, 1960.
[7] I. Gohberg, M. A. Kaashoek and F. van Schagen, Eigenvalues of completions of subma-
trices, Linear Multilin. Algebra 25 (1989), 55–70.
[8] J. J. Loiseau, S. Mondi´e, I. Zaballa, P. Zagalak, Assigning the Kronecker invariants of a
matrix pencil by row or column completions, Linear Algebra Appl. 278 (1998) 327–336.
[9] G. N. Oliveira, Matrices with prescribed characteristic polynomial and a prescribed
submatrix III, Monasth. Math. 75 (1971), 441–446.
[10] G. N. Oliveira, Matrices with prescribed characteristic polynomial and several prescribed
submatrices, Linear Multilin. Algebra 2 (1975), 357–364.
[11] A. Roca and I. Zaballa, Invariant factor assignment under state feedback and output
injection, Linear Algebra Appl. 332/334 (2001), 401–436.
[12] A. Roca, Asignaci´on de Invariantes en Sistemas de Control, Ph. D. Thesis, Universidad
Polit´ecnica, Valencia, Spain, 2003.
[13] E. M. S´a, Imbedding conditions for λ-matrices, Linear Algebra Appl. 24 (1979), 33–50.
[14] F. C. Silva, Matrices with prescribed similarity class and a prescribed nonprincipal
submatrix, Portugaliae Math. 47 (1990), 103–113.
[15] R. C. Thompson, Interlacing inequalities for invariant factors, Linear Algebra Appl. 24
(1979), 1–31.
[16] H. K. Wimmer, Existenzs¨atze in der theorie der matrizen und lineare kontrolltheorie,
Monasth. Math. 78 (1974), 256–263.
[17] I. Zaballa, Matrices with prescribed rows and invariant factors, Linear Algebra Appl. 87
(1987), 113–146.
[18] I. Zaballa, Matrices with prescribed invariant factors and off-diagonal submatrices, Lin-
ear Multilin. Algebra 25 (1989), 39–54.


































































































   141   142   143   144   145