Page 166 - Textos de Matemática Vol. 40
P. 166
154 Bibliography
[BFPS81] Wilfried Buchholz, Solomon Feferman, Wolfram Pohlers, and Wil- fried Sieg. Iterated Inductive Definitions and Subsystems of Analy- sis: Recent Proof-Theoretical studies, volume 897 of Lecture Notes in Mathematics. Springer-Verlag, 1981.
[BJ80] George S. Boolos and Richard C. Jeffrey. Computability and Logic. Cambridge University Press, 2nd edition, 1980.
[BS88] Wilfried Buchholz and Kurt Schu¨tte. Proof Theory of impredicative Subsystems of Analysis. Bibliopolis, 1988.
[Buc75] Wilfried Buchholz. Normalfunktionen und konstruktive Systeme von Ordinalzahlen. In J. Diller and G. Mu¨ller, editors, Proof Theory Symposion, Kiel 1974, volume 500 of Lecture Notes in Mathematics, pages 4–25. Springer, 1975.
[Buc97] Wilfried Buchholz. Explaining Gentzen’s consistency proof within infinitary proof theory. In G. Gottlob, A. Leitsch, and D. Mundici, editors, Computational Logic and Proof Theory, volume 1289 of Lec- ture Notes in Computer Science, pages 4–17. Springer, 1997.
[Buc01] Wilfried Buchholz. Explaining the Gentzen-Takeuti reduction steps: a second-order system. Archive for Mathematical Logic, 40:255–272, 2001.
[Bus98] Sam Buss, editor. Handbook of Proof Theory. North-Holland, 1998.
[Can83] Andrea Cantini. Proprieta’ e Operazioni. Bibliopolis, 1983.
[Can85] Andrea Cantini. A note on a predicatively reducible theory of iter- ated elementary induction. Bullettino Unione Mathematica Italiana, Serie VI, IV-B(2):413–430, 1985.
[Can86] Andrea Cantini. On the relationship between choice and compre- hension principles in second order arithmetic. Journal of Symbolic Logic, 51:360–373, 1986.
[Can89] Andrea Cantini. Notes on formal theories of truth. Zeitschrift fu¨r Mathematische Logik und Grundlagen der Mathematik, 35:97–130, 1989.
[Can90] Andrea Cantini. A theory of formal truth arithmetically equivalent to ID1. Journal of Symbolic Logic, 55(1):244–259, 1990.
[Can91] Georg Cantor. Briefe. (Herbert Meschkowski and Winfried Nilson, editors), Springer, 1991.