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@ General facts about finite rank locally trivial complex vector bundles
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I. INTRODUCTION

Construction of certain vector bundles (Fell bundles) on topological
groupoids from C*-algebras equipped with “diagonals” [Renault,
Kumjian, Exel, Buss]

General facts about finite rank locally trivial complex vector bundles
Q

Locale theory and the adjunction LocZ_ L = Top
b3

Gelfand duality

Resemblance to Dauns—Hofmann theorem: C*-bundle on the space of
primitive ideals of a C*-algebra A — fiber over I is A/I for each ideal
(I>1).
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I. INTRODUCTION

Construction of certain vector bundles (Fell bundles) on topological
groupoids from C*-algebras equipped with “diagonals” [Renault,
Kumjian, Exel, Buss]

General facts about finite rank locally trivial complex vector bundles
Q

Locale theory and the adjunction LocZ_ L = Top
b3

Gelfand duality

Resemblance to Dauns—Hofmann theorem: C*-bundle on the space of
primitive ideals of a C*-algebra A — fiber over I is A/I for each ideal
(I>1).
Joint work with Jodo Paulo Santos (IST):

e Open quotients of trivial vector bundles; arXiv:1510.06329

e Linear structures on locales, Theory Appl. Categ. 31 (2016) 502-541
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II. QUOTIENT VECTOR BUNDLES

DEFINITION

By a quotient vector bundle is meant a triple (7,A,q) consisting of a
“linear bundle” & : E — X on a topological space X, a topological vector
space (TVS) A, and a continuous open surjection g : A x X — E that
makes the following commute:

q

AxX
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II. QUOTIENT VECTOR BUNDLES

DEFINITION

By a quotient vector bundle is meant a triple (7,A,q) consisting of a

“linear bundle” & : E — X on a topological space X, a topological vector
space (TVS) A, and a continuous open surjection g : A x X — E that
makes the following commute:

AxX 1

S|

X
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II. QUOTIENT VECTOR BUNDLES

DEFINITION

By a quotient vector bundle is meant a triple (7,A,q) consisting of a

“linear bundle” & : E — X on a topological space X, a topological vector
space (TVS) A, and a continuous open surjection g : A x X — E that
makes the following commute:

Axx—1 E
\Lﬂ;
™

X

v

Any Banach bundle on a locally compact Hausdorff space, with A = Cy(E)
and g = eval: for each section s: X — E we have g(s,x) = s(x).

<
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II. QUOTIENT VECTOR BUNDLES

DEFINITION

By a quotient vector bundle is meant a triple (7,A,q) consisting of a
“linear bundle” & : E — X on a topological space X, a topological vector

space (TVS) A, and a continuous open surjection g : A x X — E that
makes the following commute:

Axx—1 E
\Lﬂ;
™

X

Any Banach bundle on a locally compact Hausdorff space, with A = Cy(E)
and g = eval: for each section s: X — E we have g(s,x) = s(x).

Any Fell bundle on an étale locally compact Hausdorff groupoid, with
A= C}(E) and g = eval.

<
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Notation: E, := n~'({x}) is the fiber over x
Some properties:

@ ¢ is a quotient map, so E is a quotient topological space of A x X
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II. QUOTIENT VECTOR BUNDLES

q

Notation: E, := ~!({x}) is the fiber over x

AxX

Some properties:

@ ¢ is a quotient map, so E is a quotient topological space of A x X.
@ For each x € X, the map ¢, : A — E, defined by g,(a) = g(a,x) is a
continuous open surjection, so E, is a quotient TVS of A.

P. RESENDE (IST) LINEARIZED LOCALES DUALITIES’ 16, SEP. 2016 4/18



II. QUOTIENT VECTOR BUNDLES

q

Notation: E, := ~!({x}) is the fiber over x

AxX

Some properties:

@ ¢ is a quotient map, so E is a quotient topological space of A x X.

@ For each x € X, the map ¢, : A — E, defined by g,(a) = g(a,x) is a
continuous open surjection, so E, is a quotient TVS of A.

© The subspace topology of E, C E coincides with the quotient
topology.
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II. QUOTIENT VECTOR BUNDLES

q

Notation: E, := ~!({x}) is the fiber over x

AxX

Some properties:

@ ¢ is a quotient map, so E is a quotient topological space of A x X.

