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I. INTRODUCTION

1 Construction of certain vector bundles (Fell bundles) on topological
groupoids from C*-algebras equipped with “diagonals” [Renault,
Kumjian, Exel, Buss]

2 General facts about finite rank locally trivial complex vector bundles

3 Locale theory and the adjunction Loc
Ω

,,⊥ Top
Σ

ll

4 Gelfand duality

5 Resemblance to Dauns–Hofmann theorem: C*-bundle on the space of
primitive ideals of a C*-algebra A — fiber over I is A/I for each ideal
(I ⊃ I).

6 Joint work with João Paulo Santos (IST):
• Open quotients of trivial vector bundles; arXiv:1510.06329

• Linear structures on locales, Theory Appl. Categ. 31 (2016) 502–541

P. RESENDE (IST) LINEARIZED LOCALES DUALITIES’16, SEP. 2016 2 / 18



I. INTRODUCTION

1 Construction of certain vector bundles (Fell bundles) on topological
groupoids from C*-algebras equipped with “diagonals” [Renault,
Kumjian, Exel, Buss]

2 General facts about finite rank locally trivial complex vector bundles

3 Locale theory and the adjunction Loc
Ω

,,⊥ Top
Σ

ll

4 Gelfand duality

5 Resemblance to Dauns–Hofmann theorem: C*-bundle on the space of
primitive ideals of a C*-algebra A — fiber over I is A/I for each ideal
(I ⊃ I).

6 Joint work with João Paulo Santos (IST):
• Open quotients of trivial vector bundles; arXiv:1510.06329

• Linear structures on locales, Theory Appl. Categ. 31 (2016) 502–541

P. RESENDE (IST) LINEARIZED LOCALES DUALITIES’16, SEP. 2016 2 / 18



I. INTRODUCTION

1 Construction of certain vector bundles (Fell bundles) on topological
groupoids from C*-algebras equipped with “diagonals” [Renault,
Kumjian, Exel, Buss]

2 General facts about finite rank locally trivial complex vector bundles

3 Locale theory and the adjunction Loc
Ω

,,⊥ Top
Σ

ll

4 Gelfand duality

5 Resemblance to Dauns–Hofmann theorem: C*-bundle on the space of
primitive ideals of a C*-algebra A — fiber over I is A/I for each ideal
(I ⊃ I).

6 Joint work with João Paulo Santos (IST):
• Open quotients of trivial vector bundles; arXiv:1510.06329

• Linear structures on locales, Theory Appl. Categ. 31 (2016) 502–541

P. RESENDE (IST) LINEARIZED LOCALES DUALITIES’16, SEP. 2016 2 / 18



I. INTRODUCTION

1 Construction of certain vector bundles (Fell bundles) on topological
groupoids from C*-algebras equipped with “diagonals” [Renault,
Kumjian, Exel, Buss]

2 General facts about finite rank locally trivial complex vector bundles

3 Locale theory and the adjunction Loc
Ω

,,⊥ Top
Σ

ll

4 Gelfand duality

5 Resemblance to Dauns–Hofmann theorem: C*-bundle on the space of
primitive ideals of a C*-algebra A — fiber over I is A/I for each ideal
(I ⊃ I).

6 Joint work with João Paulo Santos (IST):
• Open quotients of trivial vector bundles; arXiv:1510.06329

• Linear structures on locales, Theory Appl. Categ. 31 (2016) 502–541

P. RESENDE (IST) LINEARIZED LOCALES DUALITIES’16, SEP. 2016 2 / 18



I. INTRODUCTION

1 Construction of certain vector bundles (Fell bundles) on topological
groupoids from C*-algebras equipped with “diagonals” [Renault,
Kumjian, Exel, Buss]

2 General facts about finite rank locally trivial complex vector bundles

3 Locale theory and the adjunction Loc
Ω

,,⊥ Top
Σ

ll

4 Gelfand duality

5 Resemblance to Dauns–Hofmann theorem: C*-bundle on the space of
primitive ideals of a C*-algebra A — fiber over I is A/I for each ideal
(I ⊃ I).

