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MOTTO

(HAUSDORFF) Mapping Invariance Theorem
Let f: X — Y be a CLOSED surjection.
If X is normal then Y is also normal.

(Fund. Math. (1935))
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GOAL: pointfree mapping invariance theorems

CLASSICAL TOPOLOGY AAAAAAAAAAAAD POINTFREE TOPOLOGY

tfopological spaces generalized spaces:
locales
CABOOL | susoB. LATTICES | COFRAME

«(...) alocale has enough complemented sublocales to com-
pensate for this shorfcoming: one simply has fo make the
sublocales which are complemented do more of the work.»

JOHN ISBELL
(Atomless parts of spaces, Math. Scand. (1972))
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The category of locales CONCRETELY

OBJECTS: locales=frames

Complete lattices satisfying |aA ;b =V, (anb))

(= complete Heyting algebras)

MORPHISMS: localic maps

f:l—M o f(AS) = A\FlS]
’\'f/* ef(d)=1=a=1

o f(f*(a) - b)=a — f(b)
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TOOLS: sublocales

S C Lis a SUBLOCALE of L if:
(HVYACS ANA€S.

@) VaelvseS a—seS.

Sisitself alocale: Ag = A;. —s=—1
but |]si=AseS|Vs <s).

Motivation for the definition:

Proposition

S C Lis a sublocale iff the embedding js: S C Lis a localic map.
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sublocales of L, ordered by C:

0={1}, 1T=L A=N. ViS={AATACU,S])

Proposition:
This latftice is a coframe.

Special sublocales:

ael, cla)=1a CLOSED
complemented

o(a)={a—x|xel} OPEN
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TOOLS: sublocale lattices coframe of sublocales

cL:={c(a)|ael}

Acla) =c(V a)

iel iel
c(a)ve(b) =clanb)

September 2016: Workshop on Dualities Hausdorff invariance type theorems and their duals



TOOLS: sublocale lattices coframe of sublocales

cL:={c(a)|ael}

Acla) =c(V a)
iel iel
c(a)ve(b) =c(anb) dual frame: §(L)

September 2016: Workshop on Dualities Hausdorff invariance type theorems and their duals -5-
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Ul
jsl regular mono
S S f[S] is a sublocale of M
the image of Sunder f
IMAGE MAP: fl—1: 8(L) — 8(M) (localic map)

CLOSED MAP: f(S] is closed for every closed S

& fle(a)l =c¢(f(a)) Vael
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TOOLS: preimages localic map f: L— M

Ul
forany A C L closed under meets: {1} C A T
SCA=\VSCA
{ABIBCUS}

So there is the largest sublocale contained in A: Agoc

.
[——— M f 0T = (F ' Msoc
Ul

f=1[T] T

closed under meets (since f preserve meets)

the preimage of T under f

PREIMAGE MAP:  f_1[—]: 8(M) — 8(L) (frame homom.)
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TOOLS: images and preimages

f=] 4 f[-] AS IT SHOULD BE!

@ (@) = c(f*(a)) and £ [o(a)] = o(f*(a)).
e f_1[—] preserves complements.

e for surjective f: ff_[c(a)] = c(a)and ff_;[o(a)] = o(q).
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Doing topology in Loc Normality

c(a)velb) =1 U,,-\
U’ ! A \‘ "'s V

Ju,v: o(u)vo(v)=1, c(a) = o(u), c(b) = o(Vv). :' I VB

So Lis normal iff

|c(o)vc(b) =1 = 3Ju,v: c(u)rc(v) =0, c(a)ve(u) =1 :c(b)vc(v)|

Internally in L: |c1vb:1 = 3u,Vv: unv =0, avu:1=bvv|
(bycL=1D)

(Conservative extension: X is normal iff the locale O(X) is normal.)



THE INVARIANCE THEOREM: first version

Theorem
Let f: L — M be a CLOSED surjective localic map.

If Lis normal then M is also normal.



THE INVARIANCE THEOREM: first version

Theorem

Let f: L — M be a CLOSED surjective localic map.
If Lis normal then M is also normal.

Proof.
Lateron ...
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Boolean sublocale selections

B: L— B(L) C B(S(L)) “sets of complemented sublocales”

Selection 2 Members of 23 (L)

¢ {c(a):ael}

c* {c(a*):ael}

Cs {c(a): aisregular Gs}
Ccoz {¢(cozf): fe C(L)}

regular Gs element:  a=\/,cy an With a, < a

cozero element: |a =\/,cy On With o << @




Boolean sublocale selections

B L— B(L) C B(8(L)) “sets of complemented sublocales”

Selection 2 Members of 23 (L)

c {c(a): ael}

c* {c(a*):ac L}

Cs {c(a): aisregular Gs}
Ccoz {¢(cozf): fe C(L)}

J. Gutiérrez Garcia & JB  On the parallel between normality and

extremal disconnectedness, JPAA 218 (2014) 784-803
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Normal:
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A -NORMALITY

Lis #-Normal (for a fixed sublocale selection £):

Forany A, Be #(L),

|AvB:1 = U, VeB(l): UV =0, AvU=1=BvV

Selection 2 %-normal frames

C normal
c* mildly normal
Cs d-normall

Ceoz all frames
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The Invariance Theorem: 1st version localic map f: L — M

fisimage #-preserving if

fl—] maps elements of (L) into Z(M).

f is preimage #-preserving if

f_1[=] maps elements of (M) into A(L).

