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A new kind of artefact, based on a modification of the hexapod machine’s well-known 
structure, has been introduced by Antunes, S. D. et al in [1], in order to determine the 
global errors of coordinate measuring machines. Here we are presenting results from 
validation of the technique: using a self-calibrated method and modeling the reference 
value for calibration based on laser trilateration. 

1. Introduction 

Uncertainty, as defined in the ISO Guide to the Expression of Uncertainty in 
Measurement (GUM) [4] and in the International Vocabulary of Basic and 
General Terms in Metrology (VIM), is a parameter, associated with the result of 
a measurement, which characterizes the dispersion of the values that could 
reasonably be attributed to the measurand.  

Calibration and numerical error correction of coordinate measuring 
machines (CMMs) require an error behavior mathematical model and methods 
to assess the errors. Traceability of CMMs must be based on traceability chains 
and commonly accepted methods for uncertainty evaluation [3]. 

2. Calibration Artefacts for CMMs 

Different artefacts (geometrical gauges) can be used to perform the calibration 
of large CMMs (with one or more axis length bigger than 2 m). Between the 
calibrated artefacts, we can refer the 2D lightweight ball plates (with carbon 
fiber rod structure and ceramic spheres), the 2D disassemblable ball plates (with 
L-shape, for example, made of carbon fiber tubes) or the 1D disassemblable 
multi-ball bars (of carbon fiber pipes), as used by [2]. Alternatively, to perform 
this task, the calibration can be made with the use of an arrangement of laser 
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interferometers and level meters or straight edges to access the full error 
analysis, but these methods require expensive tools, are time consuming and 
need especially skilled personnel. In addition, it is possible to use uncalibrated 
artefacts, but it is necessary to have absolute length standards to determine scale 
factors. In this last case, it is necessary to place the artefact in substantially more 
positions then when using calibrated artefacts. 

For small and medium size coordinate measuring machines there are several 
artefact-based methods for full error analysis, which is a prerequisite for 
establishing traceability. Like the case of large CMMs, there are calibrated and 
uncalibrated artefacts for this purpose. The most common calibrated artefacts 
are the gage blocks, step gages, the ball bars, the ball plates and the hole platesa. 
In addition, laser interferometers are also used in order to perform the 
measurement of linear accuracy, straightness and angularity checks. 
Additionally, there are uncalibrated devices, like the artefact presented in [1], 
which is the object of the main study described in this text. 

Artefacts are effective for local and relative calibrations of CMMs. We 
have compared four different types of reference artefacts [5]: 

• the single sphere (see figure 1); 
• the step gauge block (see figure 2); 
• the ball plate (see figure 3); 
• the hole bar (see figure 4). 
The single sphere is used to calibrate the probe of the CMM and a good 

metrological sphere of known and calibrated diameter is needed. All the other 
listed artefacts are used to calibrate the CMM, in order to find systematic errors 
on the CMM’s measurement volume. 

 

 
                           Figure 1. The sphere.                                  Figure 2. The step gauge block. 

 

                                                           
a Like the presented artefact in http://www.1gg.com/html/calibcmm.html. 
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                   Figure 3. The ball plate.                                       Figure 4. The hole bar. 

 

 
Figure 5. Trying to calibrate CMM’s volume measurement with different supports for the ball plate. 
 

The step gauge block enables a linear calibration in a direction 
perpendicular to the reference surface of the gauges. 

The ball plate allows the calibration in the plane of the center of the balls 
constituting the ball plate (the reference points are the center of the balls in its 
plane). 

The hole bar allows a linear calibration in the plane of one surface of the 
holes (the reference points are the center of the holes in that plane). But the hole 
bar also enables the measurement of local errors measuring the position of the 
axis of reference holes in the bar. 

We tried to solve the problem of volume calibration with a ball plate, 
developing specific supports for using the ball plate (see figure 5), but we 
always had the problem on how correlate measurements with ball plate 
calibration. 
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Those artefacts are effective for local and relative calibrations, but are not 
appropriate for measuring all calibrating parameters of a CMM. In order to 
solve those problems, a new kind of artefact, based on a modification of the 
known structure of the hexapod machine, has been introduced in [1]. The 
proposed artefact was similar to a tripod system constituted by three links 
connecting three fixed spheres to a mobile sphere, with the mobile sphere acting 
as the reference point for CMM calibration (see figure 6, from [1]). 

 

 
Figure 6. The calibrating artefact, hexapod based. 

 
 This kind of artefact needs to be validated, for the purpose of verifying its 

adequacy. Its validation and the measurement techniques use data fusion applied 
to non-linear and non-observable systems. 

