A presentation of the book

Schreier split epimorphisms in monoids and in semirings

by D. Bourn, N. Martins-Ferreira, A. Montoli, and M. Sobral

24 January 2014
Universidade de Coimbra
Outline

Introduction

Schreier split epimorphisms in monoids

Semirings
Outline

Introduction

Schreier split epimorphisms in monoids

Semirings
Introduction

During the last years there has been a great interest in finding a suitable categorical framework to study group-like structures:

- Mal’tsev categories
- protomodular categories
- homological categories
- semi-abelian categories

Some beautiful theories have been developed in these categories: commutators, homology, cohomology, torsion theories, radicals, etc.

These theories have led to a conceptual understanding of parallel results in Grp, Rng, Lie_K, XMod, Grp(Comp).
During the last years there has been a great interest in finding a suitable categorical framework to study group-like structures:

- Mal’tsev categories
- protomodular categories
- homological categories
- semi-abelian categories

Some beautiful theories have been developed in these categories: commutators, homology, cohomology, torsion theories, radicals, etc.

These theories have led to a conceptual understanding of parallel results in Grp, Rng, Lie_K, XMod, Grp(Comp).
During the last years there has been a great interest in finding a suitable categorical framework to study group-like structures:

- Mal’tsev categories
- protomodular categories
- homological categories
- semi-abelian categories

Some beautiful theories have been developed in these categories: commutators, homology, cohomology, torsion theories, radicals, etc.

These theories have led to a conceptual understanding of parallel results in \(\text{Grp}, \text{Rng}, \text{Lie}_K, \text{XMod}, \text{Grp(Comp)} \).
Question
What can be said about the categorical properties of the category Mon of monoids?

Although Mon is not a Mal’tsev category, it is a unital category (Bourn, 1996):

Definition
A finitely complete pointed category C is unital when, given two objects A and B in C, the morphisms $(1_A, 0)$ and $(0, 1_B)$ in the diagram

$$
\begin{array}{ccc}
A & \xrightarrow{(1_A, 0)} & A \times B \\
\downarrow & & \downarrow \\
& & B \\
& \xleftarrow{(0, 1_B)} &
\end{array}
$$

are jointly extremal epimorphic.
Question
What can be said about the **categorical properties** of the category **Mon** of monoids?

Although **Mon** is not a Mal’tsev category, it is a **unital category** (Bourn, 1996):

Definition
A finitely complete pointed category C is **unital** when, given two objects A and B in C, the morphisms $(1_A, 0)$ and $(0, 1_B)$ in the diagram

\[
\begin{array}{ccc}
A & \stackrel{(1_A,0)}{\longrightarrow} & A \times B & \stackrel{(0,1_B)}{\longleftarrow} & B
\end{array}
\]

are jointly extremal epimorphic.
Question
What can be said about the categorical properties of the category Mon of monoids?

Although Mon is not a Mal’tsev category, it is a unital category (Bourn, 1996):

Definition
A finitely complete pointed category \(C \) is unital when, given two objects \(A \) and \(B \) in \(C \), the morphisms \((1_A, 0)\) and \((0, 1_B)\) in the diagram

\[
\begin{array}{ccc}
A & \xrightarrow{(1_A,0)} & A \times B & \xleftarrow{(0,1_B)} & B \\
\end{array}
\]

are jointly extremal epimorphic.
This means that, given a monomorphism \(m: M \rightarrow A \times B \)

\[
\begin{array}{c}
M \\
\downarrow^m \\
\end{array}
\quad
\begin{array}{c}
A \\
\rightarrow \\
\downarrow^{(1_A,0)} \\
A \times B \\
\leftarrow \\
\downarrow^{(0,1_B)} \\
B
\end{array}
\]

such that \((1_A, 0)\) and \((0, 1_B)\) factor through \(m\)
This means that, given a monomorphism $m: M \rightarrow A \times B$

such that $(1_A, 0)$ and $(0, 1_B)$ factors through m,
This means that, given a monomorphism \(m: M \to A \times B \)

\[
\begin{array}{c}
A \\
\downarrow (1_A, 0) \\
M \\
\downarrow \Rightarrow \downarrow m \\
A \times B \\
\downarrow \Rightarrow \\
(0, 1_B) \\
B
\end{array}
\]

such that \((1_A, 0)\) and \((0, 1_B)\) factors through \(m \), then \(m \) is an iso.
This implies in particular that the arrows

\[A \xrightarrow{(1_A,0)} A \times B \xleftarrow{(0,1_B)} B \]

are jointly epimorphic.

