Page 33 - Textos de Matemática Vol. 39
P. 33

JEU DE TAQUIN, INVARIANT FACTORS 23
1 (4)G=11122,θ1G=11222.U=P(23),T=• 1 1 and
•••22
1
T ′ = • 2 1 . The corresponding operations on the indexing set words
•••22
are displayed in examples (4.1), (4.3).
Open Problem: Let σ ∈< s1,s2 > and θ ∈< θ1,θ2 > with the same reduced word. Let F be a three-letter SSYT of partition shape, and σT the SSYT realized by ∆μ,UDF. Describe the hexagon {σT : σ ∈< s1,s2 >}.
References
[1] G. Appleby A simple approach to matrix realizations for Littlewood-Richardson se- quences, Linear and Multilinear Algebra, 291, 1-14, (1999).
[2] O. Azenhas, E. Marques de Sa´, Matrix realizations of Litlewood-Richardson sequences, Linear Algebra and Multilinear Algebra, 27, 229-242 (1990).
[3] O. Azenhas, Realiza¸c˜oes Matriciais de Quadros de Young e suas Formas Can´onicas (in Portuguese), Universidade de Coimbra, Coimbra (1991).
[4] O. Azenhas, A Regra de Littlewood-Richardson: Generaliza¸c˜oes e Realizac¸˜oes Matrici- ais, Proceedings of the Third Meeting of the Portuguese Algebraists (in Portuguese), Universidade de Coimbra, Coimbra (1993).
[5] O. Azenhas, Opposite Litlewood-Richardson sequences and their matrix realizations, Linear Algebra and its Applications, 225, 91-116 (1995).
[6] O. Azenhas, The admissible interval for the invariant factors of a product of matrices, Linear Algebra and its Applications, 225, 91-116 (1999).
[7] O. Azenhas and R. Mamede, Actions of the symmetric group on sets of skew-tableaux with prescribed matrix realization, Linear Algebra and its Applications, 401, 221-275 (2005).
[8] O. Azenhas, R. Mamede, Matrix realizations of pairs of tableaux, keys and shuffles, S´eminaire Lotharingien de Combinatoire 53, B53H, 22pp. (2006).
[9] O. Azenhas, R. Mamede, Shuffling, variants of jeu de taquin, actions of the symmetric group on words, and invariant factors, in preparation.
[10] E. A. Bender, D. E. Knuth, Enumeration of plane partitions, Journal of Combinatorial Theory Ser. A, 13, 40-54 (1972).
[11] C. Greene, An extension of Schensted’s theorem, Advances in Mathematics, 14, (1974), 254-265.
[12] T. Klein, The multiplication of Schur functions and extensions of p-Modules, Journal of London Mathematical Society, 43, 280-282 (1968).
[13] D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific Journal of Mathematics, 34, 709-727 (1970).
[14] W. Fulton, Young Tableaux: With Applications to Representation Theory and Geom- etry, London Mathematical Society Student Texts, Cambridge University Press, Cam- bridge, United Kingdom 1997.
[15] W. Fulton, Eigenvalues of sums of Hermitian matrices (after Klyachko), S´eminaire Bour- baki, 845, 1987-98 (1998).
[16] W. Fulton, Eigenvalues, invariant factors, highest weigths, and Schubert calculus , Bul- letin of the American Mathematical Society, 37, 209-249, (2000).


































































































   31   32   33   34   35