Comparing the calculated position of the moving sphere center with the 
corresponding measured position by the CMM in the measurement volume does 
the global calibration of CMMs. Only length variations are used to obtain the 
calculated position and these length variations are measured by three miniature 
laser interferometers installed inside the telescopic links (see figures 7 and 8). 
The artefact uses a self-calibrated method and its modelling is based on laser 
trilateration. 

The problem of global calibration can be divided into two steps: 
1st step - prediction (geometry identification): knowledge about system 

geometry (localization of fixed points) and tracking (following mobile point) are 
used to obtain geometry identification (that is done by finding the initial length 
of the links li, the coordinates of the mobile point xj, yj, and the coordinates of 
the fixed points x0i, y0i, that minimize:  
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with dlij
b representing laser interferometer measurements); 
2nd step - update (system identification): after tracking and identifying 

geometry, the problem is the identification of the mobile point position, in real 
time, using 3D laser trilateration. 

3. Modeling Artefact for Global Calibration of CMMs 

Let us consider three fixed spheres P1, P2 and P3, each one connected to a 
mobile sphere Q by a telescopic link (see figure 8). If we know the lengths of 
the lines connecting the center of the fixed spheres to the mobile sphere 
perturbed by known noise and by random noise: 

0i i ci uiL L p p= + + , (2) 
from trilateration, we can find the coordinates of the mobile sphere ( ), ,Q X Y Z  
and also the uncertainty of each coordinate ( ), ,X Y Zu u u . 

 
Figure 7. Reference coordinates Oxyz. 

 

                                                           
b The measurements of links increments, dlij, are perturbed, at least, by ambient humidity, 
ambient temperature and atmospheric pressure. Also, measured dlij are estimated with an 
uncertainty composed by the uncertainties of measured perturbations, which probability 
density functions are of unknown type gaussian/non-gaussian and, certainly, constituting 
processes that may be stationary/non-stationary. 
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Considering the coordinates from the fixed spheres centers ( )1 1 1 1, ,P X Y Z , 

( )2 2 2 2, ,P X Y Z , ( )3 3 3 3, ,P X Y Z  and assuming Z1 = Z2 = Z3 = 0, we obtain: 

( )

( )
( ) ( )

( ) ( )
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      ( ) ( )2 22
1 1 1Z L X X Y Y= − − − − . 

(3) 

 

 
Figure 8. Telescopic links. 

 
Or, particularly, if we consider the specific coordinates from figure 7, 

( )1 0,0,0P , ( )2 2,0,0P X  and ( )3 3 3, ,0P X Y , we get: 
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We use those equations in order to find reference values for the artefact and 
the first set of equations to find, following the GUM, the uncertainty for the 
reference coordinates X, Y and Z knowing the uncertainties for the center of the 
fixed spheres X1, Y1, Z1, X2, Y2, Z2, X3, Y3 and Z3, and also for the length of the 
links L1, L2 and L3. 

Following the GUM, the uncertainty uY for a dependent measure 
( )1 2 3, , , , nY Y X X X X= K , a function of n uncorrelated measurements Xi with 

uncertainties given by uXi, is defined by: 
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In order to bypass the derivatives 
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resulting from increments on Xi equal to the uncertainty uXi. Consequently, uY  is 
given by: 
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Two problems exist relating to the length of each link Li and also to the 
coordinates for the fixed spheres ( )1 1 1 1, ,P X Y Z , ( )2 2 2 2, ,P X Y Z  and ( )3 3 3 3, ,P X Y Z . 

With the laser interferometers we only are measuring length variation. We need 
to estimate the real length for the links, and also the coordinates for fixed 
spheres. We assume that X1 = Y1 = Z1 = Y2 = Z2 = Z3 = 0, using the reference 
coordinates from figure 7. All the other values, and also the uncertainties for all 
values, are calculated by self-calibration. 

4. Self-calibration of the Artefact 

Self-calibration (system identification) is done by moving the mobile sphere 
over the plane of the fixed spheres and minimizing the cost function c: 
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where a1_k, a2_k, a3_k are given by the set of 3(m+1) equations, for k=0,…,m: 
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(8) 

with Xk_est, Yk_est, Zk_est the estimated coordinates of the mobile sphere in the kth 
position, L1_est, L2_est, L3_est the estimated lengths for the three links at the initial 
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position for k=0, and d1_k, d2_k, d3_k the measured length variations of the three 
links. 

For m+1 positions of the mobile sphere, we get 3(m+1) equations with 
equal number of measurements and with 3m+15 unknowns (3m+3 coordinates 
for the mobile sphere positions, 9 coordinates for the fixed spheres position and 
3 initial lengths for the links). 

