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Context

reached upon projective observation, is the same (up to unitary conjugation).
The Nerode minimization theorem is obtained in a wider class of automata,
which we call C-linear automata and then specialized for the particular case of
interest for quantum automata. Due to this fact the, minimization result is not
straightforward and some technicalities are required.

Finally, we briefly mentioned how a conceptual framework can be elaborated
that might lead to a better understanding of quantum automata using their
relation to the theory of unitary group representations.
END OF TO BE REWRITTEN

• Quantum automata

• Open problems concerning QA (and other automata) and their importance

• Category of bilinear automata

• How Category Theory and (computational) Algebraic Theory of the ROF
helped solving the OP

• Quantum Turing machines as morphisms

• Towards quantum Kolmogorov theory

2 Basic concepts

We start by presenting the notion of quantum automaton, due to Moore and
Crutchfield [5].

Definition 2.1

A quantum automaton is a tuple

Q = h⌃, H, si, U,O, ⇢i

where

• ⌃ is a finite set of inputs,

• H is a finite Hilbert space of states,

• si is a unitary vector in H denoting the initial state,

• U is a ⌃-indexed family {U�}�2⌃ of unitary transformations in H,

• O is a Hilbert space of outputs and PO : H ! O is a projection
(there is a subspace H 0 of H isomorphic to O).
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Quantum automata

A quantum automaton is a classical Moore automaton [?] where the structure
of its components is highly inspired on the postulates of quantum mechanics.
Recall that any closed quantum system is described by a unit vector of a Hilbert
system and that all discrete time evolutions of the system are characterized by
unitary transformations [?]. For this reason, the state space H of a quantum
automata is a Hilbert space and its initial state is a unit vector si. Moreover,
all ⌃-indexed state transitions U are unitary transformations. Finally,

Q can be depicted as a particle which is described by a unit vector in H
with initial state si.

A quantum automaton with input alphabet ⌃ induces a stochastic language
over ⌃.

• A stochastic language over ⌃ is a map � : ⌃⇤ ! [0, 1].

• The quantum behaviour of a quantum automaton Q is the map

�Q : ⌃⇤ ! O

where �Q(!) = POU!si with U! = U�k . . . U�1 and ! = �1 . . .�k.

• The stochastic behaviour of a quantum automaton Q is the stochastic
language

�Q : ⌃⇤ ! [0, 1]

where
�Q(!) = |POU!si|2.

The relationship between this concept and our definite concept of quantum
behaviour will be established in the following sections. The probabilistic be-

haviour of a quantum automaton Q is the stochastic language ⇡Q : ⌃⇤ ! [0, 1]
where ⇡Q(!) = |⇢U!si|2. We will see that this is too coarse of a concept of
behaviour, since it collapses physically distinguishable behaviours.

3 Categorical context

Next, we show how quantum automata can be encompassed by the concept
of bilinear sequential h⌃iC-automata (with ⌃ a finite set) over the category
C-Lin of C-linear spaces , that is, a F -automaton [1] where the endofunctor
F is given by (h⌃iC

N
C ) : C-Lin ! C-Lin such that for any morphism

f : Q ! Q0 we have (h⌃iC
N

C )(f) = idh⌃iC
N

f . Here h⌃iC denotes the C -
linear space generated by ⌃. Concretely, such a bilinear automaton is a tuple
A = hQ, �,�, �, I,�i where:

• Q 2 C-Lin (state object);

• � 2 C-Lin (output object);

• I 2 C-Lin (initialization object);
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Motivation

A quantum automaton is a classical Moore automaton [?] where the structure
of its components is highly inspired on the postulates of quantum mechanics.
Recall that any closed quantum system is described by a unit vector of a Hilbert
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unitary transformations [?]. For this reason, the state space H of a quantum
automata is a Hilbert space and its initial state is a unit vector si. Moreover,
all ⌃-indexed state transitions U are unitary transformations. Finally,
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with initial state si.

A quantum automaton with input alphabet ⌃ induces a stochastic language
over ⌃.

• A stochastic language over ⌃ is a map � : ⌃⇤ ! [0, 1].

• The quantum behaviour of a quantum automaton Q is the map
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• The stochastic behaviour of a quantum automaton Q is the stochastic
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where
�Q(!) = |POU!si|2.