This opens the way to the study of commuting arrows:

given two arrows \(a: A \to C \) and \(b: B \to C \) with the same codomain, there is at most one arrow \(\phi \) making the diagram

\[A \xrightarrow{(1_A,0)} A \times B \xleftarrow{(0,1_B)} B \]

commute.
This implies in particular that the arrows

\[
A \xrightarrow{(1_A,0)} A \times B \xleftarrow{(0,1_B)} B
\]

are jointly epimorphic.

This opens the way to the study of commuting arrows:

given two arrows \(a: A \to C\) and \(b: B \to C\) with the same codomain, there is at most one arrow \(\phi\) making the diagram

\[
\begin{array}{ccc}
A & \xrightarrow{(1_A,0)} & A \times B & \xleftarrow{(0,1_B)} & B \\
\downarrow a & & \downarrow \phi & & \downarrow b \\
C & & & &
\end{array}
\]

commute.
When this is the case,

\[
\begin{array}{c}
A \xrightarrow{(1_A,0)} A \times B & \xleftarrow{(0,1_B)} B \\
\downarrow^a & \downarrow^\phi & \downarrow^b \\
C & & \\
\end{array}
\]

one says that \textit{a} and \textit{b commute} (in the sense of Huq, 1968).

In the category \textit{Mon} there is a nice theory of commuting arrows, leading to a \textit{commutator theory of subobjects}.
When this is the case, one says that \(a \) and \(b \) commute (in the sense of Huq, 1968).

In the category \(\text{Mon} \) there is a nice theory of commuting arrows, leading to a commutator theory of subobjects.
Can one develop some other aspects of categorical algebra in \textbf{Mon}?

Is there a structural property of the fibration of points in \textbf{Mon}, as it is the case in the category \textbf{Grp} of groups?

The book \textit{Schreier split epimorphisms in monoids and in semirings} gives a positive and very interesting answer!
Can one develop some other aspects of categorical algebra in Mon?

Is there a structural property of the fibration of points in Mon, as it is the case in the category Grp of groups?

The book Schreier split epimorphisms in monoids and in semirings gives a positive and very interesting answer!
Can one develop some other aspects of categorical algebra in \textbf{Mon}?

Is there a structural property of the \textit{fibration of points} in \textbf{Mon}, as it is the case in the category \textbf{Grp} of groups?

The book \textit{Schreier split epimorphisms in monoids and in semirings} gives a positive and very interesting answer!
Outline

Introduction

Schreier split epimorphisms in monoids

Semirings
Schreier split epimorphisms in monoids

Recall that the fibration of points concerns the category $\text{Pt}(\mathcal{C})$:

- objects: split epimorphisms in \mathcal{C}

$$
\begin{array}{ccc}
A & \xrightarrow{p} & B \\
\downarrow{s} & & \downarrow{s'} \\
A' & \xleftarrow{p'} & B'
\end{array}
$$

- morphisms: pairs of arrows (f_A, f_B) in \mathcal{C} making the diagram commute.
Schreier split epimorphisms in monoids

Recall that the fibration of points concerns the category $\text{Pt}(\mathbb{C})$:

- objects: split epimorphisms in \mathbb{C}

 \[
 \begin{array}{c}
 A \\ \downarrow p \\
 \leftarrow \quad \rightarrow \\
 B \\
 \end{array}
 \quad ps = 1_B
 \]

- morphisms: pairs of arrows (f_A, f_B) in \mathbb{C} making the diagram commute.