The problem has many solutions, and the fixed sphere’s location enables a 
quick evaluation of the validity of the solution. In figure 9 we present four 
possible solutions for the same inputs, resulting from the evident axis 
symmetrical solutions. The optimal solution search is done using the 
optimization toolbox of Matlab: starting with a constrained method in order to 
fix the solution in the adequate region and concluding with an unconstrained 
method to obtain a quicker and better solution. 

 

 
Figure 9. Those figures present possible evident solutions for self-calibration. 

 
The cost function value is used to obtain the estimated uncertainty for the 

estimated parameters. 

5. Simulating Calibration Artefact 

In order to verify the adequacy of use of the developed device, some numerical 
simulations were made, using the software Matlab (version 6.5 R13). The 
programs are divided into two major parts: in the first one, the purpose is to 
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realize the self-calibration of the system and, in the second, using the results for 
the adjusted parameters obtained in the first part, using trilateration, estimated 
coordinates and the correspondent uncertainty are obtained for some reference 
points. 

The program needs initial parameters that are the minimum and the 
maximum link length, the link’s length variation noise amplitude, the number of 
constrained steps (necessary to constrain the area where the solutions could be 
found, using the optimization method) and forbidden area radius (where no 
points can be placed, corresponding to a physical limitation of the artefact). 
Table 1 summarizes the parameters (in relative units) introduced in the 
presented examples. 

Table 1. Parameters used for simulations. 

  Simulation 

  1st 2nd 3rd 

maximum link length 20 20 20 

links length noise amplitude 0 0.01 0.30 

constrained steps 5 5 5 

Pa
ra

m
et

er
s 

forbidden area radius 0.6 0.6 0.6 
 

After the introduction of the initial parameters, the user chooses, in a 
graphical way using the mouse pointer, the three fixed spheres’ positions and 
the various moving sphere positions. In figure 10 these positions are presented 
for the 2nd simulation, similar to the other two simulations realized (note that in 
the space of measurement there are some regions of shadow, corresponding to 
zones that are unreachable by the moving sphere). As the user introduces a new 
position, the parameters are recalculated using all information available. 

After introducing all moving sphere positions, the first part of the program 
is finished and the results of self-calibration are presented, in a graphical and in 
a numerical form. In table 2 we present the final numerical results of 
self-calibration for the 2nd simulation corresponding to links length noise 
amplitude equal to 0.01. 

The results, in a graphical form, are presented in figure 11, which shows the 
real positions versus estimated positions of the fixed points, the variations of the 
link lengths, the evolution of the cost function that is minimized during the 
program and the evolution of the estimated values for the initial link lengths. 

For the 1st and the 3rd simulations the graphical results of self-calibration are 
shown in figures 12 and 13. 
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Figure 10. Example of fixed spheres position and mobile sphere trajectory during self-calibration. 

 
Table 2. Results of self-calibration with links length noise amplitude 0.01. 

 reference value estimated value deviation 

 
initial links lengths 

 

4.14524605719157 
5.77216978117969 
4.80120164387303 

4.14762057356121 
5.76981912447491 
4.81250457805668 

0.00237451636964 
-0.00235065670478 
0.01130293418365 

x of 2nd fixed point 
x of 3rd fixed point 
y of 3rd fixed point 

7.64741472782958 
5.87877399052966 
6.74274716485670 

7.64545798330029 
5.89051558442518 
6.75540982406257 

-0.00195674452929 
0.01174159389553 
0.01266265920588 

1st moving point x 
1st moving point y 

2.76878359671112 
3.08494769311341 

2.77157430333704 
3.08807624576027 

0.00279070662592 
0.00312855264686 

2nd moving point x 
2nd moving point y 

3.35102638810543 
4.19778270569769 

3.36071345716409 
4.19928162592284 

0.00968706905866 
0.00149892022515 

… … … … 
 

After the self-calibration, it is possible to introduce in the program some 
values of 3D reference points coordinates and compare them with the 
correspondent estimated coordinates, obtained from the final parameters (given 
by the self-calibration process) using trilateration. In addition, those results have 
a corresponding estimated uncertainty, a function of the uncertainty of the links’ 
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lengths in table 3 are summarized some results for 4 reference points obtained in 
the three simulations realized.  

 

 
Figure 11. Self-calibration with link’s length noise amplitude = 0.01. 

 
Figure 12. Self-calibration with link’s length noise amplitude = 0.0. 
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Figure 13. Self-calibration with link’s length noise amplitude = 0.3. 
 
 
 

 
Table 3. Trilateration results. 