The relationship between this concept and our definite concept of quantum
behaviour will be established in the following sections. The probabilistic be-

haviour of a quantum automaton Q is the stochastic language ⇡Q : ⌃⇤ ! [0, 1]
where ⇡Q(!) = |⇢U!si|2. We will see that this is too coarse of a concept of
behaviour, since it collapses physically distinguishable behaviours.

3 Motivation

• In practice quantum automata are the implementable quantum gadgets;

• They are currently used to implement quantum protocols and quantum
machines

– A large spectrum of such gadgets is used to implement perfectly
secure communications

– There is already a large quantum computer

• Engineering bottleneck: High dimensional quantum automata are hard to
implement
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Open problems
• How to obtain the minimal dimensional QA that behaves the same as a

given one? [Moore and Crutchfield TCS 2000]

• (How to find the minimal cover of a stochastic Mealy machines: Paz 1971)

• Is it even decidable?

• If so, what is the complexity.

4 Categorical context

Next, we show how quantum automata can be encompassed by the concept
of bilinear sequential h⌃iC-automata (with ⌃ a finite set) over the category
C-Lin of C-linear spaces , that is, a F -automaton [1] where the endofunctor
F is given by (h⌃iC

N
C ) : C-Lin ! C-Lin such that for any morphism

f : Q ! Q0 we have (h⌃iC
N

C )(f) = idh⌃iC
N

f . Here h⌃iC denotes the C -
linear space generated by ⌃. Concretely, such a bilinear automaton is a tuple
A = hQ, �,�, �, I,�i where:

• Q 2 C-Lin (state object);

• � 2 C-Lin (output object);

• I 2 C-Lin (initialization object);

• � : (h⌃iC
N

Q) ! Q 2 C-Lin (next-state morphism);

• � : Q ! � 2 C-Lin (output morphism);

• � : I ! Q 2 C-Lin (initialization morphism).

Note that C-Lin is a weak symmetric monoidal category furnished with
N

C as
the monoidal operator and C as unit. We will only consider automata where
I = C (that is, I is the unit) since, as we shall see, this is the case of quantum
automata.

Remark 4.1 Since we have a natural bijection

homC(h⌃iC
O
C

Q,Q) ⇠= homC(h⌃iC, homC(Q,Q)),

giving � : (h⌃iC
N

Q) ! Q is the same as giving a morphism �] : h⌃iC !
homC(Q,Q), that is uniquely defined by a finite family of morphisms {�� : Q !
Q}�2⌃.

A morphism between two bilinear automata A = hQ, �,�, �, I,�i and A0 =
hQ0, �0,�, �0, I,�0i is a C-Lin morphism f : Q ! Q0 such that the following
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Categorical context
Remark 4.1

Since we have a natural bijection

homC(h⌃iC
O
C

Q,Q) ⇠= homC(h⌃iC, homC(Q,Q)),

giving � : (h⌃iC
N

Q) ! Q is the same as giving a morphism

�] : h⌃iC ! homC(Q,Q),

that is uniquely defined by a finite family of morphisms {�� : Q ! Q}�2⌃.

A morphism between two bilinear automata A = hQ, �,�, �, I,�i and A0 =
hQ0, �0,�, �0, I,�0i is a C-Lin morphism f : Q ! Q0 such that the following
diagram commutes

h⌃iC
N

C Q

idh⌃iC
N

C f

✏✏

� // Q

f

✏✏

�

��
C

�

??

�0
��

�

h⌃iC
N

C Q0
�0

// Q0
�0

??

which, given the considerations of Remark 4.1, is equivalent to having a ⌃-
indexed family of commutative diagrams

Q

f

✏✏

�� // Q

f

✏✏

�

��
C

�

??

�0 ��

�

Q0
�0�

// Q0
�0

??

We shall denote the resulting category of bilinear automata by BAut

�
C.

We have that the free (h⌃iC
N

C )-algebra generated by C is

h⌃iC
N

Ch⌃i
⌦
C

' // h⌃i⌦C C⌘oo

where h⌃i⌦C = C
L

h⌃iC
L

(h⌃iC
N

Ch⌃iC)
L

.... Note that h⌃i⌦C ⇠= h⌃⇤iC.
Given a bilinear automata A, the run map is the unique morphism ⇢ such
that the following diagram commutes.
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Categorical context
Given a bilinear automata A, the run map is the unique morphism ⇢ such that
the following diagram commutes.

h⌃iC
N

Ch⌃i
⌦
C

' //

idh⌃iC
N

C ⇢

✏✏

h⌃i⌦C
⇢

✏✏

C⌘oo

�
~~

h⌃iC
N

C Q
�

// Q

If ⇢ is an epi, we say that A is reachable.