@ For each x € X, the map ¢, : A — E, defined by g,(a) = g(a,x) is a
continuous open surjection, so E, is a quotient TVS of A.

© The subspace topology of E, C E coincides with the quotient
topology.

@ Each a € A defines a section a: X — E by a(x) = g(a,x).
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II. QUOTIENT VECTOR BUNDLES

q

Notation: E, := ~!({x}) is the fiber over x

AxX

Some properties:

@ ¢ is a quotient map, so E is a quotient topological space of A x X.

@ For each x € X, the map ¢, : A — E, defined by g,(a) = g(a,x) is a
continuous open surjection, so E, is a quotient TVS of A.

© The subspace topology of E, C E coincides with the quotient
topology.

@ Each a € A defines a section a: X — E by a(x) = g(a,x).

@ 7 “has enough sections”: for all e € E, there is a € A such that
alx) =e.
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SubA := {linear subspaces of A}  MaxA := {closed linear subspaces of A}

The kernel map k : X — SubA is defined by

Kk(x) ={a € A|q(a,x) =0}
Some properties:
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SubA := {linear subspaces of A}  MaxA := {closed linear subspaces of A}

The kernel map k : X — SubA is defined by

Kk(x) ={a € A|q(a,x) =0}
Some properties:

O E ~A/k(x).
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SubA := {linear subspaces of A}  MaxA := {closed linear subspaces of A}

The kernel map k : X — SubA is defined by

Kk(x) ={a € A|q(a,x) =0}
Some properties:

O E ~A/k(x).

@ The fibers E, are Hausdorff iff x : X — MaxA.
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II. QUOTIENT VECTOR BUNDLES

Axx —1 E
\\Lﬂ?

™
X

SubA := {linear subspaces of A} MaxA := {closed linear subspaces of A}

DEFINITION
The kernel map x: X — SubA is defined by

K(x) = {a € A|q(a,x) =0}

Some properties:
Q E.=A/k(x).
@ The fibers E, are Hausdorff iff k¥ : X — MaxA.

© « determines E and g uniquely up to isomorphisms.
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II. QUOTIENT VECTOR BUNDLES

THEOREM

Let A be a TVS, X a topological space, and k : X — SubA any map.
Obtain a commutative diagram

Axx—1 . FE
\\Lﬂ

2}
X

by constructing E as the quotient of A X X defined by
(a,x) ~ (b,y) <= x=yanda—b € k(x) .

The quotient map q: A x X — E is open iff kK is continuous with respect
the lower Vietoris topology of SubA.
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SubA is the classifying space for QVBs with TVS A.
The QVB

UA := (ms : UA — SubA, A, qa)

classified by the identity on SubA is the universal QVB for A.
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II. QUOTIENT VECTOR BUNDLES

DEFINITION

SubA is the classifying space for QVBs with TVS A.
The QVB

UA := (my : UA — SubA, A, ga)
classified by the identity on SubA is the universal QVB for A.

COROLLARY
Any QVB (m,A,q) is the pullback of UA along the kernel map:

E UA
T
X ———— SubA
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@ Fell topology on MaxA (with first countable X and A) classifies QVBs
with Hausdorff fibers and closed zero section.
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II. QUOTIENT VECTOR BUNDLES

© Fell topology on MaxA (with first countable X and A) classifies QVBs
with Hausdorff fibers and closed zero section.

@ Closed balls topology on MaxA (A normed) classifies QVBs with
continuous norm.
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II. QUOTIENT VECTOR BUNDLES

© Fell topology on MaxA (with first countable X and A) classifies QVBs
with Hausdorff fibers and closed zero section.

@ Closed balls topology on MaxA (A normed) classifies QVBs with
continuous norm.