Links length noise amplitude  

0.0 0.01 0.3 

x = 4 4.000187 ± 0.000002 4.00 ± 0.02 3.6 ± 0.4 

y = 4 4.000031 ± 0.000002 4.00 ± 0.02 4.3 ± 0.4 

z = 4 4.000009 ± 0.000003 3.99 ± 0.01 3.7 ± 0.4 

x = 2 2.000256 ± 0.000002 2.01 ± 0.02 1.6 ± 0.6 

y = 5 5.000069 ± 0.000002 5.00 ± 0.02 5.0 ± 0.6 

z = 7 7.000042 ± 0.000002 7.01 ± 0.02 7.0 ± 0.4 

x = 25 25.000606 ± 0.000007 25.05 ± 0.08 26 ± 3 

y = 25 24.99971 ± 0.00001 24.85 ± 0.08 27 ± 3 

z = 25 24.99991 ± 0.00001 25.10 ± 0.08 22 ± 3 

x = 100 100.00070 ± 0.00003 100.00 ± 0.2 97 ± 6 

y = 0 -0.00163 ± 0.00003 -0.40 ± 0.2 12 ± 6 

R
ef

er
en

ce
 P

oi
nt

 C
oo

rd
in

at
es

 

z = 10 

Es
tim

at
ed

 C
oo

rd
in

at
es

 

9.9944 ± 0.0003 10 ± 2 20 ± 30 
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6. Reference Values for CMM Calibration – Uncertainty Propagation 

Coordinates, and uncertainties for those coordinates, are the reference values for 
CMMs calibration. The coordinates and the respective uncertainties are 
calculated in real time, by a method based on laser interferometer measurement 
of the links length variation. 

For that purpose, we tried several Data Fusion solutions such as the Kalman 
Filter, the Extended Kalman Filter, the covariance intersection, etc. In this 
paper, we present the results obtained using the standard definition for 
uncertainty propagation (due to its extension and unsolved small issues, further 
results will be presented later). 

In figure 14, we represent some of the estimated uncertainty values for X, Y 
and Z coordinates of the moving sphere in some regions of the measurement 
space, for a link length noise amplitude equal to 0.01. As we can see, the final 
uncertainty in each coordinate, not only depends on the link length uncertainty 
value, but also depends on the value of that coordinate and on the values of the 
other two coordinates. 

From figure 14, we can also see that the uncertainties of X and Y slowly 
increase when the coordinate Z from the mobile sphere increases. The 
uncertainty for the Z coordinates increases during trilateration for small values 
of Z and reduces when Z is increasing. Those values are not acceptable and 
trilateration only may be used for values of Z not equal to 0. When the mobile 
sphere is over the plane of the fixed spheres, only the X and Y coordinates must 
be calibrated, as in the case of using the ball plate artefact. 

 

 
Figure 14. Moving sphere coordinates uncertainty in several regions of the measurement space. 
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7. Conclusions 

The measurements made with the use of the described artefact have errors and a 
previously unknown uncertainty. In this text, above, we presented a technique to 
incorporate the measured values uncertainties in order to obtain the calibration 
results’ final uncertainties (using data fusion as a learning system, meaning that 
the optimal uncertainty estimation is constantly adapted during self-calibration 
of the device). However, this is not the final answer for this problem of artefact 
validation: we are developing and comparing different techniques in non-linear 
and non-observable state estimation.  

The results obtained for the final calibration uncertainty using those 
techniques lead us to the following conclusions. First, in order to decide among 
the various techniques, we need to take into account the amount of computer 
memory required for identification, the accuracy of the method, the difficulties 
in implementation and also the ability to represent multimodal probability 
density functions (PDFs).  

In table 4, where KF represents the Kalman filter, EKF represents the 
extended Kalman filter, CI represents the covariance intersection, CP represents 
the covariance propagation, Markov represents the interval functions with fixed 
cells, probability grids or maximum entropy estimation and, finally, PF 
represents various particle filters (the set constituted by Monte Carlo 
localization, bootstrap, condensation algorithm and fittest algorithm), we 
summarize the comparison of the different techniques studied. 

 
Table 4. Comparing calculating data fusion techniques for uncertainty. 

 KF EKF CI CP Markov PF 

Starting geometry 
knowledge good estimation from scratch 

Time of response more more more more more less 

Memory 
consuming less less less less more less 

Ability to represent 
multimodal PDFs less less more more more more 

 
As a conclusion, we can state that the particle filters seem to be the best 

methods for our goal. However, the ability to represent multimodal PDFs seems 
to be very restrictive and a better analysis need to be realized taking into 
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account the costs involved (time response, memory consuming, etc.). In other 
way, the Kalman filter and the extended Kalman filter need a starting geometry 
knowledge that can be estimated, measuring the position of fixed points and 
changing coordinates following the artefact coordinate system. 

The results given by using the developed Matlab routines based on the 
above make us conclude that the self-calibration of the artefact works well. The 
modelling of the artefact allows us to develop the real artefact that we are 
starting to build and, in the near future, we will have results from that artefact. 
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