Hausdorff invariance theorems for localic maps, and their duals

Jorge Picado <picado@mat.uc.pt>

- joint work with J. Gutiérrez García and T. Kubiak

CMUC

Centre for Mathematics University of Coimbra

(HAUSDORFF) Mapping Invariance Theorem

Let $f: X \to Y$ be a CLOSED surjection.

If X is normal then Y is also normal.

(Fund. Math. (1935))

GOAL: pointfree mapping invariance theorems

CLASSICAL TOPOLOGY

······

POINTFREE TOPOLOGY

topological spaces

generalized spaces: locales

GOAL: pointfree mapping invariance theorems

GOAL: pointfree mapping invariance theorems

«(...) a locale has enough complemented sublocales to compensate for this shortcoming: one simply has to make the sublocales which are complemented do more of the work.»

John Isbell

(Atomless parts of spaces, Math. Scand. (1972))

OBJECTS: locales=frames

Complete lattices satisfying

$$a \wedge \bigvee_i b_i = \bigvee_i (a \wedge b_i)$$

OBJECTS: locales=frames

Complete lattices satisfying

$$a \wedge \bigvee_i b_i = \bigvee_i (a \wedge b_i)$$

(= complete Heyting algebras)

OBJECTS: locales=frames

Complete lattices satisfying

$$a \wedge \bigvee_i b_i = \bigvee_i (a \wedge b_i)$$

(= complete Heyting algebras)

MORPHISMS: localic maps

 $f: L \longrightarrow M$ • $f(\bigwedge S) = \bigwedge f[S]$

OBJECTS: locales=frames

Complete lattices satisfying

$$a \wedge \bigvee_i b_i = \bigvee_i (a \wedge b_i)$$

(= complete Heyting algebras)

MORPHISMS: localic maps

f*

OBJECTS: locales=frames

Complete lattices satisfying

$$a \wedge \bigvee_i b_i = \bigvee_i (a \wedge b_i)$$

(= complete Heyting algebras)

MORPHISMS: localic maps

OBJECTS: locales=frames

Complete lattices satisfying

$$a \wedge \bigvee_i b_i = \bigvee_i (a \wedge b_i)$$

(= complete Heyting algebras)

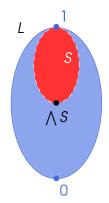
MORPHISMS: localic maps

 $f: L \longrightarrow M \qquad \bullet f(\bigwedge S) = \bigwedge f[S]$ $\bullet f(a) = 1 \Rightarrow a = 1$

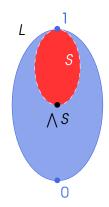
• $f(f^*(a) \rightarrow b) = a \rightarrow f(b)$

 $S \subseteq L$ is a SUBLOCALE of L if:

$S \subseteq L$ is a SUBLOCALE of L if: (1) $\forall A \subseteq S, \land A \in S$.



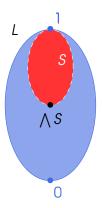
- $S \subseteq L$ is a SUBLOCALE of L if: (1) $\forall A \subseteq S, \land A \in S$.
- (2) $\forall a \in L, \forall s \in S, a \rightarrow s \in S$.



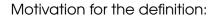
- $S \subseteq L$ is a SUBLOCALE of L if:
- (1) $\forall A \subseteq S, \ \bigwedge A \in S$.

(2) $\forall a \in L, \forall s \in S, a \rightarrow s \in S$.

S is itself a locale: $\bigwedge_S = \bigwedge_L, \rightarrow_S = \rightarrow_L$ but $\bigsqcup s_i = \bigwedge \{s \in S \mid \bigvee s_i \leqslant s\}.$

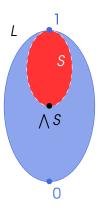


- $S \subseteq L$ is a SUBLOCALE of L if:
- (1) $\forall A \subseteq S, \ \bigwedge A \in S$.
- (2) $\forall a \in L, \forall s \in S, a \rightarrow s \in S$.
- S is itself a locale: $\bigwedge_S = \bigwedge_L, \rightarrow_S = \rightarrow_L$ but $\bigsqcup s_i = \bigwedge \{s \in S \mid \bigvee s_i \leqslant s\}.$



Proposition

 $S \subseteq L$ is a sublocale iff the embedding $j_S : S \subseteq L$ is a localic map.



sublocales of L, ordered by \subseteq :

sublocales of L, ordered by \subseteq :

$$\mathbf{0} = \{1\}, \quad \mathbf{1} = L, \quad \bigwedge = \bigcap, \quad \bigvee_I S_i = \{\bigwedge A \mid A \subseteq \bigcup_I S_i\}$$

sublocales of L, ordered by \subseteq :

$$\mathbf{0} = \{1\}, \quad \mathbf{1} = L, \quad \bigwedge = \bigcap, \quad \bigvee_I S_i = \{\bigwedge A \mid A \subseteq \bigcup_I S_i\}$$

Proposition:

This lattice is a coframe.

sublocales of L, ordered by \subseteq :

 $\mathbf{0} = \{1\}, \quad \mathbf{1} = L, \quad \bigwedge = \bigcap, \quad \bigvee_I S_i = \{\bigwedge A \mid A \subseteq \bigcup_I S_i\}$

Proposition:

This lattice is a coframe.

Special sublocales:

 $a \in L$, $c(a) = \uparrow a$ CLOSED

sublocales of L, ordered by \subseteq :

 $\mathbf{0} = \{1\}, \quad \mathbf{1} = L, \quad \bigwedge = \bigcap, \quad \bigvee_I S_i = \{\bigwedge A \mid A \subseteq \bigcup_I S_i\}$

Proposition:

This lattice is a coframe.