\[
\begin{array}{c}
A \\ \downarrow p \\
\leftarrow \\
B \\
\end{array}
\quad \begin{array}{c}
A' \\ \downarrow p' \\
\leftarrow \\
B' \\
\end{array}
\quad \begin{array}{c}
f_A \\ \downarrow s \\
\leftarrow \\
B \\
\end{array}
\quad \begin{array}{c}
f_B \\ \downarrow s' \\
\leftarrow \\
B' \\
\end{array}
\]
Schreier split epimorphisms in monoids
Recall that the fibration of points concerns the category $\text{Pt}(\mathcal{C})$:

- objects: split epimorphisms in \mathcal{C}

 \[
 \begin{array}{c}
 A \xrightarrow{p} B \\
 \downarrow s \quad \downarrow p \\
 A' \xleftarrow{s'} B'
 \end{array}
 \]

 \[ps = 1_B\]

- morphisms: pairs of arrows (f_A, f_B) in \mathcal{C} making the diagram commute.

\[
\begin{array}{c}
A \xrightarrow{p} B \\
\downarrow s \\
A' \xleftarrow{s'} B'
\end{array}
\]

}\[
\begin{array}{c}
A \xrightarrow{p} B \\
\downarrow s \\
A' \xleftarrow{s'} B'
\end{array}
\]
There is a functor \(P : \text{Pt}(\mathcal{C}) \to \mathcal{C} \) associating, with any split epimorphism, its codomain:

\[
\begin{array}{ccc}
A & \xrightarrow{p} & B \\
\downarrow{f_A} & & \downarrow{f_B} \\
A' & \xrightarrow{s'} & B'
\end{array}
\]

is sent by \(P \) to

\[
\begin{array}{ccc}
\quad \quad & \quad \quad & \\
\quad \quad & \quad \quad & \\
\quad \quad & \quad \quad & \\
B & \downarrow{f_B} & B'
\end{array}
\]

This functor \(P : \text{Pt}(\mathcal{C}) \to \mathcal{C} \) is called the fibration of pointed objects.
There is a functor $P : \text{Pt}(C) \to C$ associating, with any split epimorphism, its codomain:

\[
\begin{array}{ccc}
A & \xrightarrow{p} & B \\
\downarrow{f_A} & & \downarrow{f_B} \\
A' & \xleftarrow{s'} & B'
\end{array}
\]

is sent by P to

\[
\begin{array}{ccc}
B & \xleftarrow{s} & B \\
\downarrow{f_B} & & \downarrow{f_B} \\
B & \xrightarrow{p'} & B'
\end{array}
\]

This functor $P : \text{Pt}(C) \to C$ is called the fibration of pointed objects.
There is a functor $P : \text{Pt}(\mathcal{C}) \to \mathcal{C}$ associating, with any split epimorphism, its codomain:

\[
\begin{array}{ccc}
A & \xrightarrow{p} & B \\
\downarrow f_A & & \downarrow f_B \\
A' & \xleftarrow{s'} & B'
\end{array}
\]

is sent by P to

\[
\begin{array}{ccc}
B & \xrightarrow{f_B} & B' \\
\downarrow & & \\
B & \to & B'
\end{array}
\]

This functor $P : \text{Pt}(\mathcal{C}) \to \mathcal{C}$ is called the fibration of pointed objects.
One discovery in this book is that, in \textbf{Mon}, one should consider \textbf{SPt(Mon)}, the category of “Schreier split epimorphisms in Mon”:

let

\[
\begin{array}{c}
0 \rightarrow K \xrightarrow{k} A \xrightarrow{p} B \xrightarrow{s} 0
\end{array}
\]

be a split epi in \textbf{Mon}, with kernel \(k : K \rightarrow A \).

This is a \textbf{Schreier split epi} if, for any \(a \in A \), there is a unique \(k \in K \) such that

\[
a = k \cdot \text{sp}(a).
\]
One discovery in this book is that, in \textbf{Mon}, one should consider $\text{SPt}(\textbf{Mon})$, the category of “Schreier split epimorphisms in Mon”:

let

$0 \longrightarrow K \overset{k}{\longrightarrow} A \overset{p}{\longrightarrow} B \overset{s}{\longrightarrow} 0$

be a split epi in \textbf{Mon}, with kernel $k : K \to A$.

