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Context

Quantum automata
Open problems concerning QA (and other automata) and their importance
Category of bilinear automata,

How Category Theory and (computational) Algebraic Theory of the ROF
helped solving the OP

Quantum Turing machines as morphisms

Towards quantum Kolmogorov theory
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Quantum automata

A quantum automaton is a tuple
Q == <27H7 Si, U7 O,,O>
where

e > is a finite set of inputs,
e H is a finite Hilbert space of states,

s; 1s a unitary vector in H denoting the initial state,

U is a Y-indexed family {U, },cx of unitary transformations in H,

O is a Hilbert space of outputs and Pp : H — O is a projection
(there is a subspace H' of H isomorphic to O).
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Quantum automata

e A stochastic language over Y is a map S : ¥* — [0, 1].

e The quantum behaviour of a quantum automaton Q is the map
ﬁQ £ = (0)
wheresBolw) = Pol s, with U, =, - U - andici—io =% a0

e The stochastic behaviour of a quantum automaton © is the stochastic
language
BQ A [07 1]

where

Bolali—t Eoll o=
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Motivation

e In practice quantum automata are the implementable quantum gadgets;

e They are currently used to implement quantum protocols and quantum
machines

— A large spectrum of such gadgets is used to implement perfectly

secure communications

— There is already a large quantum computer

e Engineering bottleneck: High dimensional quantum automata are hard to
implement
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Open problems

How to obtain the minimal dimensional QA that behaves the same as a
given one? [Moore and Crutchfield TCS 2000]

(How to find the minimal cover of a stochastic Mealy machines: Paz 1971)
Is it even decidable?

If so, what is the complexity.
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Categorical context

Recall that C-Lin is a weak symmetric monoidal category furnished with @)
as the monoidal operator and C as unit.

A bilinear automaton over a finite alphabet X is a tuple
A=(Q,6,T,v,1,))
where:
() € C-Lin (state object);
[' € C-Lin (output object);
I € C-Lin (initialization object);
0: ((X)c @ Q) — Q € C-Lin (next-state morphism);
v:Q — I' € C-Lin (output morphism);

A: I — @ € C-Lin (initialization morphism).

where ()¢ denotes the C - linear space generated by .
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Categorical context

Since we have a natural bijection

(<Z>C7 hom@(Q, Q))v

giving 6 : ((X)c @ Q) — Q is the same as giving a morphism

5ﬁ . <Z>C 7 homC(Qv Q)a

that is uniquely defined by a finite family of morphisms {d, : Q@ — Q}scx.
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Categorical context

A morphism between two bilinear automata A = (Q,d,I',v,I,\) and A’ =
(Q,0",T',4',1,\') is a C-Lin morphism f :  — @’ such that the following
diagram commutes

X)c Qc @

id(sye Qc f

<2><C ®<c Q/
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Categorical context

Or equivalently, such that the Y-indexed family of commutative diagrams

We shall denote the resulting category of bilinear automata by BAutE.
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Categorical context

The free ((¥)c @ _ )-algebra generated by C is

(Z)e R ()¢
where (X)¢ = CR(X)c P((Z)c Qc(X)c) P -

Observe that (2)& & (¥*)¢.




Categorical context

Given a bilinear automata A, the run map is the unique morphism p such that
the following diagram commutes.

(e Qc(D)E — ()
id(sy. Q¢ Pl

B Q@ —>d

If p is an epi, we say that A is reachable.
We call 8 =~vop: (X*)c — I the behaviour of A.

We denote the category of bilinear behaviours by Beh(E, which has only triv-
ial morphisms, since automata connected by a morphism must have the same
behaviour.

Friday 24 January 14



Categorical context

A quantum automaton is a bilinear automaton with initialization object C such
that:

® 0, : () — ()isunitary for all o € > with complete hermitean inner product

for Q;

e ~ is an orthogonal projection onto a subspace I C @ followed by an
isomorphism to I' (that is, I' is a subobject of Q);

e )\ is injective (or more generally any linear map, if we wish to include
automata with trivially null behaviour)
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Categorical context

We denote by QAut(E the full subcategory of BAutg constituted by quantum
automarta.

Similarly, we denote by QBeh(E the full subcategory of Behg with quantum
behaviours.
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Categorical context

Theorem For any behaviour 8 : (X)& — T there is a minimal realization for /3

and with initialization object C.

C-Lin

B

BAU_t@ L Beh@
Min

Theorem Let 3 : (£)& — T be a behaviour in QBehg. Then there exists a
minimal realization in QAutg for 3.
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Computational algebra

Theorem [Tarski, Renegar| Let P(z) be a predicate which is a Boolean function of atomic
predicates either of the form f;(z) > 0 or f;(z) > 0, with f’s being real polynomials. There
is an algorithm to decide whether the set S = {x € R" : P(z)} is nonempty in PSPACE in
n, m,d, where n is the number of variables, m is the number of atomic predicates, and d is
the highest degree among all atomic predicates of P(x). Moreover, there is an algorithm of
time complexity (md)o(”) for this problem. To find a sample of S requires 7d°™ space if all

coefficients of the atomic predicates use at most 7 space.
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Computational algebra

Theorem: Quantum automata (and SMM, QMM, etc...) can be minimized in EXPSPACE

P. Mateus, D. Qiu, and L. Li. On the complexity of minimizing probabilistic and quantum
automata. Information and Computation, 218:36-53, 2012.

