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In the last years, we assisted to the development of new high precision machine tools: the 
hexapod machines. We tried to use the hexapod machine as an artefact for CMM’s calibration. 
However, given their cost and their resolution, they are not the best solution for a 
transportable artefact. By modifying the hexapod structure, we develop two different 
artefacts: one for local CMM’s calibration and another one for global calibration. 
Local calibration allows us the determination of the transfer function characterizing the sensor 
displacement of the CMM. This local calibration is based on the measurement of a rigid 
artefact of a known geometry, derived from hexapod geometry, which allows us to determine 
the errors of displacement of the sensor of the CMM. 
The artefact for global calibration uses a self-calibrated method, based on measurements from 
three miniature laser interferometers, measuring the position of a sphere in the volume of the 
CMM. 
The paper describes the patented artefacts for local and global calibration, as well as the 
referring mathematical problems resulting from self-calibration of global artefact and the 
method of interpretation of the measurement results of the artefact used in the measure of 
local errors. 

1 Introduction 

The modern definition of traceability intimately links the concepts of calibration 
(i.e., connection to the SI unit) and measurement uncertainty. In a typical coordinate 
measuring machine (CMM) measurement problem the measurement under 
consideration bears little resemblance to the measurand or validity conditions of the 
CMM calibration. Consequently, the metrologist must develop methods to combine 
the known CMM calibration information together with the measurement specific 
factors to generate a task specific uncertainty statement1. 
In the last years, we assisted to the development of new high precision machine 
tools: the hexapod machines (see figure 1). We tried to use the hexapod machine as 

                                                           
1 Phillips, S.D., Traceability, Calibration, and Measurement Uncertainty Issues Regarding Coordinate 
Measuring Machines and Other Complex Instruments, Proc. Assoc. for Coordinate Metrology Canada 
(ACMC), Ontario, Canada, June 2000. 
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an artefact for CMM’s calibration, trying to get a similar method to the method used 
by T.Takatsuji et al [2]. However, their cost and their resolution make them not the 
best solution for a transportable artefact. Modifying the hexapod structure, we 
develop two different artefacts: one for local CMM’s calibration and another one for 
global calibration. 
We intend as local errors: errors of rotational type (Rx Ry Rz) and translational 
displacement (Tx Ty Tz), when measuring forms in near points. So, local calibration 
allows us the determination of the transfer function characterizing the sensor 
displacement of the CMM. It is based on the measurement of a rigid artefact of a 
known geometry, derived from hexapod geometry, which allows us to determine the 
errors of displacement of the sensor of the CMM. 
We define as global errors: errors in the determination of sensor coordinates when 
measuring the center of a sphere with CMM sensor. The artefact for global 
calibration uses a self-calibrated method, based on measurements of three miniature 
laser interferometers, measuring the position of a sphere in the volume of the CMM. 

 
Figure 1. Hexapod machine: measuring the length of the six links , , , , ,Ac cC Ca aB Bb bA enables 

determining the relative position of solids PABC  and pabc . 

2 Local calibration of CMMs 

A six-sphere artefact composed by two rigid sets of three spheres mounted as a solid 
structure (see figure 2) has been tested, in order to measure local errors in CMMs. 
The connection of the two sets of three spheres (of equal or different diameters) 
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produces a solid connection with zero degrees of freedom, enabling the mounting 
and dismounting of the artefact in order to easily measure lower set and upper set of 
spheres (always mounted in the same relative position). 
We can consider the six-sphere artefact as a hexapod system (see figure 3) where 
the six bars connecting the center of the six spheres consists only in the material of 
the spheres (The sum of the radius from the lower set spheres with the radius of 
spheres from upper set gives the length of the bars).  
The measuring method is based on the geometry of the artefact, compared with the 
measured geometry. Measurements are relative to a coordinate referential system 
centered at the point P (see figure 3), with the Z axis perpendicular to the plane 
defined by the three center points (points A, B and C) of the lower set of spheres, 
and the X axis passing through the center (point A) of a reference sphere in the 
lower set. 
 

 
 

Figure 2. Artefact for measurement of local errors on CMMs. 
 