© With A a Banach space and X Hausdorff, MaxA classifies QVBs
which are Banach bundles.
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Let o = (n:E— X, A, q) be a QVB:

q

AXX— > F
™

X
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Let o = (n:E— X, A, q) be a QVB:

q

AXX——F

Notation: supp®a = int{x € X | g(a,x) # 0} is the open support of a
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Let o = (n:E— X, A, q) be a QVB:

AxX—* . FE

S

Notation: supp®a = int{x € X | g(a,x) # 0} is the open support of a
There is an adjunction between complete lattices:

[e2
Q(X) T SubA
Y
o(V) = Usupp"&
acV
rU) =

{a €A |supp’a C U}

«O)» «F»r « > < > = Q>



(o)
QX)L - SubA
Y

Define ¥ = X(Q(X)) (prime spectrum of the locale Q(X))...
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[e2
Q(X) =L - suba

Y
Define ¥ = X(Q(X)) (prime spectrum of the locale Q(X))..

and ¢ :=y|y (called the spectral kernel of the QVB).
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[e2
Q(X) =L - suba

Y
Define ¥ = X(Q(X)) (prime spectrum of the locale Q(X))..

and ¢ := 7|y (called the spectral kernel of the QVB).
If € is continuous it defines a new QVB.
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[e2
Q(X) =L - suba

Y
Define ¥ = X(Q(X)) (prime spectrum of the locale Q(X))..

and ¢ := 7|y (called the spectral kernel of the QVB).
If € is continuous it defines a new QVB.
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[e2
Q(X) =L - suba

Y
Define ¥ = X(Q(X)) (prime spectrum of the locale Q(X))..

X
and ¢ := 7|y (called the spectral kernel of the QVB).
If € is continuous it defines a new QVB.

If {x € X|qg(a,x) =0} is open for all a € A we say that the QVB has the
open support property.
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III. LINEARIZED LOCALES

o
Q(X)= L _—SubA
Y
Define Y = X(Q(X)) (prime spectrum of the locale Q(X))...

. and £:= 7|y (called the spectral kernel of the QVB).

If € is continuous it defines a new QVB.

DEFINITION
If {x € X |q(a,x) =0} is open for all a € A we say that the QVB has the

open support property.
If moreover £ is continuous the QVB is a spectral vector bundle.
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III. LINEARIZED LOCALES

Q) <L suba
Y

Define Y = £(Q(X)) (prime spectrum of the locale Q(X))...
.. and ¢ := 7|y (called the spectral kernel of the QVB).
If € is continuous it defines a new QVB.
DEFINITION
If {x € X |q(a,x) =0} is open for all a € A we say that the QVB has the
open support property.
If moreover ¢ is continuous the QVB is a spectral vector bundle. )

> A
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III. LINEARIZED LOCALES

o
Q(X)= L - SubA

R
Y
Define Y = £(Q(X)) (prime spectrum of the locale Q(X))...
.. and ¢ := 7|y (called the spectral kernel of the QVB).
If € is continuous it defines a new QVB.
DEFINITION
If {x € X |q(a,x) =0} is open for all a € A we say that the QVB has the
open support property.
If moreover ¢ is continuous the QVB is a spectral vector bundle. )

If X is sober and the zero section is closed in E then the QVB is spectral.

> A
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III. LINEARIZED LOCALES

[e)
Q(X)= L _—SubA
Y
Define Y = £(Q(X)) (prime spectrum of the locale Q(X))...

.. and ¢ := 7|y (called the spectral kernel of the QVB).

If € is continuous it defines a new QVB.

DEFINITION
If {x € X |q(a,x) =0} is open for all a € A we say that the QVB has the

open support property.
If moreover ¢ is continuous the QVB is a spectral vector bundle.

If X is sober and the zero section is closed in E then the QVB is spectral.

E.g., Banach bundles and Fell bundles as before.

v,
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topology) is sober.

Let A be a locally convex space. Then MaxA (with the lower Vietoris
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Let A be a locally convex space. Then MaxA (with the lower Vietoris
topology) is sober.
If A is locally convex the universal QVB (7,A,q) with Hausdorff fibers is

not spectral, even though MaxA is sober.

] (w1 =

DUALITIES’ 16, SEP. 2016
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Let A\ be a locale, and A a TVS, equipped with an adjunction

(o)

AT SubA
Y

such that

t:=7Ylga) : Z(A) — SubA
is continuous.

«O)» «F»r « [ R | > Q>




III. LINEARIZED LOCALES

DEFINITION
Let A be a locale, and A a TVS, equipped with an adjunction
(o2
A= 1 _SubA

— —

Y

such that
B o= ’Y‘E(A) : Z(A) — SubA
is continuous.