This is a Schreier split epi if, for any $a \in A$, there is a unique $k \in K$ such that

$a = k \cdot \text{sp}(a)$.
One discovery in this book is that, in Mon, one should consider $\text{SPt}(\text{Mon})$, the category of “Schreier split epimorphisms in Mon”:

let

\[
\begin{array}{c}
0 \rightarrow K \xrightarrow{k} A \xrightarrow{p} B \xrightarrow{s} 0
\end{array}
\]

be a split epi in Mon, with kernel $k : K \rightarrow A$.

This is a Schreier split epi if, for any $a \in A$, there is a unique $k \in K$ such that

\[a = k \cdot sp(a)\].
Remark
Any Schreier split epi in Mon determines a set-theoretic map q

\[
0 \rightarrow K \xrightarrow{k} A \xrightarrow{p} B \rightarrow 0
\]

defined by $q(a) = k$, for any $a \in A$, where $k \in K$ is such that

\[
a = k \cdot sp(a).
\]

The map q is the Schreier retraction associated with the Schreier split exact sequence.
Remark

Any *Schreier split epi* in *Mon* determines a set-theoretic map q

$$
\begin{array}{c}
0 & \rightarrow & K & \xrightarrow{k} & A & \xrightarrow{p} & B & \rightarrow & 0 \\
\end{array}
$$

defined by $q(a) = k$, for any $a \in A$, where $k \in K$ is such that

$$a = k \cdot sp(a).$$

The map q is the *Schreier retraction* associated with the *Schreier split exact sequence*.
Example
The canonical split epi in Mon given by

\[
\begin{array}{c}
0 \rightarrow A \xleftarrow{\pi_A} A \times B \xrightarrow{\pi_2} B \rightarrow 0
\end{array}
\]

\[\begin{array}{c}
(1_A,0) \\
(0,1_B)
\end{array}\]

is a Schreier split epi.
Example

Any split epimorphism

\[0 \longrightarrow K \xleftarrow{q} A \xrightarrow{p} B \longrightarrow 0 \]

in the category \textbf{Grp} is a Schreier split epi:

indeed, given \(a \in A \), choose \(q(a) = k = a \cdot sp(a)^{-1} \in K \), and

\[k \cdot sp(a) = (a \cdot sp(a)^{-1}) \cdot sp(a) = a. \]
Example

Any split epimorphism

\[
\begin{array}{cccccc}
0 & \rightarrow & K & \rightarrow & A & \rightarrow & B & \rightarrow & 0 \\
& & ^q & \downarrow & ^p & \leftarrow & ^s & \; \\
& & _k & \; & & \leftarrow & & \\
\end{array}
\]

in the category Grp is a Schreier split epi:

indeed, given $a \in A$, choose $q(a) = k = a \cdot \text{sp}(a)^{-1} \in K$, and

\[k \cdot \text{sp}(a) = (a \cdot \text{sp}(a)^{-1}) \cdot \text{sp}(a) = a.\]
In the category Mon, the Schreier split epis behave extremely well:

Lemma
Given a Schreier split epimorphism in Mon equipped with its kernel

\[
\begin{array}{cccccc}
0 & \rightarrow & K & \overset{k}{\rightarrow} & A & \overset{p}{\rightarrow} & B \\
\end{array}
\]

then \(p = \text{coker}(k) : \)

\[
\begin{array}{cccccc}
0 & \rightarrow & K & \overset{k}{\rightarrow} & A & \overset{p}{\rightarrow} & B & \rightarrow & 0. \\
\end{array}
\]

Remark
This is due to the fact that the pair \((k, s)\) is jointly epimorphic.
In the category Mon, the Schreier split epis behave extremely well:

Lemma
Given a Schreier split epimorphism in Mon equipped with its kernel

$$
0 \longrightarrow K \overset{k}{\longrightarrow} A \overset{p}{\longrightarrow} B \\
0 \leftarrow \leftarrow K \overset{k}{\longleftarrow} A \overset{s}{\longleftarrow} B
$$

then $p = \text{coker}(k)$:

$$
0 \longrightarrow K \overset{k}{\longrightarrow} A \overset{p}{\longrightarrow} B \longrightarrow 0.
$$

Remark
This is due to the fact that the pair (k, s) is jointly epimorphic.
In the category Mon, the Schreier split epis behave extremely well :

Lemma

Given a Schreier split epimorphism in Mon equipped with its kernel

\[0 \rightarrow K \overset{k}{\rightarrow} A \overset{p}{\rightarrow} B \]

then $p = \text{coker}(k)$:

\[0 \rightarrow K \overset{k}{\rightarrow} A \overset{p}{\leftarrow} B \rightarrow 0. \]

Remark

This is due to the fact that the pair (k, s) is jointly epimorphic.
Theorem
Given a commutative diagram of Schreier split exact sequences

in Mon, if \(u \) is an iso then \(v \) is an iso.
An analogy then appears between the situations in \(\text{Grp} \) and in \(\text{Mon} \):

Groups
For any \(f : X \to Y \) in \(\text{Grp} \) the change-of-base functor

\[
f^* : \text{Pt}_Y(\text{Grp}) \to \text{Pt}_X(\text{Grp})
\]

with respect to the fibration \(P : \text{Pt}(\text{Grp}) \to \text{Grp} \) is conservative.

Monoids
For any \(f : X \to Y \) in \(\text{Mon} \) the change-of-base functor

\[
f^* : \text{SPt}_Y(\text{Mon}) \to \text{SPt}_X(\text{Mon})
\]

with respect to the fibration \(P^S : \text{SPt}(\text{Mon}) \to \text{Mon} \) is conservative.
An analogy then appears between the situations in Grp and in Mon:

Groups
For any $f: X \to Y$ in Grp the change-of-base functor

$$f^*: \text{Pt}_Y(\text{Grp}) \to \text{Pt}_X(\text{Grp})$$

with respect to the fibration $P: \text{Pt}(\text{Grp}) \to \text{Grp}$ is conservative.

Monoids
For any $f: X \to Y$ in Mon the change-of-base functor

$$f^*: \text{SPt}_Y(\text{Mon}) \to \text{SPt}_X(\text{Mon})$$

with respect to the fibration $P^S: \text{SPt}(\text{Mon}) \to \text{Mon}$ is conservative.
An analogy then appears between the situations in \textbf{Grp} and in \textbf{Mon}:

\textbf{Groups}
For any \(f : X \to Y \) in \textbf{Grp} the change-of-base functor

\[f^* : \text{Pt}_Y(\text{Grp}) \to \text{Pt}_X(\text{Grp}) \]

with respect to the fibration \(P : \text{Pt}(\text{Grp}) \to \text{Grp} \) is conservative.

\textbf{Monoids}
For any \(f : X \to Y \) in \textbf{Mon} the change-of-base functor

\[f^* : \text{SPt}_Y(\text{Mon}) \to \text{SPt}_X(\text{Mon}) \]

with respect to the fibration \(P^S : \text{SPt}(\text{Mon}) \to \text{Mon} \) is conservative.
The full subcategory $\text{SPt}(\text{Mon})$ of $\text{Pt}(\text{Mon})$ determines a subfibration P^S of the fibration of points P:

\[
\begin{array}{ccc}
\text{SPt(Mon)} & \xrightarrow{j} & \text{Pt(Mon)} \\
\downarrow P^S & & \downarrow P \\
\text{Mon} & & \text{Mon}
\end{array}
\]
These observations lead to a detailed study of **internal categorical structures** in **Mon**:

- Schreier internal categories (Patchkoria, 1998),
- Schreier internal groupoids,
- Schreier internal relations,
- centralizers of Schreier reflexive relations.
These observations lead to a detailed study of internal categorical structures in Mon:

