Many for the price of one duality principle for variety-based topological spaces

Sergejs Solovjovs *

In [2], D. Hofmann considered topological spaces as generalized orders, characterizing those ones, which satisfy a suitably defined topological analogue of the complete distributivity law. He showed that the category of distributive spaces is dually equivalent to a certain category of frames, observing that their both represent the idempotent split completion of the same category. The results are based in four submonads of the filter monad \mathbb{F} on the category **Top** of topological spaces [1]. In the talk, we lift the duality of [2] to the setting of lattice-valued topological spaces [3].

Given a variety of algebras **A**, its reduct $(\mathbf{B}, \|-\|)$, and an **A**-algebra *A*, consider the category *A*-**Top** of *A*-topological spaces (*A*-spaces), whose objects are pairs (X, τ) , with *X* a set and τ an **A**-subalgebra of the powerset algebra A^X , and whose morphisms $(X_1, \tau_1) \xrightarrow{f} (X_2, \tau_2)$ are maps $X_1 \xrightarrow{f} X_2$ with $f_A^{\leftarrow}(\alpha) = \alpha \circ f \in \tau_1$ for every $\alpha \in \tau_2$ [6]. There exists a functor *A*-**Top** $\xrightarrow{\mathcal{O}_A} \mathbf{B}^{op}$, $\mathcal{O}_A((X_1, \tau_1) \xrightarrow{f} (X_2, \tau_2)) = \|\tau_1\| \xrightarrow{(f_A^{\leftarrow})^{op}} \|\tau_2\|$, which has a right adjoint [5], thereby providing a monad \mathbb{T}_A on *A*-**Top**.

Let A-**Top**₀ be the full subcategory of A-**Top** of T_0 A-spaces, i.e., A-spaces (X, τ) , where every distinct $x_1, x_2 \in X$ have $\alpha \in \tau$ with $\alpha(x_1) \neq \alpha(x_2)$. There exists the restriction \mathbb{T}_A^0 of the monad \mathbb{T}_A to A-**Top**₀. If **B** is enriched in the category **Pos** of posets, one defines a preorder on an A-space (X, τ) by $x_1 \sqsubseteq x_2$ iff $\alpha(x_1) \leq \alpha(x_2)$ for every $\alpha \in \tau$, which is an order on T_0 A-spaces (thereby providing a functor A-**Top**₀ \xrightarrow{Spec} **Pos**). For some **A** and **B**, one gets that \mathbb{T}_A^0 is of Kock-Zöberlein type [1].

Let $(A - \mathbf{Top}_0)^{\mathbb{T}_A^0}$ be the Eilenberg-Moore category of \mathbb{T}_A^0 . By [2], a \mathbb{T}_A^0 -algebra $((X, \tau), h)$ is called \mathbb{T}_A^0 -distributive provided that h has a left adjoint (in the sense of posets) $(X, \tau) \xrightarrow{t} T_A^0(X, \tau)$ in A-**Top**₀ (which is then a \mathbb{T}_A^0 -homomorphism with $h \circ t = 1_{(X,\tau)}$). Spl(A-**Top**₀) \mathbb{T}_A^0 is the full subcategory of (A-**Top**₀) \mathbb{T}_A^0 of \mathbb{T}_A^0 -distributive \mathbb{T}_A^0 -algebras. Moreover, a **B**-algebra B is called A-spatial provided that every $b_1, b_2 \in B$ with $b_1 \not\leq b_2$ have $p \in \mathbf{B}(B, ||A||)$ with $p(b_1) \not\leq p(b_2)$. B is called a **B**-frame provided that it has a \bigvee -semilattice reduct, and its primitive operations with non-zero arities distribute over \bigvee . **B**-**Frm** is the full subcategory of **B** of A-spatial **B**-frames.

Following [2], we describe the objects of $\text{Spl}(A\text{-}\text{Top}_A^0)^{\mathbb{T}_A^0}$ and **B**-**Frm**, and show that the categories are dually equivalent. In particular, one gets the dualities of [2].

^{*}This research was supported by ESF Project 2009/0223/1DP/1.1.1.2.0/09/APIA/VIAA/008 of the University of Latvia.

References

- M. Escardo and B. Flagg, Semantic domains, injective spaces and monads, Electronic Notes in Theoretical Computer Science 20 (1999), 16 pages.
- [2] D. Hofmann, A four for the price of one duality principle for distributive spaces, arXiv:math.GN/1102.2605.
- [3] U. Höhle and A. P. Šostak, Axiomatic Foundations of Fixed-Basis Fuzzy Topology, Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory (U. Höhle and S. E. Rodabaugh, eds.), The Handbooks of Fuzzy Sets Series, vol. 3, Kluwer Academic Publishers, 1999, pp. 123–272.
- [4] R. Rosebrugh and R. J. Wood, Split structures, Theory Appl. Categ. 13 (2004), 172–183.
- [5] S. Solovyov, Sobriety and spatiality in varieties of algebras, Fuzzy Sets Syst. 159 (2008), no. 19, 2567–2585.
- S. Solovyov, Categorical foundations of variety-based topology and topological systems, Fuzzy Sets Syst. 192 (2012), 176–200.