The triple (A, 0,7) is called a linear structure on A, and 2A = (A,A,0,7)
is a linearized locale.
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III. LINEARIZED LOCALES

DEFINITION
Let A be a locale, and A a TVS, equipped with an adjunction
(o2
A= 1 _—SubA

— —

Y

such that
B o= ’}/‘E(A) : E(A) — SubA
is continuous.

The triple (A, 0,7) is called a linear structure on A, and %A= (A,A,0,7)
is a linearized locale.

v

Every spectral vector bundle 7 yields a linearized locale
Qo) = (N,A,0,7), with A = Q(X), as described earlier.

4 A
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Conversely, every linearized locale 2l = (A,A, 0,7) defines a QVB
L) =(w:E— X,A,q) with X =2(A) and kernel map ¢ = 7|x.

() is a spectral vector bundle. I




Conversely, every linearized locale 2l = (A,A, 0,7) defines a QVB
L) =(w:E— X,A,q) with X =2(A) and kernel map ¢ = 7|x.

() is a spectral vector bundle. l

Correspondence

Spectral vector bundles

Linearized locales
3
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QletF=(n:E—X,A g)and B=(p:F—Y, B, r) be QVBs.

«O0r 4Fr «=E» «E)» 12N G4



QletF=(n:E—X,A g)and B=(p:F—Y, B, r) be QVBs.
@ A morphism f: % — of should “induce” a continuous linear map
f*:A—B.
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@ A morphism f: % — of should “induce” a continuous linear map
f*:A—B.

A morphism f: B — of is a pair (f,,f*) such that

QletF=(n:E—X,A g)and B=(p:F—Y, B, r) be QVBs.
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QletF=(n:E—X,A g)and B=(p:F—Y, B, r) be QVBs.
@ A morphism f: % — of should “induce” a continuous linear map
f*:A—B.

A morphism f: B — of is a pair (f,,f*) such that
e f,: Y — X is continuous;

it
-
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IV. MORPHISMS OF QVBS

QletF=(n:E—X,A g)and B=(p:F—Y, B, r) be QVBs.

@ A morphism f: # — «f should “induce” a continuous linear map
f*:A—B.

DEFINITION
A morphism f : # — </ is a pair (f,,f") such that
@ f,: Y — X is continuous;

@ f*:A — B is continuous and linear;
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IV. MORPHISMS OF QVBS

QletF=(n:E—X,A g)and B=(p:F—Y, B, r) be QVBs.

@ A morphism f: # — «f should “induce” a continuous linear map
f*:A—B.

DEFINITION
A morphism f : # — </ is a pair (f,,f") such that
@ f,: Y — X is continuous;
@ f*:A — B is continuous and linear;
® g(a, £,(y))=0 = r(f"(a),y)=0 forallacA, ycyY.
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IV. MORPHISMS OF QVBS

Qlet ¥/ =(n:E—X, A gq)and B=(p:F—Y, B, r) be QVBs.
© A morphism f: % — o should “induce” a continuous linear map
f*:A—B.
DEFINITION
A morphism f : # — </ is a pair (f,,f") such that
@ f,: Y — X is continuous;

@ f*:A — B is continuous and linear;

° gla, ,(»)) =0 = r(f*(a), y)=0 forallacA, yecy.

If the above is an equivalence we say that f is strict.

P. RESENDE (IST) LINEARIZED LOCALES DUALITIES’ 16, SEP. 2016 14718



IV. MORPHISMS OF QVBS

Qlet ¥/ =(n:E—X, A gq)and B=(p:F—Y, B, r) be QVBs.
© A morphism f: % — o should “induce” a continuous linear map
ff:A—B.
DEFINITION
A morphism f : # — </ is a pair (f,,f") such that
@ f,: Y — X is continuous;
@ f*:A — B is continuous and linear;

q(a, ,(y)=0 = r(f*(a),y)=0 forallacA, yecyY.

If the above is an equivalence we say that f is strict.

Composition is defined by (f,,f*) o (g,,8") = (f, 0 &»,8" of*).
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IV. MORPHISMS OF QVBS

Qlet ¥/ =(n:E—X, A gq)and B=(p:F—Y, B, r) be QVBs.
© A morphism f: % — o should “induce” a continuous linear map
ff:A—B.
DEFINITION
A morphism f : # — </ is a pair (f,,f") such that
@ f,: Y — X is continuous;
@ f*:A — B is continuous and linear;
q(a, ,(y)=0 = r(f*(a),y)=0 forallacA, yecyY.

