Page 182 - Textos de Matemática Vol. 40
P. 182

170 Bibliography
[Sel80a] Jonathan Seldin. A short biography of Haskell B. Curry. In J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Com- binatory Logic, Lambda Calculus and Formalism, pages vii–xi. Aca- demic Press, 1980.
[Sel80b] Jonathan Seldin. Curry’s program. In J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 3–33. Academic Press, 1980.
[Sel0x] Jonathan Seldin. The logic of Curry and Church. to appear in: The Handbook of the History of Logic, Volume 5 (D. Gabbay and J. Woods, editors), 200x.
[Set98] Anton Setzer. Well-ordering proofs for Martin-L¨of type theory. An- nals of Pure and Applied Logic, 92:113–159, 1998.
[Set99] Anton Setzer. Ordinal systems. In S. Cooper and J. Truss, editors, Sets and Proofs, volume 258 of London Mathematical Society Lecture Note Series, pages 301–338. Cambridge University Press, 1999.
[Sie99] Wilfried Sieg. Hilbert’s programs: 1917-1922. The Bulletin of Sym- bolic Logic, 5(1):1–44, 1999.
[Sie02] Wilfried Sieg. Beyond Hilbert’s reach? In David B. Malament, edi- tor, Reading Natural Philosophy, pages 363–405. Open Court, 2002.
[Sie03] Wilfried Sieg. John von Neumann. In Solomon Feferman et al., edi- tors, Kurt G¨odel. Collected Works, volume V. Correspondence H–Z [G¨od03], pages 327–335. Oxford University Press, 2003. Introduction to the correspondence between Kurt G¨odel and John von Neumann.
[Sim99] Stephen Simpson. Subsystems of Second Order Arithmetic. Perspec- tives in Mathematical Logic. Springer, 1999.
[Smi78] Jan Smith. On the relation between a type theoretic and a logical formulation of the theory of constructions. PhD thesis, University of G¨oteborg, Department of Mathematics, 1978.
[Smi84] Jan Smith. An interpretation of Martin-L¨of’s type theory in a type- free theory of proposition. Journal of Symbolic Logic, 49(3):730–753, 1984.
[SS01] Reinhard Siegmund-Schultze. Rockefeller and the Internationaliza- tion of Mathematics between the Two World Wars, volume 25 of Science Network · Historical Studies. Birkh¨auser, 2001.
[SS06] David Steiner and Thomas Strahm. On the proof theory of type two functionals based on primitive recursive operations. Mathematical Logic Quarterly, 52(3):237–252, 2006.


































































































   180   181   182   183   184