Special sublocales:

 $a \in L$, $\mathfrak{c}(a) = \uparrow a$ CLOSED $\mathfrak{o}(a) = \{a \to x \mid x \in L\}$ OPEN

September 2016: Workshop on Dualities

sublocales of L, ordered by \subseteq :

 $\mathbf{0} = \{1\}, \quad \mathbf{1} = L, \quad \bigwedge = \bigcap, \quad \bigvee_I S_i = \{\bigwedge A \mid A \subseteq \bigcup_I S_i\}$

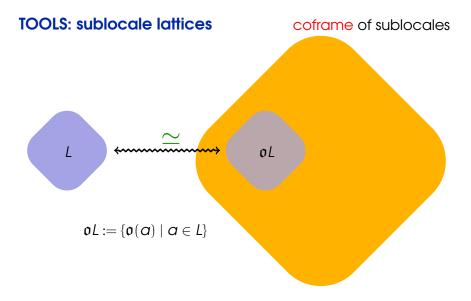
Proposition:

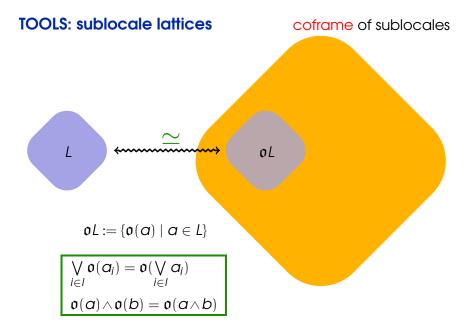
This lattice is a coframe.

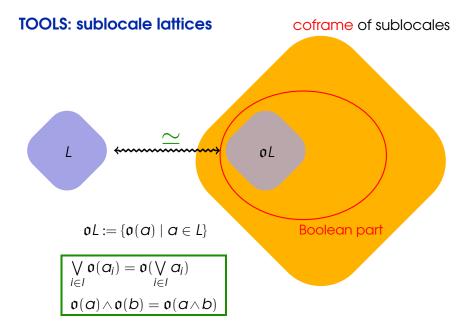
Special sublocales:

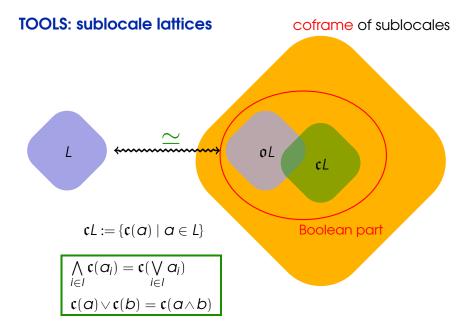
 $\left.\begin{array}{cc} a \in L, & \mathfrak{c}(a) = \uparrow a & \mathsf{CLOSED} \\ \mathfrak{o}(a) = \{a \to x \mid x \in L\} & \mathsf{OPEN} \end{array}\right\} \text{ complemented}$

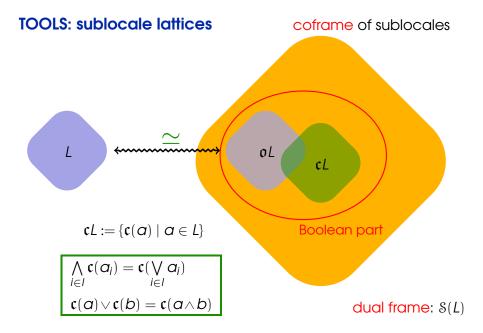
coframe of sublocales









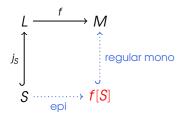


TOOLS: images

localic map $f: L \longrightarrow M$ $\bigcup I$ S

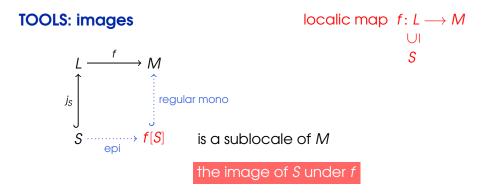
S

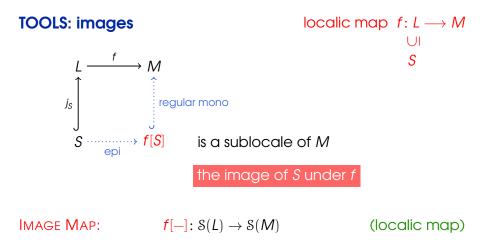
TOOLS: images

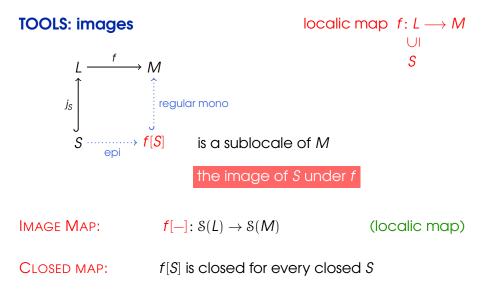


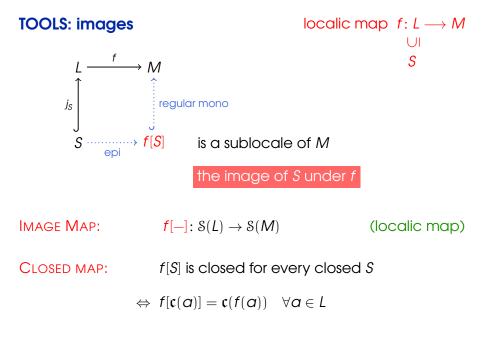
localic map $f: L \longrightarrow M$ $\bigcup I$ S

September 2016: Workshop on Dualities









TOOLS: preimages

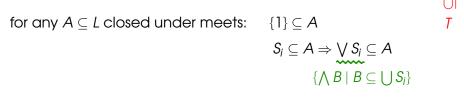
localic map $f: L \longrightarrow M$ $\bigcup I$ T

for any $A \subseteq L$ closed under meets:

 $\begin{array}{c} \text{localic map } f: L \longrightarrow M \\ & \cup \\ \{1\} \subseteq A \\ S_i \subseteq A \Rightarrow \bigvee S_i \subseteq A \end{array}$

for any $A \subseteq L$ closed under meets:

$$\begin{array}{c} \text{localic map } f: L \longrightarrow M \\ & \cup \\ \\ \{1\} \subseteq A \\ S_i \subseteq A \Rightarrow \bigvee S_i \subseteq A \\ & \{ \bigwedge B \mid B \subseteq \bigcup S_i \} \end{array}$$



So there is the largest sublocale contained in A: A_{sloc}

for any
$$A \subseteq L$$
 closed under meets: $\{1\} \subseteq A$
 $S_i \subseteq A \Rightarrow \bigvee S_i \subseteq A$
 $\{\bigwedge B \mid B \subseteq \bigcup S_i\}$

So there is the largest sublocale contained in A: Asloc

for any
$$A \subseteq L$$
 closed under meets: $\{1\} \subseteq A$
 $S_i \subseteq A \Rightarrow \bigvee S_i \subseteq A$
 $\{\bigwedge B \mid B \subseteq \bigcup S_i\}$

So there is the largest sublocale contained in A: Asloc

closed under meets (since f preserve meets)

UЛ

for any
$$A \subseteq L$$
 closed under meets: $\{1\} \subseteq A$
 $S_i \subseteq A \Rightarrow \bigvee S_i \subseteq A$
 $\{\bigwedge B \mid B \subseteq \bigcup S_i\}$

So there is the largest sublocale contained in A: Asloc

closed under meets (since f preserve meets)

UЛ

for any
$$A \subseteq L$$
 closed under meets: $\{1\} \subseteq A$
 $S_i \subseteq A \Rightarrow \bigvee S_i \subseteq A$
 $\{\bigwedge B \mid B \subseteq \bigcup S_i\}$

So there is the largest sublocale contained in A: Asloc

closed under meets (since f preserve meets)

PREIMAGE MAP: $f_{-1}[-]: S(M) \to S(L)$

(frame homom.)

localic map $f: L \longrightarrow M$

UЛ

 $f_{-1}[-] \dashv f[-]$

AS IT SHOULD BE!

 $f_{-1}[-] \dashv f[-]$

AS IT SHOULD BE!

$f_{-1}[\mathfrak{c}(a)] = \mathfrak{c}(f^*(a)) \text{ and } f_{-1}[\mathfrak{o}(a)] = \mathfrak{o}(f^*(a)).$

 $f_{-1}[-] \dashv f[-]$

AS IT SHOULD BE!

1
$$f_{-1}[\mathfrak{c}(a)] = \mathfrak{c}(f^*(a))$$
 and $f_{-1}[\mathfrak{o}(a)] = \mathfrak{o}(f^*(a))$.

2 $f_{-1}[-]$ preserves complements.

 $f_{-1}[-] \dashv f[-]$

AS IT SHOULD BE!

$$f_{-1}[\mathfrak{c}(a)] = \mathfrak{c}(f^*(a)) \text{ and } f_{-1}[\mathfrak{o}(a)] = \mathfrak{o}(f^*(a)).$$

2 $f_{-1}[-]$ preserves complements.

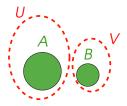

```
for surjective f: f f_{-1}[\mathfrak{c}(a)] = \mathfrak{c}(a) and f f_{-1}[\mathfrak{o}(a)] = \mathfrak{o}(a).
```

Normality

 $\mathfrak{c}(a) \lor \mathfrak{c}(b) = 1$

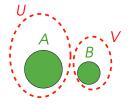
Normality

 $\begin{aligned} \mathfrak{c}(a) &\lor \mathfrak{c}(b) = 1 \\ & \Downarrow \\ \exists u, v: \ \mathfrak{o}(u) \lor \mathfrak{o}(v) = 1, \ \mathfrak{c}(a) \geqslant \mathfrak{o}(u), \ \mathfrak{c}(b) \geqslant \mathfrak{o}(v). \end{aligned}$



Normality

 $\begin{aligned} \mathfrak{c}(a) &\lor \mathfrak{c}(b) = 1 \\ & \Downarrow \\ \exists u, v: \ \mathfrak{o}(u) \lor \mathfrak{o}(v) = 1, \ \mathfrak{c}(a) \geqslant \mathfrak{o}(u), \ \mathfrak{c}(b) \geqslant \mathfrak{o}(v). \end{aligned}$

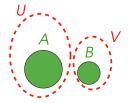


So *L* is normal iff

$$\mathfrak{c}(a) \lor \mathfrak{c}(b) = 1 \Rightarrow \exists u, v: \ \mathfrak{c}(u) \land \mathfrak{c}(v) = 0, \ \mathfrak{c}(a) \lor \mathfrak{c}(u) = 1 = \mathfrak{c}(b) \lor \mathfrak{c}(v)$$

Normality

 $\begin{aligned} \mathfrak{c}(\alpha) &\lor \mathfrak{c}(b) = 1 \\ & \downarrow \\ \exists u, v: \ \mathfrak{o}(u) \lor \mathfrak{o}(v) = 1, \ \mathfrak{c}(\alpha) \geqslant \mathfrak{o}(u), \ \mathfrak{c}(b) \geqslant \mathfrak{o}(v). \end{aligned}$



So *L* is normal iff

$$\mathfrak{c}(a) \lor \mathfrak{c}(b) = 1 \Rightarrow \exists u, v \colon \mathfrak{c}(u) \land \mathfrak{c}(v) = 0, \ \mathfrak{c}(a) \lor \mathfrak{c}(u) = 1 = \mathfrak{c}(b) \lor \mathfrak{c}(v)$$

Internally in *L*: (by $cL \cong L$)

$$a \lor b = 1 \Rightarrow \exists u, v: u \land v = 0, a \lor u = 1 = b \lor v$$

(Conservative extension: X is normal iff the locale O(X) is normal.)

