Page 176 - Textos de Matemática Vol. 40
P. 176
164 Bibliography
[Kah06] Reinhard Kahle. David Hilbert u¨ber Paradoxien, volume 06-17 of Pr´e-publica¸c˜oes do Departamento de Matem´atica, Universidade de Coimbra. 2006. http://www.mat.uc.pt/preprints/ps/p0617.pdf.
[Kah0x] Reinhard Kahle. David Hilbert and functional self-application. 200x. In preparation.
[Kan04] Aki Kanamori. Zermelo and set theory. The Bulletin of Symbolic Logic, 10(4):487–553, 2004.
[Kle52] Stephen C. Kleene. Introduction to Metamathematics. North Hol- land, 1952.
[Kle81] Stephen C. Kleene. Origins of recursive function theory. Annals of the History of Computing, 3(1):52–67, 1981.
[Kle03] Kevin C. Klement. Russell’s 1903–1905 anticipation of the lambda calculus. History and Philosophy of Logic, 24:15–37, 2003.
[Kli51] George L. Kline. Review of [Yan48]. Journal of Symbolic Logic, 16(1):46–48, 1951.
[KM77] Alexander Kechris and Yiannis Moschovakis. Recursion in higher types. In J. Barwise, editor, Handbook of Mathematical Logic, pages 681–737. North-Holland, 1977.
[KR35] Stephen C. Kleene and J. Barkley Rosser. The inconsistency of cer- tain formal logics. Annals of Mathematics (2 ), pages 630–636, 1935.
[Kr¨a06] Ju¨rg Kr¨ahenbu¨hl. Explicit mathematics with positive existential com- prehension and join. Diplomarbeit, Universit¨at Bern, Institut fu¨r Informatik und angewandte Mathematik, 2006.
[Kre63] Georg Kreisel. Generalized inductive definitions. Stanford Report, pp. 115–139, 1963.
[Kre02] Mathis Kretz. On the treatment of predicative polymorphism in theo- ries of explicit mathematics. Diplomarbeit, Universit¨at Bern, Institut fu¨r Informatik und angewandte Mathematik, 2002.
[Kri75] Saul Kripke. Outline of a theory of truth. Journal of Philosophy, 72:690–716, 1975.
[KS00] Reinhard Kahle and Thomas Studer. A theory of explicit mathemat- ics equivalent to ID1. In P. Clote and H. Schwichtenberg, editors, Computer Science Logic CSL 2000, volume 1862 of Lecture Notes in Computer Science, pages 356–370. Springer, 2000.