6 Joint work with João Paulo Santos (IST):
• Open quotients of trivial vector bundles; arXiv:1510.06329

• Linear structures on locales, Theory Appl. Categ. 31 (2016) 502–541

P. RESENDE (IST) LINEARIZED LOCALES DUALITIES’16, SEP. 2016 2 / 18



I. INTRODUCTION

1 Construction of certain vector bundles (Fell bundles) on topological
groupoids from C*-algebras equipped with “diagonals” [Renault,
Kumjian, Exel, Buss]

2 General facts about finite rank locally trivial complex vector bundles

3 Locale theory and the adjunction Loc
Ω

,,⊥ Top
Σ

ll

4 Gelfand duality

5 Resemblance to Dauns–Hofmann theorem: C*-bundle on the space of
primitive ideals of a C*-algebra A — fiber over I is A/I for each ideal
(I ⊃ I).

6 Joint work with João Paulo Santos (IST):
• Open quotients of trivial vector bundles; arXiv:1510.06329

• Linear structures on locales, Theory Appl. Categ. 31 (2016) 502–541

P. RESENDE (IST) LINEARIZED LOCALES DUALITIES’16, SEP. 2016 2 / 18



II. QUOTIENT VECTOR BUNDLES

DEFINITION

By a quotient vector bundle is meant a triple (π,A,q) consisting of a
“linear bundle” π : E→ X on a topological space X, a topological vector
space (TVS) A, and a continuous open surjection q : A×X→ E that
makes the following commute:

A×X

π2
''

q // E

π

��
X

EXAMPLE

Any Banach bundle on a locally compact Hausdorff space, with A = C0(E)
and q = eval: for each section s : X→ E we have q(s,x) = s(x).

Any Fell bundle on an étale locally compact Hausdorff groupoid, with
A = C∗r (E) and q = eval.
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II. QUOTIENT VECTOR BUNDLES

A×X

π2
''

q // E

π

��
X

Notation: Ex := π−1({x}) is the fiber over x

Some properties:

1 q is a quotient map, so E is a quotient topological space of A×X.

2 For each x ∈ X, the map qx : A→ Ex defined by qx(a) = q(a,x) is a
continuous open surjection, so Ex is a quotient TVS of A.

3 The subspace topology of Ex ⊂ E coincides with the quotient
topology.

4 Each a ∈ A defines a section â : X→ E by â(x) = q(a,x).
5 π “has enough sections”: for all e ∈ Ex there is a ∈ A such that

â(x) = e.
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II. QUOTIENT VECTOR BUNDLES

A×X

π2
''

q // E

π

��
X

SubA := {linear subspaces of A} MaxA := {closed linear subspaces of A}

DEFINITION

The kernel map κ : X→ SubA is defined by

κ(x) = {a ∈ A | q(a,x) = 0}

Some properties:

1 Ex ∼= A/κ(x).
2 The fibers Ex are Hausdorff iff κ : X→MaxA.

3 κ determines E and q uniquely up to isomorphisms.
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II. QUOTIENT VECTOR BUNDLES

THEOREM

Let A be a TVS, X a topological space, and κ : X→ SubA any map.
Obtain a commutative diagram

A×X

π2
''

q // E

π

��
X

by constructing E as the quotient of A×X defined by

(a,x)∼ (b,y) ⇐⇒ x = y and a−b ∈ κ(x) .

The quotient map q : A×X→ E is open iff κ is continuous with respect
the lower Vietoris topology of SubA.
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II. QUOTIENT VECTOR BUNDLES

DEFINITION

SubA is the classifying space for QVBs with TVS A.
The QVB

UA := (πA : UA→ SubA, A, qA)

classified by the identity on SubA is the universal QVB for A.

COROLLARY

Any QVB (π,A,q) is the pullback of UA along the kernel map:

E

π

��

// UA

πA
��

X
κ

// SubA
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II. QUOTIENT VECTOR BUNDLES

1 Fell topology on MaxA (with first countable X and A) classifies QVBs
with Hausdorff fibers and closed zero section.

2 Closed balls topology on MaxA (A normed) classifies QVBs with
continuous norm.

3 With A a Banach space and X Hausdorff, MaxA classifies QVBs
which are Banach bundles.
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III. LINEARIZED LOCALES

Let A = (π : E→ X, A, q) be a QVB:

A×X

π2
''

q // E

π

��
X

Notation: supp◦ â = int{x ∈ X | q(a,x) 6= 0} is the open support of â.

There is an adjunction between complete lattices:

Ω(X)
γ

22⊥ SubA
σ

rr

σ(V) =
⋃
a∈V

supp◦ â

γ(U) = {a ∈ A | supp◦ â⊂ U}
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III. LINEARIZED LOCALES

Ω(X)
γ

22⊥ SubA
σ

rr

Define Y = Σ(Ω(X)) (prime spectrum of the locale Ω(X))...