We call � = � � ⇢ : h⌃⇤iC ! � the behaviour of A.

We denote the category of bilinear behaviours by Beh

�
C, which has only triv-

ial morphisms, since automata connected by a morphism must have the same
behaviour.

We have, by considering the categorical co-product indexed by �, denoting the
result by BAutC and BehC respectively, the following fibred adjunction:

C-Lin

BAutC

Out

99

B //
BehC

F
oo

Out’

dd

where Out and Out’ are the trivial forgetful fibration functors, and F is the
universal free realization functor, which is a left adjoint to B. To a given
behaviour � it associates an automaton having the same behaviour that is an
initial object in the subcategory of automata realizing that behaviour [1].

5 Quantum automata

Observe that a quantum automaton (cf. Definition 2.1) is determined by a
bilinear automaton with initialization object C such that:

• �� : Q ! Q is unitary for all � 2 ⌃ with complete hermitean inner product
for Q;

• � is an orthogonal projection onto a subspace �0 ✓ Q followed by an
isomorphism to � (that is, � is a subobject of Q);

• � is injective ( or more generally any linear map, if we wish to include
automata with trivially null behaviour)

Note that we do not require ||�(v)||Q = 1 where |v| = 1. For if we consider
the pre-quantum behaviours of quantum automata in which we have fixed once

6
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Categorical context
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Categorical context

Note that we do not require ||�(v)||Q = 1 where |v| = 1. For if we consider
the pre-quantum behaviours of quantum automata in which we have fixed once
and for all an orthonormal basis appropriate to �0, that is, having a sub-basis
generating �0, we see that it is only the successive outputs in terms of the
Fourier coeficients of the final state vector of the behaviour modulo a unitary
complex global phase factor (applied simultaneously to all the outputs) that are
physically significant and distinguishable. And if we consider in the said manner
the quotient or complex projective version of the set of bilinear behaviours of the
previous concept of quantum automata, considered as a bilinear automata, as in
the previous section, we get the correct formulation of quantum behaviour. The
actual quantum behaviour is taken by considering the restriction to the basis ⌃⇤.
Hence, since these are the behaviours of interest, the norm of the initial state
vector is irrelevant and we should not distinguish between automata di↵ering
only by a di↵erence of input maps up to a (non-null) complex scalar. Also,
note that we can always choose an equivalent norm h , ikQ = kh , iQ with
k 2 R \ {0} rendering it unitary, the other aspects of the automaton remaining
invariant. For our purposes, however, we will consider the former presentation
along with the mere bilinear concept of behaviour, which lends itself best to a
algebraico-categorical treatment, and then pass to the quotient again to obtain
our final result. We have in fact used the following quantum theoretic postulate:

Proposition 5.1 Suppose we have two isolated quantum systems Q1 and Q2

such that at any instant t we have  1(t) = c 2(t), where c is a fixed non-null

complex scalar and  1 and  2 are the wave functions for Q1 and Q2 respectively.

Then the two systems are physically indistinguishable.

We have that the natural category of such automata (considering the same
morphisms as in the bilinear case), which we shall denote by QAut�C, induces,
via a forgetful functor F� that forgets the inner product structure,

We denote by QAut

�
C the full subcategory of BAut

�
C constituted by quantum

automata.

Similarly, we denote by QBeh

�
C the full subcategory of Beh

�
C with quantum

behaviours.
whose full subcategory we shall denote by Indeed we have the following

diagram of natural fibrations, considering, analogously to the previous case,
categorical co-products indexed by �

C-Lin

QAutC

QOut

99

QB //
QBehC

QOut’

ee

where the functors are the obvious restrictions. It is easily seen that QB lifts
to a functor QB from QAutC to QBehC Note also that if we extend our alpha-
bet ⌃ to ⌃̃ by adding symbols w⇤ for every element w of ⌃ ( and a symbol for the
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This minimization method is based, on one hand, on the decidability of the equivalence

of the considered automata and, on the other hand, on the decidability of the theory of real

ordered fields [2, 6, 20]. So, we further introduce the concepts and results concerning the

decidability of the theory of real ordered fields [2, 6, 20].