- Schreier internal categories (Patchkoria, 1998),
- Schreier internal groupoids,
- Schreier internal relations,
- centralizers of Schreier reflexive relations.
These observations lead to a detailed study of internal categorical structures in Mon:

- Schreier internal categories (Patchkoria, 1998),
- Schreier internal groupoids,
 - Schreier internal relations,
 - centralizers of Schreier reflexive relations.
These observations lead to a detailed study of internal categorical structures in Mon:

- Schreier internal categories (Patchkoria, 1998),
- Schreier internal groupoids,
- Schreier internal relations,
- Centralizers of Schreier reflexive relations.
These observations lead to a detailed study of internal categorical structures in Mon:

- Schreier internal categories (Patchkoria, 1998),
- Schreier internal groupoids,
- Schreier internal relations,
- centralizers of Schreier reflexive relations.
Split extension classifier

In Mon, for any monoid M, it is shown that the monoid $\text{End}(M)$ of endomorphisms of M has a universal property, which is analogous to the one of the automorphism group $\text{Aut}(G)$ of a group G in Grp.

Indeed, one can construct a Schreier split extension

$$0 \longrightarrow M \longrightarrow \text{Hol}(M) \longrightarrow \text{End}(M) \longrightarrow 0,$$

with the following universal property:
Split extension classifier

In **Mon**, for any monoid \(M \), it is shown that the monoid \(\text{End}(M) \) of endomorphisms of \(M \) has a **universal property**, which is analogous to the one of the automorphism group \(\text{Aut}(G) \) of a group \(G \) in **Grp**.

Indeed, one can construct a Schreier split extension

\[
0 \longrightarrow M \longrightarrow \text{Hol}(M) \underline{\longrightarrow} \text{End}(M) \longrightarrow 0 ,
\]

with the following universal property:
for any Schreier split extension with kernel M in Mon

$$
\begin{array}{ccc}
0 & \longrightarrow & M \\
& \searrow_{k} & \nearrow_{s} \\
& \downarrow \phi & \\
0 & \longrightarrow & \text{Hol}(M)
\end{array}
\quad
\begin{array}{ccc}
M & \longrightarrow & A \\
\downarrow p & & \downarrow s \\
B & \longrightarrow & 0
\end{array}
$$

there is a unique arrow ϕ making the following diagram commute:
for any Schreier split extension with kernel M in Mon

$$
0 \rightarrow M \xrightarrow{k} A \xrightarrow{\phi} B \xrightarrow{s} 0,
$$

there is a unique arrow ϕ making the following diagram commute:

$$
\begin{array}{c}
0 \rightarrow M \xrightarrow{k} A \xrightarrow{\phi} B \xrightarrow{s} 0 \\
0 \rightarrow M \xrightarrow{k} \text{Hol}(M) \xrightarrow{\phi} \text{End}(M) \xrightarrow{s} 0
\end{array}
$$
For this reason the monoid $\text{End}(M)$ is called the **Schreier split extension classifier of M**.

The group $\text{Aut}(M)$ is also shown to have a universal property, and it is called the **homogeneous split extension classifier of M**.

These concepts are then used in order to classify what the authors call **special Schreier extensions with abelian kernels**.
For this reason the monoid $\text{End}(M)$ is called the Schreier split extension classifier of M.

The group $\text{Aut}(M)$ is also shown to have a universal property, and it is called the homogeneous split extension classifier of M.

These concepts are then used in order to classify what the authors call special Schreier extensions with abelian kernels.
For this reason the monoid $\operatorname{End}(M)$ is called the Schreier split extension classifier of M.

The group $\operatorname{Aut}(M)$ is also shown to have a universal property, and it is called the homogeneous split extension classifier of M.

These concepts are then used in order to classify what the authors call special Schreier extensions with abelian kernels.
Outline

Introduction

Schreier split epimorphisms in monoids

Semirings
Semirings

Many of the interesting results discovered by Manuela Sobral and her collaborators in \textbf{Mon} also have analogous versions in the category \textbf{SRng} of semirings.