THE INVARIANCE THEOREM: first version

Theorem

Let $f: L \rightarrow M$ be a CLOSED surjective localic map.

If L is normal then M is also normal.

THE INVARIANCE THEOREM: first version

Theorem

Let $f: L \rightarrow M$ be a CLOSED surjective localic map.

If L is normal then M is also normal.

Proof.

Later on ...

AIM I: to cover other variants of normality

 $\mathscr{B}: L \mapsto \mathscr{B}(L) \subseteq B(\mathcal{S}(L))$ "sets of complemented sublocales"

 $\mathscr{B}: L \mapsto \mathscr{B}(L) \subseteq B(\mathcal{S}(L))$ "sets of complemented sublocales"

Selection <i>B</i>	Members of $\mathcal{B}(L)$
c	$\{\mathfrak{c}(a)\colon a\in L\}$

the standard model

September 2016: Workshop on Dualities

 $\mathscr{B}: L \mapsto \mathscr{B}(L) \subseteq B(\mathcal{S}(L))$ "sets of complemented sublocales"

Selection <i>B</i>	Members of $\mathcal{B}(L)$
C	$\{\mathfrak{c}(a)\colon a\in L\}$
c *	$\{\mathfrak{c}(o^*)\colon o\in L\}$

 $\mathscr{B}: L \mapsto \mathscr{B}(L) \subseteq B(\mathcal{S}(L))$ "sets of complemented sublocales"

Selection <i>3</i> 8	Members of $\mathcal{B}(L)$
c	$\{\mathfrak{c}(a)\colon a\in L\}$
c *	$\{\mathfrak{c}(a^*)\colon a\in L\}$
c_{δ}	$\{\mathfrak{c}(a): a \text{ is regular } G_{\delta}\}$

regular G_{δ} element: $a = \bigvee_{n \in \mathbb{N}} a_n$ with $a_n \prec a$

September 2016: Workshop on Dualities

 $\mathscr{B}: L \mapsto \mathscr{B}(L) \subseteq B(\mathcal{S}(L))$ "sets of complemented sublocales"

Selection <i>3</i> 8	Members of $\mathcal{B}(L)$
¢	$\{\mathfrak{c}(a)\colon a\in L\}$
c *	$\{\mathfrak{c}(a^*)\colon a\in L\}$
\mathfrak{c}_{δ}	$\{\mathfrak{c}(a): a \text{ is regular } G_{\delta}\}$
$\mathfrak{c}_{\mathrm{coz}}$	$\{\mathfrak{c}(\operatorname{coz} f) \colon f \in \mathcal{C}(L)\}$

regular G_{δ} element: $a = \bigvee_{n \in \mathbb{N}} a_n$ with $a_n \prec a$

cozero element: $a = \bigvee_{n \in \mathbb{N}} a_n$ with $a_n \prec a$

 $\mathscr{B}: L \mapsto \mathscr{B}(L) \subseteq B(\mathcal{S}(L))$ "sets of complemented sublocales"

Selection <i>3</i>	Members of $\mathcal{B}(L)$
c	${\mathfrak{c}}(a): a \in L$
c *	$\{\mathfrak{c}(a^*)\colon a\in L\}$
c_{δ}	$\{\mathfrak{c}(a): a \text{ is regular } G_{\delta}\}$
$\mathfrak{c}_{\mathrm{coz}}$	$\{\mathfrak{c}(\operatorname{coz} f) \colon f \in \mathcal{C}(L)\}$

J. Gutiérrez García & JP, On the parallel between normality and extremal disconnectedness, JPAA 218 (2014) 784-803

September 2016: Workshop on Dualities

Normal:

 $\mathfrak{c}(\alpha) \lor \mathfrak{c}(b) = 1 \implies \exists u, v \colon \mathfrak{c}(u) \land \mathfrak{c}(v) = 0, \ \mathfrak{c}(\alpha) \lor \mathfrak{c}(u) = 1 = \mathfrak{c}(b) \lor \mathfrak{c}(v).$

September 2016: Workshop on Dualities

L is \mathscr{B} -Normal (for a fixed sublocale selection \mathscr{B}):

For any $A, B \in \mathscr{B}(L)$,

$$A \lor B = 1 \Rightarrow \exists U, V \in \mathscr{B}(L): U \land V = 0, A \lor U = 1 = B \lor V$$

Normal:

 $\mathfrak{c}(a) \lor \mathfrak{c}(b) = 1 \Rightarrow \exists u, v \colon \mathfrak{c}(u) \land \mathfrak{c}(v) = 0, \ \mathfrak{c}(a) \lor \mathfrak{c}(u) = 1 = \mathfrak{c}(b) \lor \mathfrak{c}(v).$

September 2016: Workshop on Dualities

L is \mathscr{B} -Normal (for a fixed sublocale selection \mathscr{B}):

$$A \lor B = 1 \Rightarrow \exists U, V \in \mathscr{B}(L): U \land V = 0, A \lor U = 1 = B \lor V$$

Selection <i>3</i>	<i>®</i> -normal frames
c	normal

L is \mathscr{B} -Normal (for a fixed sublocale selection \mathscr{B}):

$$A \lor B = 1 \Rightarrow \exists U, V \in \mathscr{B}(L): U \land V = 0, A \lor U = 1 = B \lor V$$

Selection <i>3</i>	<i>®</i> -normal frames
¢	normal
c *	mildly normal

L is \mathscr{B} -Normal (for a fixed sublocale selection \mathscr{B}):

$$A \lor B = 1 \Rightarrow \exists U, V \in \mathscr{B}(L): U \land V = 0, A \lor U = 1 = B \lor V$$

Selection <i>3</i> 8	<i>®</i> -normal frames
c	normal
c *	mildly normal
\mathfrak{c}_{δ}	δ-normal

L is \mathscr{B} -Normal (for a fixed sublocale selection \mathscr{B}):

$$A \lor B = 1 \Rightarrow \exists U, V \in \mathscr{B}(L): U \land V = 0, A \lor U = 1 = B \lor V$$

Selection <i>3</i> 8	<i>®</i> -normal frames
c	normal
\mathfrak{c}^*	mildly normal
\mathfrak{c}_{δ}	δ-normal
$\mathfrak{c}_{\mathrm{coz}}$	all frames

The Invariance Theorem: 1st version

localic map $f: L \to M$

Theorem

Let $f: L \rightarrow M$ be a CLOSED surjective localic map.

