Page 110 - Textos de Matemática Vol. 41
P. 110

96 Bibliography
[45] S. B. Niefield and K. I. Rosenthal, Spatial sublocales and essential primes,
Top. Appl. 26 (1987) 263–269.
[46] S. Niefield and K. Rosenthal, Constructing locales from quantales, Math.
Proc. Camb. Phil. Soc. 104 (1988) 215–234.
[47] D. Papert and S. Papert, Sur les treillis des ouverts et paratopologies,
S´eminaire Ehresmann (1re ann´ee, expos´e 1, Paris 1958).
[48] J. Paseka, T2-separation axioms on frames, Acta Univ. Carolinae Mat.
Phys. 28 (1987) 95–98.
[49] J. Picado, Frame quasi-uniformities by entourages, in: Proceedings of the Symposium on Categorical Topology (University of Cape Town, 1995), Uni- versity of Cape Town, 1999, pp. 161–175.
[50] J. Picado, Structured frames by Weil entourages, Appl. Categ. Structures 8 (2000) 351–366.
[51] J. Picado, The quantale of Galois connections, Algebra Univers. 52 (2004) 527-540.
[52] J. Picado and A. Pultr, Sublocale sets and sublocale lattices, Arch. Math. (Brno) 42 (2006) 409–418.
[53] J. Picado, A. Pultr and A. Tozzi, Locales, in: M. C. Pedicchio, W. Tholen (Eds.), Categorical Foundation — Special Topics in Order, Algebra and Sheaf Theory, Encyclopedia of Mathematics and its Applications, Vol. 97, Cambridge Univ. Press, Cambridge, 2003, pp. 49–101.
[54] J. Picado, A. Pultr and A. Tozzi, Ideals in Heyting semilattices and open homomorphisms, Quaest. Math. 30 (2007) 391–405.
[55] T. Plewe, Sublocale lattices, J. Pure Applied Algebra 168 (2002) 309–326.
[56] T. Plewe, A. Pultr and A. Tozzi, Regular monomorphisms of Hausdorff
frames, Appl. Categ. Structures 9 (2001) 15–33.
[57] A. Pultr, Frames, in: M. Hazewinkel (Ed.), Handbook of Algebra, Vol. 3,
Elsevier, 2003, pp. 791–857.
[58] A. Pultr and A. Tozzi, Separation axioms and frame representation of some
topological facts, Appl. Categ. Structures 2 (1994) 107–118.
[59] K. I. Rosenthal, Quantales and their Applications, Pitman Resarch Notes
in Math. No. 234 (Longman Scientific & Technical, 1990).
[60] D. Scott, Continuous lattices, in: Toposes, Geometry and Logic, Lecture Notes in Mathematics 247, 1972, pp. 97–136.










































































   108   109   110   111   112