The decision problem for the existential theory of the reals [20] is the problem of deciding

if the set S = {x 2 Rn : P(x)} is nonempty, where P(x) is a predicate defined as Boolean

function of atomic predicates either of the form fi(x) � 0 or fj(x) > 0, f 0s being real

polynomials (with rational coe�cients). For this decision problem it is important to know

three parameters: the number of atomic predicates m (i.e., the number of polynomials), the

number of variables n, and the highest degree d among all atomic predicates forming P(x).

Canny [6] developed a PSPACE algorithm in n,m, d for the above problem, but its time

complexity is very high. Later, Renegar [20] designed an asymptotically optimal algorithm

of time complexity (md)O(n). Furthermore, to find a sample of S requires ⌧dO(n) space if all

coe�cients of the atomic predicates use at most ⌧ space (see [2], page 518). Here, to find a

sample of S means to discover a solution of P(x). We summarize these results in the following

theorem.

Theorem 1 ([2, 6, 20]).

Theorem [Tarski, Renegar] Let P(x) be a predicate which is a Boolean function of atomic

predicates either of the form fi(x) � 0 or fj(x) > 0, with f 0s being real polynomials. There

is an algorithm to decide whether the set S = {x 2 Rn : P(x)} is nonempty in PSPACE in

n,m, d, where n is the number of variables, m is the number of atomic predicates, and d is

the highest degree among all atomic predicates of P(x). Moreover, there is an algorithm of

time complexity (md)O(n) for this problem. To find a sample of S requires ⌧dO(n) space if all

coe�cients of the atomic predicates use at most ⌧ space.

We will use the above theorem to deal with the state minimization of QFA. However,

since QFA are usually defined over the field of complex numbers, we need to transform a

problem over the field of complex numbers to one over real numbers. This transformations

will be based on the following observation.

Remark 2. Any complex number z = x + yi is determined by two reals x and y, and any

complex polynomial f(z) with z 2 Cn can be equivalently written as f(z) = f1(x, y)+ if2(x, y)

where (x, y) 2 R2n is the real representation of z, and f1 and f2 are real polynomials. Thus,

the set S0
defined over the field of complex numbers with n complex variables and m complex

polynomials can be equivalently described by S over the field of real numbers with 2n real

variables and 2m real polynomials.
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2.2. The main idea of state minimization

In this work we show that the state minimization problem of various types of quantum

finite automata and probabilistic finite automata is decidable. As mentioned before, our

results are based on the decidability of the equivalence of these automata and, moreover, on

the decidability of the theory of real ordered fields [2, 6, 20]. Thus, we start by recalling

the equivalence problem of various types of QFA’s and probabilistic automata and then, we

present the main idea for minimizing such automata.

Roughly speaking, two automata over the same input alphabet are said to be equivalent

if they accept each input string with the same probability. For example, two probabilistic

automata A1 and A2 on input alphabet ⌃ are said to be equivalent if they have the same

accepting probability for each input x 2 ⌃⇤. The equivalence problem of some type of

automata is to determine whether any two given automata of this type are equivalent or not.

So far, the equivalence problem has been proven to be decidable for probabilistic automata

[18, 23], MO-1QFA [5, 14], MM-1QFA [13], and one-way QFA with mixed states [15]. Indeed,

for each of these automata types, a certain bound on the word length has been derived such

that two automata are equivalent if and only if they have the same accepting probability for

all words with length less than this bound.

Based on the above results, in the subsequent sections we will prove in detail that the

state minimization problem of all the above types of automata is decidable. Although the

details are di↵erent for addressing di↵erent types of automata, they share the same essential

idea. The main idea can be briefly depicted as follows.

Theorem: Quantum automata (and SMM, QMM, etc...) can be minimized in EXPSPACE

1. Firstly, for a given automaton A of some type (say probabilistic, quantum, etc.) with

n states, we define the set

S(n
0)

A = {A0 : A0 has n0 states, is of the same type of A, and is equivalent to A}.

2. Next, we show that S(n
0)

A can be described as the solution of a system of polynomial

equations and/or inequations. Then there exists an algorithm to decide whether S(n
0)

A
is nonempty or not, and furthermore, if it is nonempty, we can find a sample of it.