... and k := γ|Y (called the spectral kernel of the QVB).

If k is continuous it defines a new QVB.

DEFINITION

If {x ∈ X | q(a,x) = 0} is open for all a ∈ A we say that the QVB has the
open support property.

If moreover k is continuous the QVB is a spectral vector bundle.

EXAMPLE

If X is sober and the zero section is closed in E then the QVB is spectral.

E.g., Banach bundles and Fell bundles as before.
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III. LINEARIZED LOCALES

THEOREM

Let A be a locally convex space. Then MaxA (with the lower Vietoris
topology) is sober.

EXAMPLE

If A is locally convex the universal QVB (π,A,q) with Hausdorff fibers is
not spectral, even though MaxA is sober.
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III. LINEARIZED LOCALES

DEFINITION

Let 4 be a locale, and A a TVS, equipped with an adjunction

4
γ

22⊥ SubA
σ

ss

such that
k := γ|Σ(4) : Σ(4)→ SubA

is continuous.

The triple (A,σ ,γ) is called a linear structure on 4, and A= (4,A,σ ,γ)
is a linearized locale.

EXAMPLE

Every spectral vector bundle A yields a linearized locale
Ω(A ) = (4,A,σ ,γ), with 4= Ω(X), as described earlier.
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III. LINEARIZED LOCALES

Conversely, every linearized locale A= (4,A,σ ,γ) defines a QVB
Σ(A) = (π : E→ X,A,q) with X = Σ(4) and kernel map k= γ|X.

THEOREM

Σ(A) is a spectral vector bundle.

COROLLARY

Correspondence

Spectral vector bundles
Ω ..

Linearized locales
Σ

nn
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IV. MORPHISMS OF QVBS

1 Let A = (π : E→ X, A, q) and B = (ρ : F→ Y, B, r) be QVBs.

2 A morphism f : B→A should “induce” a continuous linear map
f ∗ : A→ B.

DEFINITION

A morphism f : B→A is a pair (f[, f ∗) such that

f[ : Y→ X is continuous;

f ∗ : A→ B is continuous and linear;

q(a, f[(y)) = 0 =⇒ r(f ∗(a), y) = 0 for all a ∈ A, y ∈ Y.

If the above is an equivalence we say that f is strict.

Composition is defined by (f[, f ∗)◦ (g[,g∗) = (f[ ◦g[,g∗ ◦ f ∗).

Obtain category QVBunΣ of spectral vector bundles.
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IV. MORPHISMS OF QVBS

There is a uniquely defined continuous fiberwise linear map f ] that
makes the following diagram commute:

F

ρ

''

E×X Y
f ]oo

π2
��

π1 //

pb

E

π

��
Y

f[
// X

f ](q(a, f[(y)),y) = r(f ∗(a),y)

f is strict iff f ] is fiberwise injective.

If π and ρ are local homeomorphisms the pair (f[, f ]) is equivalent to
a cohomomorphism of sheaves.

Different from a morphism of fiber bundles
F

f1 //
ρ ��

E
π��

Y
f0
// X
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V. MORPHISMS OF LINEARIZED LOCALES

DEFINITION

Let A= (A,4A,σA,γA) and B= (B,4B,σB,γB).

A morphism f : B→ A is a pair (f , f ) consisting of

• a map of locales f :4B→4A

• and a continuous linear map f : A→ B

satisfying, for all V ∈ SubA, the inclusion σB(f (V))⊂ f ∗(σA(V)):

SubA

σA
��

Sub f //

≥

SubB

σB

��
4A f ∗

// 4B
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V. MORPHISMS OF LINEARIZED LOCALES

DEFINITION

(cont.)

Equivalently (the right adjoint of Sub f coincides with f
−1

), we have:

SubA

≤

SubB
f−1

oo

4A

γA

OO

4B

γB

OO

f ∗

oo

This defines the category of linearized locales LinLoc.

If the above commutation relations are strict the morphism f is called
strict.
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V. MORPHISMS OF LINEARIZED LOCALES

THEOREM

The correspondence between spectral vector bundles and linearized locales
extends to an adjunction

LinLoc
Ω --⊥ QVBunΣ

Σ

mm

(and to a restricted adjunction considering only strict morphisms).
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