If L is normal then M is also normal.

September 2016: Workshop on Dualities

The Invariance Theorem: 1st version

localic map $f: L \to M$

f is image *B*-preserving if

f[-] maps elements of $\mathscr{B}(L)$ into $\mathscr{B}(M)$.

Theorem

Let $f: L \rightarrow M$ be a CLOSED surjective localic map.

If L is normal then M is also normal.

September 2016: Workshop on Dualities

The Invariance Theorem: 1st version

localic map $f: L \to M$

f is image *B*-preserving if

f[-] maps elements of $\mathscr{B}(L)$ into $\mathscr{B}(M)$.

f is preimage *B*-preserving if

 $f_{-1}[-]$ maps elements of $\mathscr{B}(M)$ into $\mathscr{B}(L)$.

Theorem

Let $f: L \to M$ be a CLOSED surjective localic map.

If L is normal then M is also normal.

The Invariance Theorem: general version localic map $f: L \rightarrow M$

f is image *B*-preserving if

f[-] maps elements of $\mathscr{B}(L)$ into $\mathscr{B}(M)$.

f is preimage *B*-preserving if

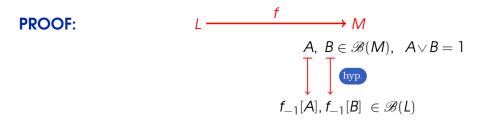
 $f_{-1}[-]$ maps elements of $\mathscr{B}(M)$ into $\mathscr{B}(L)$.

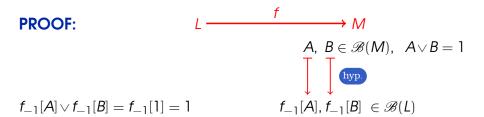
Theorem

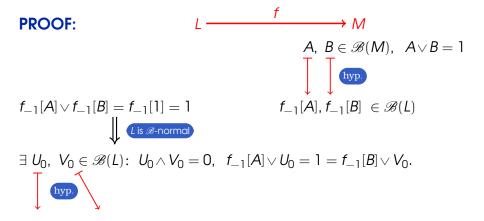
Let $f: L \to M$ be a image \mathscr{B} -preserving and preimage

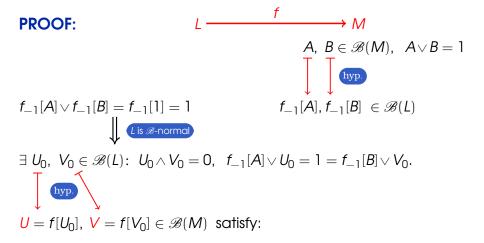
B-preserving surjective localic map.

If L is \mathcal{B} -normal then M is also \mathcal{B} -normal.









- 14 -

• $U = f[U_0] \ge f f_{-1}[A^c] \ge A^c$, i.e. $A \lor U = 1$ (and similarly for V).

 $f_{-1}[-]$ preserves complements

image \mathscr{B} -preserving: f[-] maps elements of $\mathscr{B}(L)$ into $\mathscr{B}(M)$.

image \mathscr{B} -preserving: f[-] maps elements of $\mathscr{B}(L)$ into $\mathscr{B}(M)$.

B	image <i>%</i> -preserving	preimage <i>B</i> -preserving	
c	closed maps	all	

image \mathscr{B} -preserving: f[-] maps elements of $\mathscr{B}(L)$ into $\mathscr{B}(M)$.

В	image <i>B</i> -preserving	preimage <i>B</i> -preserving	
c	closed maps	all	
0	open maps	all	

image \mathscr{B} -preserving: f[-] maps elements of $\mathscr{B}(L)$ into $\mathscr{B}(M)$.

B	image <i>B</i> -preserving	preimage \mathscr{B} -preserving
c	closed maps	all
0	open maps	all
c *	$f(a \lor f^*(b)) = f(a) \lor b$ regular	f* of type E (e.g. nearly open) (Banaschewski & Pultr)

image \mathscr{B} -preserving: f[-] maps elements of $\mathscr{B}(L)$ into $\mathscr{B}(M)$.

В	image <i>B</i> -preserving	preimage <i>B</i> -preserving
c	closed maps	all
0	open maps	all
C *	$f(a \lor f^*(b)) = f(a) \lor b$ regular	f* of type E (e.g. nearly open) (Banaschewski & Pultr)
$\mathfrak{c}_{\mathrm{coz}}$	$f(\underline{a} \lor f^*(b)) = f(a) \lor b$ cozero	all

AIM II: to get DUAL results for free

 $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$

 ${\mathscr B}$ -normal:

$$\mathfrak{c}(a) \lor \mathfrak{c}(b) = 1 \implies \exists u, v: \ \mathfrak{c}(u) \land \mathfrak{c}(v) = 1, \ \mathfrak{c}(a) \lor \mathfrak{c}(u) = 1 = \mathfrak{c}(b) \lor \mathfrak{c}(v)$$

 $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$

 \mathscr{B}^{c} -normal: \mathscr{B} -disconnected.