3. Now, the minimization algorithm can be depicted in Figure 1.
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Input: an automaton A with n states

Output: a minimal automaton A0
, of the same type of A, and equivalent to A

Step 1:

For i = 1 to n� 1

If (S(i)A is not empty) Return A0 = sample S(i)A

Step 2:

Return A0 = A

Figure 1. The minimization algorithm

For each type of automaton we need to prove that S(n
0)

A can be described as the solution

of a system of polynomial equations and/or inequations whose variables are the entries of the

initial state, transition matrices, and final states of an automaton with n0 states. Although

there are significant di↵erences when defining the systems of (in)equations for each type of

automata, we stress that the definition of such systems shares the following characteristics:

a) The properties of the automata, such as “the initial vector is a probability distribution”,

“matrices are stochastic matrices”, can be expressed as a system of polynomial equa-

tions/inequalities whose variables are the entries of the initial state, transition matrices,

and final states.

b) The acceptance probability of a fixed automaton for a fixed input can be presented as

a polynomial, whose variables are the entries of the initial state, transition matrices,

and final states.

c) For each type of automaton to be handled, there is a bound on the word length such

that two automata are equivalent if and only if they have the same accepting probability

for all input words with length less than the known bound. In this way, the equivalence

between two automata can be represented by a finite set of polynomial equations.

In the subsequent sections, we will adopt the above method to address the minimization

problem of several types of automata, namely, probabilistic automata, MO-1QFA , MM-

1QFA, and one-way QFA with mixed states.

3. Minimization of probabilistic automata

Recall that a probabilistic automaton is a tuple A = (S,⌃, µ0, {M�}�2⌃, F ) where:

• S is a finite set of states;

• ⌃ is the input alphabet;

8
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Quantum Turing Machine
• By a quantum Turing machine we mean a binary Turing machine with

two tapes, one classical and the other with quantum contents, which
are infinite in both directions.

• Depending only on the state of the classical finite control automaton
and the symbol being read by the classical head, the quantum head
acts upon the quantum tape, a symbol can be written by the classical
head, both heads can be moved independently of each other and the
state of the control automaton can be changed.

• A computation ends if and when the control automaton reaches the
halting state (qh).

Notice that the contents of the quantum tape do not a↵ect the computa-
tion flow, hence the deterministic control and, so, the deterministic halting
criterion. In particular, the contents of the quantum tape do not influence
at all if and when the computation ends.

The quantum head can act upon one or two consecutive qubits in the
quantum tape. In the former case, it can apply any of the following operators
to the qubit under the head: identity (Id), Hadamard (H), phase (S) and ⇡
over 8 (⇡/8). In the latter case, the head acts on the qubit under it and the
one immediately to the right by applying swap (Sw) or control-not (c-Not)
with the control qubit being the qubit under the head.

Initially:

• the QTM is in the starting state (qs);

• the classical tape is filled with blanks (that is, with ⇤’s) outside the
finite input sequence x of bits,

• the classical head is positioned over the rightmost blank before the
input bits,

• the quantum tape contains three independent sequences of qubits – an
infinite sequence of |0i’s followed by the finite input sequence | i of
possibly entangled qubits followed by an infinite sequence of |0i’s,

• the quantum head is positioned over the rightmost |0i before the input
qubits.
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Quantum Turing Machine

• By a quantum Turing machine we mean a binary Turing machine with
two tapes, one classical and the other with quantum contents, which
are infinite in both directions.

• Depending only on the state of the classical finite control automaton
and the symbol being read by the classical head, the quantum head
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state of the control automaton can be changed.
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quantum tape. In the former case, it can apply any of the following operators
to the qubit under the head: identity (Id), Hadamard (H), phase (S) and ⇡
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with the control qubit being the qubit under the head.
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Quantum Turing MachineIn this situation, we say that the machine starts with input (x, | i).

The QTM is a partial map

� : Q⇥ A* U⇥ D⇥ A⇥ D⇥Q

where:

• Q is the finite set of control states containing at least the two states
qs and qh mentioned above;

• A is the alphabet composed of 0, 1 and ⇤;

• U is the set {Id,H, S,⇡/8, Sw, c-Not} of primitive unitary operators
that can be applied to the quantum tape; and

• D is the set {L,N,R} of possible head displacements – one position to
the left, none, and one position to the right.

For the sake of a simple halting criterion, we assume that (qh, a) 62 dom �
for every a 2 A and (q, a) 2 dom � for every a 2 A and q 6= qh. Thus, as
envisaged, the computation carried out by the machine does not terminate
if and only if the halting state qh is not reached.

