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Extension theory and the calculus of butterflies

Let C be a semi-abelian category satisfying the condition (SH) (i.e. where two

equivalence relation centralize each other as soon as their normalizations commute).

We give a cohomological classification of the extensions of an internal crossed module

in C via a given object. More precisely, given an internal crossed module (∂ : K →
K0, ξ) and a morphism φ : Y → π0(∂) = Coker(∂), we show that the set Extφ(Y, ∂)

of extensions (i.e. short exact sequences) (f, k) filling the following diagram (with

(1K , α) a crossed module morphism)
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either is empty, or it is a simply transitive H2
φ

(Y, π1(∂))-set, where π1(∂) = Ker(∂) is

a Y -module with the action φ induced by ξ.

The main tool we use is the calculus of butterflies, introduced by B. Noohi [5]

to deal with monoidal functors between 2-groups and further developed in the semi-

abelian context in [1], where the authors show that they are the bicategory of fractions

of internal crossed modules with respect to weak equivalences.

The present result is an intrinsic version of a theorem by P. Dedecker [4] (stated

in the category of groups) and extends, in the semi-abelian setting, the intrinsic

version (developed in [2] and [3]) of the classical Schreier-Mac Lane Theorem on the

classification of extensions.
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