 $\mathfrak{o}(a) \lor \mathfrak{o}(b) = 1 \Rightarrow \exists u, v: \mathfrak{o}(u) \land \mathfrak{o}(v) = 1, \mathfrak{o}(a) \lor \mathfrak{o}(u) = 1 = \mathfrak{o}(b) \lor \mathfrak{o}(v)$

 $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$

 \mathscr{B}^{c} -normal: \mathscr{B} -disconnected.

 $\mathfrak{o}(a) \lor \mathfrak{o}(b) = 1 \Rightarrow \exists u, v: \mathfrak{o}(u) \land \mathfrak{o}(v) = 1, \mathfrak{o}(a) \lor \mathfrak{o}(u) = 1 = \mathfrak{o}(b) \lor \mathfrak{o}(v)$

 $\equiv [\mathfrak{c}(a) \land \mathfrak{c}(b) = 0 \Rightarrow \exists u, v: \ \mathfrak{c}(u) \lor \mathfrak{c}(v) = 0, \ \mathfrak{c}(a) \land \mathfrak{c}(u) = 0 = \mathfrak{c}(b) \land \mathfrak{c}(v)]$

 $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$

 \mathscr{B}^{c} -normal: \mathscr{B} -disconnected.

 $\mathfrak{o}(a) \lor \mathfrak{o}(b) = 1 \Rightarrow \exists u, v: \mathfrak{o}(u) \land \mathfrak{o}(v) = 1, \mathfrak{o}(a) \lor \mathfrak{o}(u) = 1 = \mathfrak{o}(b) \lor \mathfrak{o}(v)$

 $\equiv [\mathfrak{c}(a) \land \mathfrak{c}(b) = 0 \ \Rightarrow \ \exists u, v \colon \ \mathfrak{c}(u) \lor \mathfrak{c}(v) = 0, \ \mathfrak{c}(a) \land \mathfrak{c}(u) = 0 = \mathfrak{c}(b) \land \mathfrak{c}(v)]$

 $\equiv [a \land b = 0 \Rightarrow \exists u, v \in L: u \lor v = 1, a \land u = 0 = b \land v]$

 $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$

B^c-normal: *B*-disconnected.

 $\mathfrak{o}(a) \lor \mathfrak{o}(b) = 1 \Rightarrow \exists u, v: \mathfrak{o}(u) \land \mathfrak{o}(v) = 1, \mathfrak{o}(a) \lor \mathfrak{o}(u) = 1 = \mathfrak{o}(b) \lor \mathfrak{o}(v)$

 $\equiv [\mathfrak{c}(a) \land \mathfrak{c}(b) = 0 \Rightarrow \exists u, v: \ \mathfrak{c}(u) \lor \mathfrak{c}(v) = 0, \ \mathfrak{c}(a) \land \mathfrak{c}(u) = 0 = \mathfrak{c}(b) \land \mathfrak{c}(v)]$

 $\equiv [a \land b = 0 \Rightarrow \exists u, v \in L: u \lor v = 1, a \land u = 0 = b \land v]$ need only for a, b regular $(a \land b = 0 \Leftrightarrow a^{**} \land b^{**} = 0)$

 $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$

B^c-normal: *B*-disconnected.

 $\mathbf{o}(a) \lor \mathbf{o}(b) = 1 \implies \exists u, v: \ \mathbf{o}(u) \land \mathbf{o}(v) = 1, \ \mathbf{o}(a) \lor \mathbf{o}(u) = 1 = \mathbf{o}(b) \lor \mathbf{o}(v)$

$$\equiv [\mathfrak{c}(a) \land \mathfrak{c}(b) = 0 \Rightarrow \exists u, v: \ \mathfrak{c}(u) \lor \mathfrak{c}(v) = 0, \ \mathfrak{c}(a) \land \mathfrak{c}(u) = 0 = \mathfrak{c}(b) \land \mathfrak{c}(v)]$$

 $\equiv [a \land b = 0 \Rightarrow \exists u, v \in L: u \lor v = 1, a \land u = 0 = b \land v]$ need only for a, b regular $(a \land b = 0 \Leftrightarrow a^{**} \land b^{**} = 0)$

 $\equiv (a \land b)^* = a^* \lor b^*$ (De Morgan frames)

 $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$

B^c-normal: *B*-disconnected.

Selection <i>B</i>	\mathscr{B} -normal frames	% -disconnected frames
c	normal	extremally disconnected

 $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$

B^c-normal: *B*-disconnected.

Selection <i>3</i> 8	\mathscr{B} -normal frames	${\mathscr B}$ -disconnected frames
c	normal	extremally disconnected
c *	mildly normal	extremally disconnected

 $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$

B^c-normal: *B*-disconnected.

Selection <i>%</i>	\mathscr{B} -normal frames	% -disconnected frames	
c	normal	extremally disconnected	
c *	mildly normal	extremally disconnected	
\mathfrak{c}_{δ}	δ-normal	extremally δ -disconnected	

 $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$

B^c-normal: *B*-disconnected.

Selection <i>3</i> 8	<i>ℜ</i> -normal frames	\mathscr{B} -disconnected frames	
¢ normal		extremally disconnected	
\mathfrak{c}^*	mildly normal	extremally disconnected	
\mathfrak{c}_{δ}	δ-normal	extremally δ -disconnected	
$\mathfrak{c}_{\mathrm{coz}}$	all frames	F-frames	

F-frame \equiv every $\mathfrak{o}(\cos f)$ is *C*^{*}-embedded.

Theorem

Let $f: L \rightarrow M$ be a surjective localic map such that

f is image \mathscr{B} -preserving and preimage \mathscr{B} -preserving.

If L is \mathcal{B} -normal then M is also \mathcal{B} -normal.

Theorem

Let $f: L \rightarrow M$ be a surjective localic map such that

f is image *B*-preserving and preimage *B*-preserving.

If L is \mathcal{B} -normal then M is also \mathcal{B} -normal.

Just APPLY it to BC!