The machine evolves according to � as expected:

�(q, a) = (U, d, a0, d0, q0)

imposes that if the machine is at state q and reads a on the classical tape,
then the machine applies the unitary operator U to the quantum tape, dis-
places the quantum head according to d, writes symbol a0 on the classical
tape, displaces the classical head according to d0, and changes its control
state to q0.

In short, by a dcq Turing machine we understand a pair (Q, �) where Q
and � are as above.

Concerning computations, the following terminology becomes handy.
The machine is said to start from (x, | i) or to receive input (x, | i) if:
(i) the initial content of the classical tape is x surrounded by blanks and the
classical head is positioned in the rightmost blank before the classical input
x; (ii) the initial content of the quantum tape is | i surrounded by |0i’s and
the quantum head is positioned in the rightmost |0i before the quantum
input | i. Observe that the qubits containing the quantum input are not
entangled with the other qubits of the quantum tape. When the quantum
tape is completely filled with |0i’s we say that the quantum input is |"i.

4

Friday 24 January 14



Quantum Turing Machine

• The machine is said to start from (x, | i) or to receive input (x, | i)
if:

– the initial content of the classical tape is x surrounded by blanks
and the classical head is positioned in the rightmost blank before
the classical input x;

– the initial content of the quantum tape is | i surrounded by |0i’s
and the quantum head is positioned in the rightmost |0i before
the quantum input | i.

• The machine is said to halt at (y, |'i) if the computation terminates
and:

– the final content of the classical tape is y surrounded by blanks
and the classical head is positioned in the rightmost blank before
the classical output y;

– the final content of the quantum tape is |'i surrounded by |0i’s
and the quantum head is positioned in the rightmost |0i before
the quantum output |'i.

In this situation we may write

M(x, | i) = (y, |'i).

Clearly, the qubits containing the quantum output are not entangled with
the other qubits of the quantum tape.

For each n 2 N+, denote by Hn the Hilbert space of dimension 2n. A
unitary operator

U : Hn ! Hn

is said to be dcq computable if there is a dcq Turing machine (Q, �) that,
for every unit vector | i 2 Hn, when starting from (", | i) produces the
quantum output U | i. Note that the final content of the classical tape is
immaterial.

A (classical) problem
X ✓ {0, 1}⇤

is said to be dcq decidable if there is a dcq Turing machine (Q, �) that, for
every x 2 {0, 1}⇤, when starting from (x, |"i) produces a quantum output
|'i such that:

(
Prob (Proj

1

|'i = 1) > 2/3 if x 2 X

Prob (Proj
1

|'i = 0) > 2/3 if x 62 X.
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Quantum Turing Machine
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Categorical context
Consider the category QTur where:

• Objects are pairs (x, | i) where x 2 2⇤ and | i is a (computable) unit
vector;

• Morphisms are quantum Turing machines M = (Q, �) such that

M : (x, | i) ! (y, |'i)

if M(x, | i) = (y, |'i).

Turing machines can be composed, and moreover the trivial Turing machine
(with just the halting state) is the identity.

We assume that QTur is endowed with a tensor product

(x
1

, | 
1

i)⌦ (x
2

, | 
2

i) = (�(x
1

, x
2

), | 
1

i ⌦ | 
2

i)

where � is an encoding of a pair of strings to a string. Such tensor product
makes QTur a symmetric monoidal category.

Let

• Id
Q

: QTur ! QTur be the identity functor.

• D : Id
Q

# Id
Q

! 2⇤ ⇥ 2⇤ ⇥ 2⇤ be the description functor that maps
each quantum Turing machine to the triple containing a string that
describes the Turing machine, as well as the domain and codomain of
the morphism.

Theorem[Existence of universal machine] The universal functor

U(w, x, y) : (w, |"i)⌦ (x, | i) ! (y, |'i)

is left adjoint to D.
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Kolmogorov complexity

• K(|'i|| i) is the minimum number of states of QTM M such that
M(", | i) = (", |'i).

• It is undecidable

• Relevant for classifying quantum states in terms of preparation hard-
ness

• Again a minimization issue!

• P. Mateus, A. Sernadas and A. Souto. Universality of quantum Turing
machines with deterministic control, submitted for publication 2014.
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Thank you...
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