\textbf{Definition}
\[(A, +, \cdot, 0)\] is a \textit{semiring} if
\begin{itemize}
 \item \((A, +, 0)\) is a commutative monoid;
 \item \(\cdot : A \times A \to A\) is an associative binary operation such that
 \[a \cdot (b + c) = a \cdot b + a \cdot c\]
 \[(a + b) \cdot c = a \cdot c + b \cdot c.\]
\end{itemize}

\textbf{Fact :}
The category \textbf{SRng} is unital.
Semirings

Many of the interesting results discovered by Manuela Sobral and her collaborators in Mon also have analogous versions in the category SRng of semirings.

Definition

$(A, +, \cdot, 0)$ is a **semiring** if

- $(A, +, 0)$ is a commutative **monoid**;
- $\cdot : A \times A \to A$ is an associative binary operation such that

\[
a \cdot (b + c) = a \cdot b + a \cdot c
\]

\[
(a + b) \cdot c = a \cdot c + b \cdot c.
\]

Fact:
The category SRng is unital.
Semirings
Many of the interesting results discovered by Manuela Sobral and her
collaborators in Mon also have analogous versions in the category
SRng of semirings.

Definition
$(A, +, \cdot, 0)$ is a semiring if
- $(A, +, 0)$ is a commutative monoid;
- $\cdot : A \times A \rightarrow A$ is an associative binary operation such that
 \[
 a \cdot (b + c) = a \cdot b + a \cdot c
 \]
 \[
 (a + b) \cdot c = a \cdot c + b \cdot c.
 \]

Fact :
The category SRng is unital.
Semirings
Many of the interesting results discovered by Manuela Sobral and her collaborators in Mon also have analogous versions in the category SRng of semirings.

Definition

$(A, +, \cdot, 0)$ is a semiring if

- $(A, +, 0)$ is a commutative monoid;
- $\cdot : A \times A \to A$ is an associative binary operation such that

 \[
 a \cdot (b + c) = a \cdot b + a \cdot c
 \]

 \[
 (a + b) \cdot c = a \cdot c + b \cdot c.
 \]

Fact:
The category SRng is unital.
Definition

A split epi

\[
0 \rightarrow K \xrightarrow{k} A \xleftarrow{s} B \rightarrow 0
\]

in **SemiRng**, with kernel \(k : K \rightarrow A \), is a **Schreier split epi** if, for any \(a \in A \), there is a unique \(k \in K \) such that

\[
a = k + sp(a).
\]

The fibration

\[
SPt(SemiRng) \rightarrow SemiRng
\]

of Schreier pointed objects in **SemiRng** has some remarkable properties, analogous to the ones of the fibration

\[
P^S : SPt(Mon) \rightarrow Mon
\]
Definition

A split epi

\[0 \to K \to A \overset{p}{\longrightarrow} B \to 0 \]

in \textit{SemiRng}, with kernel \(k : K \to A \), is a Schreier split epi if, for any \(a \in A \), there is a unique \(k \in K \) such that

\[a = k + sp(a). \]

The fibration

\[\text{SPt}(\text{SemiRng}) \to \text{SemiRng} \]

of Schreier pointed objects in \textit{SemiRng} has some remarkable properties, analogous to the ones of the fibration

\[P^S : \text{SPt}(\text{Mon}) \to \text{Mon} \]
The results established in the semiring case give a structural meaning to the intuitive proportion:

\[\text{Mon} : \text{Grp} = \text{SRng} : \text{Rng} \]
The results established in the semiring case give a structural meaning to the intuitive proportion:

$$\text{Mon} : \text{Grp} = \text{SRng} : \text{Rng}.$$
The book

Schreier split epimorphisms in monoids and in semirings
by D. Bourn, N. Martins-Ferreira, A. Montoli, and M. Sobral

Texts in Mathematics of the Department of Mathematics of the University of Coimbra

sheds some new light on the categories Mon and SemiRng, by providing a categorical foundation to the study of monoids and semirings.
Happy Birthday Manuela!