Corollary

Let $f: L \to M$ be a surjective localic map such that

f is image \mathcal{B} -preserving and preimage \mathcal{B} -preserving.

If L is \mathcal{B} -normal then M is also \mathcal{B} -normal.

disconnected

disconnected

preimage *%*^c-preserving = preimage *%*-preserving

(because $f_{-1}[-]$ preserves complements)

Corollary

Let $f: L \to M$ be a surjective localic map such that

f is image \mathcal{B} -preserving and preimage \mathcal{B} -preserving.

If L is \mathcal{B} -normal then M is also \mathcal{B} -normal.

disconnected

disconnected

preimage *%*^c-preserving = preimage *%*-preserving

(because $f_{-1}[-]$ preserves complements)

Example $\mathscr{B} = \mathfrak{c}$:

Extremally disconnected locales are invariant under OPEN mappings.

September 2016: Workshop on Dualities

localic map $f: L \to M$

image *B*^c-preserving

preimage \mathscr{B}^{c} -preserving \equiv preimage \mathscr{B} -preserving

В	image 3 ^c -preserving	preimage <i>3</i> °-preserving	
c	open	all	

localic map $f: L \to M$

image *B*^c-preserving

preimage \mathscr{B}^{c} -preserving \equiv preimage \mathscr{B} -preserving

B	image % ^c -preserving	preimage <i>B</i> ^c -preserving
c	open	all
c *	nearly open	f* of type E (e.g. nearly open) (Banaschewski & Pultr)

localic map $f: L \to M$

image *B*^c-preserving

preimage \mathscr{B}^{c} -preserving \equiv preimage \mathscr{B} -preserving

B	image % ^c -preserving	preimage <i>B</i> ^c -preserving	
c	open	all	
c *	nearly open	f* of type E (e.g. nearly open) (Banaschewski & Pultr)	
$\mathfrak{c}_{\mathrm{coz}}$?	all	

Perfect normality

In spaces (Michael 1956):

 $\forall U \in \mathcal{O}(X) \exists (U_n)_{\mathbb{N}} \subseteq \mathcal{O}(X) \colon U = \bigcup_n U_n \text{ and } \overline{U_n} \subseteq U \forall n.$

Perfect normality

In spaces (Michael 1956):

 $\forall U \in \mathcal{O}(X) \exists (U_n)_{\mathbb{N}} \subseteq \mathcal{O}(X) \colon U = \bigcup_n U_n \text{ and } \overline{U_n} \subseteq U \forall n.$

In frames (Charalambous 1974):

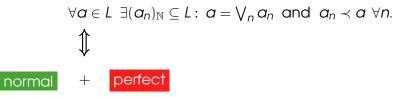
 $\forall a \in L \exists (a_n)_{\mathbb{N}} \subseteq L : a = \bigvee_n a_n \text{ and } a_n \prec a \forall n.$

Perfect normality

In spaces (Michael 1956):

 $\forall U \in \mathcal{O}(X) \exists (U_n)_{\mathbb{N}} \subseteq \mathcal{O}(X) \colon U = \bigcup_n U_n \text{ and } \overline{U_n} \subseteq U \forall n.$

In frames (Charalambous 1974):



Perfect normality

In spaces (Michael 1956):

 $\forall U \in \mathcal{O}(X) \exists (U_n)_{\mathbb{N}} \subseteq \mathcal{O}(X) \colon U = \bigcup_n U_n \text{ and } \overline{U_n} \subseteq U \forall n.$

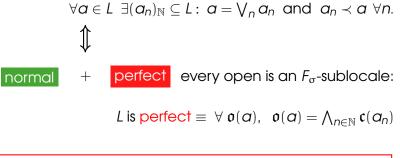
In frames (Charalambous 1974):

Perfect normality

In spaces (Michael 1956):

 $\forall U \in \mathcal{O}(X) \exists (U_n)_{\mathbb{N}} \subseteq \mathcal{O}(X) \colon U = \bigcup_n U_n \text{ and } \overline{U_n} \subseteq U \forall n.$

In frames (Charalambous 1974):



L is \mathscr{B} -perfect $\equiv \forall A \in \mathscr{B}^{c}, A = \bigwedge_{n \in \mathbb{N}} A_n$ with each $A_n \in \mathscr{B}$

B	<i>ℜ</i> -perfect	<i>®</i> -perfectly normal	\mathscr{B}^{c} -perfect	\mathscr{B}° -perfectly normal
c				
c *				
$\mathfrak{c}_{\mathrm{coz}}$				

B	ℬ - perfect	<pre> %-perfectly normal </pre>	ℬ^c-perfect	\mathscr{B}° -perfectly normal
c	perfect	perfectly normal	Boolean	Boolean
c*				
$\mathfrak{c}_{\mathrm{coz}}$				

В	ℬ-perfect	<i>B</i> -perfectly normal	ℬ^c-perfect	\mathscr{B}^{c} -perfectly normal
¢	perfect	perfectly normal	Boolean	Boolean
c *	?	OZ frames	?	extremally disconn.
$\mathfrak{c}_{\mathrm{coz}}$				

OZ frame \equiv every regular element is a cozero.

В	ℬ-perfect	%-perfectly normal	ℬ^c-perfect	\mathscr{B}^{c} -perfectly normal
¢	perfect	perfectly normal	Boolean	Boolean
c *	?	OZ frames	?	extremally disconn.
$\mathfrak{c}_{\mathrm{coz}}$?	all frames	?	P-frames

OZ frame \equiv every regular element is a cozero.

P-frame $\equiv \operatorname{Coz} L$ is complemented.

Theorem

Let $f: L \to M$ be a surjective localic map such that

Theorem

Let $f: L \to M$ be a surjective localic map such that

• f is image *B*-preserving and preimage *B*-preserving

Theorem

Let $f: L \to M$ be a surjective localic map such that

- f is image *B*-preserving and preimage *B*-preserving
- $f f_{-1}[B] = B$ for every $B \in \mathscr{B}^{c}(M)$.