If the above is an equivalence we say that f is strict.

Composition is defined by (f,,f*) o (g,,8") = (f, 0 &»,8" of*).
Obtain category QVBuny of spectral vector bundles.
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@ There is a uniquely defined continuous fiberwise linear map f* that
makes the following diagram commute:
ff m
F<~——FEXxY ——F
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@ There is a uniquely defined continuous fiberwise linear map f* that
makes the following diagram commute:
ff m
F<~——FEXxY ——F

ks b T

X
5

Fala.f,(),y) =r(f*(a),y)

e f is strict iff f% is fiberwise injective.
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IV. MORPHISMS OF QVBS

@ There is a uniquely defined continuous fiberwise linear map f* that
makes the following diagram commute:

f
Fe 1 ExxY—™ _F
T
Y X
5

Fala.fs(3)),y) = r(f*(a),y)

e f is strict iff f* is fiberwise injective.
e If = and p are local homeomorphisms the pair (f;,f*) is equivalent to
a cohomomorphism of sheaves.
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IV. MORPHISMS OF QVBS

@ There is a uniquely defined continuous fiberwise linear map f* that
makes the following diagram commute:

f
Fe 1 ExxY—™ _F
T
Y X
5

Fala.fs(3)),y) = r(f*(a),y)

e f is strict iff f* is fiberwise injective.
e If = and p are local homeomorphisms the pair (f;,f*) is equivalent to
a cohomomorphism of sheaves.
PRI

o Different from a morphism of fiber bundles p{ |=

Yy—X
Jo
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Let A= (4,A4,04,%) and B = (B, \p, 03, ¥3).

«O» «F»r « > < . T



Let A = (A,AA,O'A,’}’A) and B = (B, AB,GB,YB).

A morphism §:B — 2 is a pair (f,f) consisting of

«O> «Fr «=Er <= v



Let A = (A,A4,04,74) and B = (B, A, Op, ¥5)-
A morphism §:B — 2 is a pair (f,f) consisting of
e a map of locales f: Ag — Ay

u]
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Let A = (A,AA,O'A,’}’A) and B = (B, AB,GB,YB).

A morphism §:B — 2 is a pair (f,f) consisting of
e a map of locales f: Ag — Ay

e and a continuous linear map f : A — B

] (w1 =

DUALITIES’ 16, SEP. 2016
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V. MORPHISMS OF LINEARIZED LOCALES

DEFINITION
Let A = (A,A4,04,%) and B = (B, Ag, 0B, V8)-
A morphism §:8 — 2 is a pair ()jf) consisting of
e a map of locales f : Ng — Ny
e and a continuous linear map f: A — B
satisfying, for all V € SubA, the inclusion op(f(V)) C f*(ca(V)):

Subd — " SubB

Dy Ay:

s

P. RESENDE (IST) LINEARIZED LOCALES DUALITIES’ 16, SEP. 2016
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(cont.)

«Or «F>» = . -



DERINITION
(cont.)

Equivalently (the right adjoint of Subf coincides with ]_‘_1), we have:

f—l

SubA <—————SubB
A
A, Ay;

«O> «Fr «=Er <= v



V. MORPHISMS OF LINEARIZED LOCALES

DEFINITION
(cont.)

Equivalently (the right adjoint of Subf coincides with fﬁl), we have:

—1

SubA<~—'  SubB
VAT < TYB
AV Ap

*

This defines the category of linearized locales LinLoc.
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V. MORPHISMS OF LINEARIZED LOCALES

DEFINITION
(cont.)

Equivalently (the right adjoint of Subf coincides with fﬁl), we have:

—1

SubA<~—'  SubB
VAT < TYB
AV Ap

*

This defines the category of linearized locales LinLoc.

If the above commutation relations are strict the morphism § is called
strict.
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The correspondence between spectral vector bundles and linearized locales
extends to an adjunction

Q
LinLoc

Xz,

\J;/ QVBUHZ

(and to a restricted adjunction considering only strict morphisms).

«O> «Fr <= 4 Dae

it
-



