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Effect Algebras

Generalization of Boolean algebras and MV-algebras.

Also includes orthomodular lattices such as the lattice of
closed subspaces of a Hilbert space.

Keep ¬¬x = x .

Structure: (A,>, -⊥, 0, 1)

(A,>, 0) is a partial commutative monoid:

If a > b is defined, b > a is defined and a > b = b > a.
Associativity is interpreted in a similar way.
a > 0 is always defined and equals a.

We write a ⊥ b to mean a > b is defined.

a⊥ is the unique element such that a > a⊥ = 1.

a ⊥ 1 implies a = 0.

Morphisms of effect algebras preserve >, where defined, and 0
and 1.
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Examples of Effect Algebras

If (A,∧,∨, 0, 1) is a Boolean algebra, define

a > b =

{
a ∨ b if a ∧ b = 0

undefined otherwise

Then, if we take a⊥ = ¬a, (A,>, -⊥, 0, 1) is an effect algebra.

([0, 1],>, -⊥, 0, 1) is an effect algebra, where

a > b =

{
a + b if a + b ≤ 1

undefined otherwise

and a⊥ = 1− a.

Effect algebra morphisms A→ [0, 1] for A a Boolean algebra
are finitely additive probability measures.

In general maps A→ [0, 1] are called states.
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Convex Sets

Abstractly defined as Eilenberg-Moore algebras of D:

D(X ) =

{
φ : X → [0, 1]

∣∣∣∣∣ ∑
x∈X

φ(x) = 1

}

(finitely supported probability distributions, or abstract convex
combinations)

Can be defined in terms of +α : X × X → X for each
α ∈ [0, 1], as done by many authors independently.

We can also define categories of convex subsets of vector
spaces, with affine morphisms ignoring the embedding in the
vector space.
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Dual Adjunction

We saw [0, 1] was an effect algebra. It is also a D-algebra:

α : D([0, 1])→ [0, 1] α(φ) =
∑

x∈[0,1]

φ(x) · x

Theorem (Bart Jacobs)

By using [0, 1] as a dualizing object we obtain a dual adjunction:

EM(D)

A=Aff(-,[0,1]) a
��
EA

EA(-,[0,1])=S

OO

See [Jac10, Theorem 17].

In every adjunction there is an equivalence.

What is the duality defined by A and S?
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Base-Norm Spaces

A way of associating a vector space E to a convex set B.

A norm is defined using the Minkowski functional of absco(B).

Not every EM(D) is embeddable in a vector space.

Might get a seminorm, but not if B is bounded.
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Base-Norm Spaces – Definition

(E ,E+, τ) – E a real vector space, E+ ⊆ E a proper cone
generating E , τ : E → R a strictly positive linear map.

Positive is τ(x) ≥ 0 for all x ∈ E+, and strictly positive is that
if x ∈ E+ and τ(x) = 0, then x = 0.

Define B = E+ ∩ τ−1(1). We require absco(B) to be radially
bounded. Define ‖-‖ to be the Minkowski functional of
absco(B), which is a norm.

We require E+ to be ‖-‖-closed.

Inequivalent definitions with the same name are in use, and
this fact is never remarked upon.

Morphisms are linear, positive and preserve τ .
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Order-Unit Spaces

(A,A+, u), A a real vector space, A+ a proper cone
generating A, u a strong archimedean unit.

Strong unit means that for each a ∈ A, there exists n ∈ N
such that −nu ≤ a ≤ nu.

Archimedean means that if a ≤ 1
nu for all n ∈ N, then a ≤ 0.

Motivating example: self-adjoint part of a C∗-algebra, e.g.
C (X ) or Mn(C).

Morphisms are positive linear maps preserving units.
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Relationship to Convex Sets and Effect Algebras

For (E ,E+τ) a base-norm space, B = E+ ∩ τ−1(1) is a
convex set, and maps of base-norm spaces restrict to affine
maps, making a functor B : BNS→ EM(D).

This is faithful, and also full.

For (A,A+, u) an order-unit space, [0, 1]A, the unit interval
with the addition make partial, is an effect algebra, and maps
of order-unit spaces restrict to effect algebra maps, making a
functor [0, 1]- : OUS→ EA.

This is faithful, and (more surprisingly) also full.

Maps [0, 1]A → [0, 1]B extend to monotone abelian group
homomorphisms A→ B. These are continuous and Q-linear,
so are R-linear.
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Revisiting the Dual Adjunction

The functor Aff(-, [0, 1]) is [0, 1]- ◦ BAff(-), the set of
bounded affine functions to R, an order-unit space.

The functor EA(-, [0, 1]) is B ◦ S±, where S± is the base-norm
space of “signed states”. (Analogous to signed measures).

Therefore, if the unit or counit of the duality is an
isomorphism, the object in question must be the base of a
base-norm space or the unit interval of an order unit space,
respectively.

The unit and counit, when reinterpreted here, are the usual
double dual embeddings E → E ∗∗ for a normed space.

Therefore the equivalence defined by A and S is between
bases of reflexive base-norm spaces and unit intervals of
reflexive order-unit spaces.
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Examples of Reflexive Spaces

All finite-dimensional base-norm and order-unit spaces are
reflexive (unless we forgot to require the positive cone to be
closed).

One can form the base-norm space starting with the unit ball
of a Hilbert space to get infinite dimensional examples.

No infinite-dimensional C∗-algebra is reflexive.

Robert Furber Duality for Effect Algebras and Convex Sets



Beyond Reflexiveness

There is a way to make every Banach space “reflexive”, using
weak topologies.

If E ∗ is given the weak-* topology, the embedding E → (E ∗)′

is an isomorphism.

Dual spaces can be characterized as having compact unit
balls. (A sort of converse to Banach-Alaoglu).[Ng71]

One can characterize the bounded weak-* topology, Smith
spaces. [Akb09]
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Smith Base-Norm and Order-Unit Spaces

We can then get two different dualities depending on whether
we put the weak topology on the order-unit spaces or the
base-norm spaces.

For this purpose we can define Smith base-norm spaces and
Smith order-unit spaces, where the base and unit interval,
respectively, are required to be compact (similarly to a
characterization by Ellis [Ell64]).

SBNS ' BOUSop BBNS ' SOUSop
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