Theorem

Let $f: L \to M$ be a surjective localic map such that

- *f* is image *B*-preserving and preimage *B*-preserving
- $f f_{-1}[B] = B$ for every $B \in \mathscr{B}^{c}(M)$.

Theorem

Let $f: L \to M$ be a surjective localic map such that

- *f* is image *B*-preserving and preimage *B*-preserving
- $f f_{-1}[B] = B$ for every $B \in \mathscr{B}^{c}(M)$.

If L is \mathcal{B} -perfect then M is also \mathcal{B} -perfect.

$$f \longrightarrow M$$

Proof:

Theorem

Proof:

Let $f: L \to M$ be a surjective localic map such that

- f is image *B*-preserving and preimage *B*-preserving
- $f f_{-1}[B] = B$ for every $B \in \mathscr{B}^{c}(M)$.

$$L \xrightarrow{f} M$$

$$B \in \mathscr{B}^{\mathsf{c}}(M)$$

Theorem

Proof:

Let $f: L \to M$ be a surjective localic map such that

- f is image *B*-preserving and preimage *B*-preserving
- $f f_{-1}[B] = B$ for every $B \in \mathscr{B}^{c}(M)$.

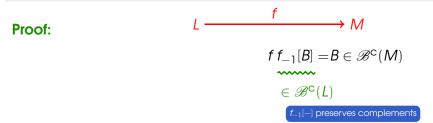
$$L \xrightarrow{f} M$$

$$f f_{-1}[B] = B \in \mathscr{B}^{c}(M)$$

Theorem

Let $f: L \to M$ be a surjective localic map such that

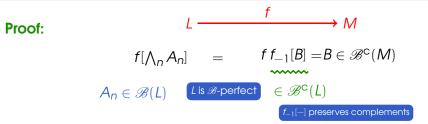
- f is image *B*-preserving and preimage *B*-preserving
- $f f_{-1}[B] = B$ for every $B \in \mathscr{B}^{c}(M)$.



Theorem

Let $f: L \to M$ be a surjective localic map such that

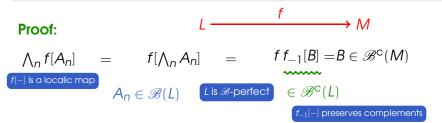
- f is image *B*-preserving and preimage *B*-preserving
- $f f_{-1}[B] = B$ for every $B \in \mathscr{B}^{c}(M)$.



Theorem

Let $f: L \to M$ be a surjective localic map such that

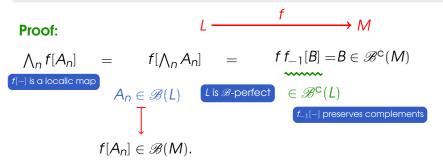
- f is image *B*-preserving and preimage *B*-preserving
- $f f_{-1}[B] = B$ for every $B \in \mathscr{B}^{c}(M)$.



Theorem

Let $f: L \to M$ be a surjective localic map such that

- f is image *B*-preserving and preimage *B*-preserving
- $f f_{-1}[B] = B$ for every $B \in \mathscr{B}^{c}(M)$.



Theorem

Let $f: L \to M$ be a surjective localic map such that

- f is image *B*-preserving and preimage *B*-preserving
- $f f_{-1}[B] = B$ for every $B \in \mathscr{B}^{c}(M)$.

If L is \mathcal{B} -perfect then M is also \mathcal{B} -perfect.

Example $\mathscr{B} = \mathfrak{c}$:

Perfect locales are invariant under CLOSED mappings.

Theorem

Let $f: L \to M$ be a surjective localic map such that

- f is image *B*-preserving and preimage *B*-preserving
- $f f_{-1}[B] = B$ for every $B \in \mathscr{B}^{c}(M)$.

If L is \mathcal{B} -perfect then M is also \mathcal{B} -perfect.

Example $\mathscr{B} = \mathfrak{c}$:

Perfect locales are invariant under CLOSED mappings.

Perfectly normal locales are invariant under CLOSED mappings.

Theorem

Let $f: L \to M$ be a surjective localic map such that

- f is image *B*-preserving and preimage *B*-preserving
- $f f_{-1}[B] = B$ for every $B \in \mathscr{B}^{c}(M)$.

If L is \mathcal{B} -perfect then M is also \mathcal{B} -perfect.

Example $\mathscr{B} = \mathfrak{c}$:

Perfect locales are invariant under CLOSED mappings.

Perfectly normal locales are invariant under CLOSED mappings.

Boolean locales are invariant under OPEN mappings.

Other interesting cases

Hereditary case:

hereditary normality: every its sublocale is *B*-normal.

(suffices for every sublocale in \mathscr{B}^{c})

Other interesting cases

Hereditary case: hereditary normality: every its sublocale is *B*-normal. (suffices for every sublocale in *B*^c) complete normality

Other interesting cases

Hereditary case: hereditary normality: every its sublocale is *B*-normal. (suffices for every sublocale in *B*^c) complete normality

Real functions:

B-continuity, B-semicontinuity, general insertion theorems...

September 2016: Workshop on Dualities

Hausdorff invariance type theorems and their duals

- 21 -

Main references

- J. Gutiérrez García and J. Picado, On the parallel between normality and extremal disconnectedness, J. Pure Appl. Algebra 218 (2014) 784-803.
- J. Gutiérrez García, T. Kubiak and J. Picado, Perfectness in locales, *Quaest. Math.*, in press.
- J. Gutiérrez García, T. Kubiak and J. Picado, On extremal disconnectedness and its hereditary property, in preparation.
- J. Picado and A. Pultr, Frames and Locales: topology without points, Frontiers in Mathematics, Vol. 28, Springer, Basel, 2012.