We don’t need to know the geometry of the six-spheres artefact, we can always 
measure relative errors, referenced to an initial position. The spheres used are 
industrial spheres and their characteristics (diameter, sphericity, …) are not too 
much important. Relative spatial distribution of the measured sphere centers are not 
influenced by spheres characteristics, it only depends on CMM hard (mechanical) 
and software errors. 
With the previous defined referential and the measured positions of the three centers 
of the spheres forming the upper set, and comparing results in different positions on 
the CMM (to the initial position) we can analyze local relative errors of the CMM, 
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as well as the relative position of all six spheres (doing and comparing 
measurements obtained rotating the artefact around his axis Z, on a fixed position). 
Rotational and translational components of local errors can be measured comparing 
the position of the upper set of spheres relatively to the lower set on different 
positions over the CMM. 
On the table 1, we can observe local errors measured on a CMM using this method. 
The determination of rotational and translational error displacement of CMM sensor 
plus the software errors, using the six-sphere artefact, is based on the assumption 
that link variation (geometry of sphere centers measured) is identical to the 
displacement of the hexapod with identical link variation (the model is obtained 
linearising hexapod model around the reference position): 
 

[Rx Ry Rz Tx Ty Tz]
T = M * [ �1� �2� �3� �4� �5� �6]

T, 
 

where Rx Ry Rz Tx Ty Tz are rotational and translational errors; �1� �2� �3� �4� �5 
�6 are measured link variations resulting from CMM local errors and M is the 

operator modeling small variations. 

3 Global calibration of CMMs 

On the hexapod machine represented on figure 1 let us consider the solid pabc  as a 
sphere, in such a way that points p, a, b, and c are coincident as indicated in figure 
4. Measuring the length of the six links , , , , ,Ac cC Ca aB Bb bA  on hexapod machine 

reduces to the measurement of only three links:  , ,Ap Bp Cp . 
A self-calibrating system has been developed in such a way that, instead of 
measuring the three links, we measure the increments for the links with three 
miniature laser interferometers: position of points A, B and C (center of three similar 
spheres) are unknown. Moving the sphere centered on p (similar to spheres A, B and 
C) on the plane defined by ABC  and measuring the length variation for the three 
links enables us to self-calibrate the system identifying coordinates for A, B and C, 
as well as the initial length for the three links , ,Ap Bp Cp . 
Knowing the length of all links, as well as the position of points A, B and C we can 
also know the position of p, center of the moving sphere. Self-calibrating the system 
on the measurement table of CMM, enables us to know the coordinates of the 
moving sphere centered on p, in the measurement volume of CMM. So, by 
comparing the calculated position of p (from measurement of the three links by 
laser interferometry) with the measured position by CMM, the global error of CMM 
for each position of p can be calculated. 
Actually, we have developed a numerical simulation [1], based on data fusion 
techniques, in order to validate the capability of the artefact to be used as an artefact 
for global error measurement in CMMs. 
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Figure 3. Artefact as an hexapod (measurement of hexapod geometry enables  
absolute local errors determination if hexapod geometry is known, or relative 

errors if comparing two measures in different positions). 
 
The artefact is modeled by a set of m (three) equations: 

( ) ( ) ( )2 2 2 2
0 0 0 0ij i j i j i j ijZ x x y y z z D= − + − + − − = , 

with: 
 (x0i, y0i, z0i) = Coordinates of the fixed sphere, i = 1,m, 
 (xj, yj, zj) = Coordinates of the moving sphere at time j, 
 Dij = Distance, at time j, from the moving sphere to the fixed sphere i. 
Each equation of that type corresponds to one link connecting a fixed sphere to the 
moving sphere, and all xj, yj, zj, x0i, y0i, z0i are unknowns at time j. Dij are the 
distances estimated by: 

ij i ijD l dl= + , 

where dlij represents the distance variations, measured by laser interferometry, of 
the link that connects the sphere i to the moving sphere at time j, and all the values 
of li are unknowns corresponding to initial links length. 
All fixed spheres are constrained to the CMM table. During self-calibration, the 
moving sphere is also constrained to the CMM table. Flatness table errors are 
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neglected because their contributions for initial link length, so as for link variations, 
are second order contributions. The position and uncertainty of the fixed spheres are 
unknowns, so as position and uncertainty for the mobile sphere. Uncertainty will 
depend on geometry, time of self-calibration and position of mobile sphere. Their 
values are estimated by data fusion techniques. 

 

 
 

Table 1. Example of relative local errors measurement on one CMM. 
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4 Conclusions 

Two different types of artefacts based on hexapod machine have been developed: 
one to measure local errors on CMMs based on a set of six spheres (two rigid sets of 
three similar spheres), and another to measure global errors on CMMs based on a 
set of four independent spheres (being one of them a moving sphere connected by 
telescopic links to three fixed spheres). 
 
 

 
Figure 4. Artefact for global errors measurement. 

 
Measurements with the artefacts have errors and uncertainty unknown. Repetitive 
measurements and self-calibration enables us to get, during calibration, the errors 
and an uncertainty changing with self-calibration along time and position. We 
believe that the developed artefacts enable measurement of local and global CMMs 
errors. Those artefacts can be applied in many other fields for instance to perform 
tests of robots, or to act as components of machines or even as CMMs. 
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