Theorem

Let f: L - M be a CLOSED surjective localic map.
If Lis normal then M is also normal.



The Invariance Theorem: general version localic map f: L — M

f isimage #-preserving if

fl—] maps elements of A(L) into Z(M).

f is preimage #-preserving if

f_1[—] maps elements of Z(M) into Z(L).

Theorem

Let f: L — M be aimage #-preserving and preimage
PB-preserving surjective localic map.
If Lis #-normal then M is also Z-normal.
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PROOF: L > M
A Be B(M), AvB=1

| |

f AV Bl =f4(1]1=1 f1[Al f (Bl € B(L)

L is #-normall

3 Up, Vo€ B(L): UpAVp=0, f 1[AlvUy=1=F BV Vo
@\
U= fllUgl, V = f[W] € B(M) satisfy:

o UAV = flUg) AfIVG] = FlUp A Vi) = £IO] = f[L] = M = 0.



PROOF: L > M
A Be B(M), AvB=1

| |

fAlAVEL Bl =1, 1] =1 f AL f, (Bl € #(L)

L is #-normall

S Uy Vo€ B(L): UVl =0, F 1AV Up = 1]=f_1[B]v Vj.
[@\

U= fllp), V = fVp] € Z(M) satisfy:

o UAV = flUpl A V] = FlUp A Vpl = FIO] = [L] = M = 0.

o U="f[Ug] > ff 1[A°] > A®, i.e. AvU =1 (and similarly for V).

f_1[-] preserves complements
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Image and preimage % -preserving maps f:L—-M

image #-preserving: fl—] maps elements of #(L) into B(M).

preimage #-preserving: f_;[—] maps elements of Z(M) into A(L).

image %3 -preserving

preimage %-preserving

cCOZ

closed maps
open Maps
f&vf*(b)) =f(a)vb

regular

flavf (b)) =fla)vb
cozero

all
all

f* of type E (e.g. nearly open)
(Banaschewski & Pultr)

all
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ANOTHER FEATURE: dualization B L s (B(L))°

FC-normal: #-disconnected.

o(@)vo(b)=1 = 3u,v: o(u)ro(v) =1, o(o)vo(u):1:0(b)vo(v)|

[c(a)rc(b)=0 = Fu,v: c(u)ve(v) =0, c(a)ac(u) =0=c¢(b)ac(V)]

[arb=0 = Ju,vel: uvv=1 aru=0=bAV]

M

need only for a, b regular (arnb=0< ag*Ab* =0)

= (anb)* =a*vb* (De Morgan frames)
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ANOTHER FEATURE: dualization B L s (B(L))°

FC-normal: #-disconnected.

Selection 2 %-normal frames 2 -disconnected frames

¢ normal extremally disconnected
c* mildly normal extremally disconnected
Cs d-normal extremally §-disconnected
Ceoz all frames F-frames

F-frame = every 0(cozf) is C*-embedded.



ANOTHER FEATURE: dualization B L (B(L)°

Theorem

Let f: L — M be a surjective localic map such that
fisimage Z-preserving and preimage #-preserving.
If Lis -normal then M is also Z-normal.



ANOTHER FEATURE: dualization B L (B(L)°

Theorem

Let f: L — M be a surjective localic map such that
fisimage Z-preserving and preimage #-preserving.
If Lis -normal then M is also Z-normal.

Just APPLY it to %€ |
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ANOTHER FEATURE: dualization B L (B(L)°

Corollary

Let f: L — M be a surjective localic map such that

fis image ﬂgpreserving and preimage %-preserving.

If Lis #B-rernmat then M is also Z-rermal.
disconnected disconnected

preimage #°-preserving = preimage %-preserving

(because f_[—] preserves complements)

Example # =¢:

Extremally disconnected locales are invariant under OPEN mappings.
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ANOTHER FEATURE: dualization localic map f: L - M

image %°-preserving

preimage #°-preserving = preimage #-preserving

B image #°-preserving preimage %°-preserving
¢ open all
c* nearly open f* of type E (e.g. nearly open)

(Banaschewski & Pultr)

all
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The perfect case Perfect normality

B RB-perfect RB-perfectly normal AB°-perfect RBC°-perfectly normal

c perfect perfectly normal Boolean Boolean
¢ ? OZ frames ? extremally disconn.
Ceor ? all frames ? P-frames

OZ frame = every regular element is a cozero.

P-frame = Coz L is complemented.
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The perfect case

Theorem

Let f: L — M be a surjective localic map such that
e fisimage #-preserving and preimage #-preserving
o ff_1[B] = Bforevery Be #°(M).

If Lis #-perfect then M is also %#-perfect,

Example £ = ¢:

Perfect locales are invariant under CLOSED mappings.
Perfectly normal locales are invariant under CLOSED mappings.

Boolean locales are invariant under OPEN mappings.
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Other interesting cases

Hereditary case:
hereditary normality: every its sublocale is Z-normal.
II (suffices for every sublocale in %)

complete normality

Real functions:

Z-continuity, Z-semicontinuity, general inserfion theorems...
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