1. Firstly, for a given automaton A of some type (say probabilistic, quantum, etc.) with

n states, we define the set

SEZC/) = {A": A’ has n’ states, is of the same type of A, and is equivalent to A}.

. Next, we show that SEZC/) can be described as the solution of a system of polynomial

equations and/or inequations if the automata can be bilinearized. Then there
exists an algorithm to decide whether SEZ:) is nonempty or not, and furthermore, if it

is nonempty, we can find a sample of it.
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Computational algebra

Input: an automaton A4 with n states

Output: a minimal automaton A , of the same type of A, and equivalent to A
Step 1:

Forio=1ton—1
If (Sffi) is not empty) Return A" = sample Sfft)

Step 2:

Return A’ = A




Applications

N. Paunkovic, J. Bouda, and P. Mateus. Fair and optimistic quantum contract signing.
Physical Review A, 84(6):062331, 2011.

F. Assis, A. Stojanovic, P. Mateus, and Y. Omar. Improving classical authentication over a
quantum channel. Entropy, 14(12):2531-2549, 2012.

L. Li, D. Qiu, and P. Mateus. Quantum secret sharing with classical Bobs. Journal of
Physics A: Mathematical and Theoretical, 46(4):045304, 2013.
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Quantum Turing Machine

e By a quantum Turing machine we mean a binary Turing machine with
two tapes, one classical and the other with quantum contents, which
are infinite in both directions.

Depending only on the state of the classical finite control automaton
and the symbol being read by the classical head, the quantum head
acts upon the quantum tape, a symbol can be written by the classical
head, both heads can be moved independently of each other and the
state of the control automaton can be changed.

A computation ends if and when the control automaton reaches the
halting state (qy,).
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Quantum Turing Machine

Initially:

the QTM is in the starting state (q);

the classical tape is filled with blanks (that is, with [’s) outside the
finite input sequence x of bits,

the classical head is positioned over the rightmost blank before the
input bits,

the quantum tape contains three independent sequences of qubits — an
infinite sequence of |0)’s followed by the finite input sequence |¢) of
possibly entangled qubits followed by an infinite sequence of |0)’s,

the quantum head is positioned over the rightmost |0) before the input
qubits.



Quantum Turing Machine

The QTM is a partial map
0:QXA—-UXxDxAXDxXxQ

where:

e () is the finite set of control states containing at least the two states
q. and q;, mentioned above;

e A is the alphabet composed of 0, 1 and LJ;

e U is the set {Id,H,S,7/8,Sw,c-Not} of primitive unitary operators
that can be applied to the quantum tape; and

e D is the set {L,N, R} of possible head displacements — one position to
the left, none, and one position to the right.
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Quantum Turing Machine

e The machine is said to start from (x,|y)) or to receive input (x,|))

if:

— the initial content of the classical tape is x surrounded by blanks

and the classical head is positioned in the rightmost blank before
the classical input x;

— the initial content of the quantum tape is |¢)) surrounded by |0)’s

and the quantum head is positioned in the rightmost |0) before
the quantum input |v).

Friday 24 January 14



Quantum Turing Machine

e The machine is said to halt at (y,|p)) if the computation terminates
and:

— the final content of the classical tape is y surrounded by blanks
and the classical head is positioned in the rightmost blank before
the classical output y;

— the final content of the quantum tape is |¢) surrounded by |0)’s
and the quantum head is positioned in the rightmost |0) before
the quantum output |p).

In this situation we may write

M(z, [¥)) = (y: |¢))-
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Categorical context

Consider the category QTur where:

e Objects are pairs (z, |¢)) where x € 2* and |v¢) is a (computable) unit
vector;

e Morphisms are quantum Turing machines M = (Q, ) such that

M : (z,|¥) = (¥, |¥)

it M(z,[¢)) = (y,|®))-

Turing machines can be composed, and moreover the trivial Turing machine
(with just the halting state) is the identity.

We assume that QTur is endowed with a tensor product

(@1, [¥1)) ® (22, [¢02)) = (v(21, 22), [¥1) ® [1h2))

where ~ is an encoding of a pair of strings to a string. Such tensor product
makes QTur a symmetric monoidal category.
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Categorical context

Let

o [dg : QTur — QTur be the identity functor.

o D :Idg | Idg — 2" x 2* x 2% be the description functor that maps
each quantum Turing machine to the triple containing a string that
describes the Turing machine, as well as the domain and codomain of
the morphism.

Theorem|Existence of universal machine] The universal functor

Uw, z,y) : (w,|e)) ® (z, |¥)) = (y: )

is left adjoint to D.



Kolmogorov complexity

K(|p)||1)) is the minimum number of states of QTM M such that
M(e, |[9)) = (&; |9)-

It 1s undecidable

Relevant for classifying quantum states in terms of preparation hard-
ness

Again a minimization issue!

P. Mateus, A. Sernadas and A. Souto. Universality of quantum Turing
machines with deterministic control, submitted for publication 2014.

Friday 24 January 14



Thank you...
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