Many for the price of one duality principle
for variety-based topological spaces

Sergejs Solovjovs *

In [2], D. Hofmann considered topological spaces as generalized orders, characterizing those ones, which satisfy a suitably defined topological analogue of the complete distributivity law. He showed that the category of distributive spaces is dually equivalent to a certain category of frames, observing that their both represent the idempotent split completion of the same category. The results are based in four submonads of the filter monad \mathbb{F} on the category Top of topological spaces [1]. In the talk, we lift the duality of [2] to the setting of lattice-valued topological spaces [3].

Given a variety of algebras \mathbf{A}, its reduct $(\mathbf{B}, \| - \|)$, and an \mathbf{A}-algebra A, consider the category $\mathbf{A} \text{-Top}$ of \mathbf{A}-topological spaces (\mathbf{A}-spaces), whose objects are pairs (X, τ), with X a set and τ an \mathbf{A}-subalgebra of the powerset algebra A^X, and whose morphisms $(X_1, \tau_1) \xrightarrow{f} (X_2, \tau_2)$ are maps $X_1 \xrightarrow{f} X_2$ with $f^*_\tau (\alpha) = \alpha \circ f \in \tau_1$ for every $\alpha \in \tau_2$ [6].

There exists a functor $\mathbf{A} \text{-Top} \xrightarrow{\mathcal{O}_A} \mathbf{B}^{op}$, $\mathcal{O}_A((X_1, \tau_1) \xrightarrow{f} (X_2, \tau_2)) = \| \tau_1 \| \xrightarrow{(f^*)^{op}} \| \tau_2 \|$, which has a right adjoint [5], thereby providing a monad \mathbb{T}_A on $\mathbf{A} \text{-Top}$.

Let $\mathbf{A} \text{-Top}_0$ be the full subcategory of $\mathbf{A} \text{-Top}$ of T_0 \mathbf{A}-spaces, i.e., \mathbf{A}-spaces (X, τ), where every distinct $x_1, x_2 \in X$ have $\alpha \in \tau$ with $\alpha(x_1) \neq \alpha(x_2)$. There exists the restriction \mathbb{T}_A^0 of the monad \mathbb{T}_A to $\mathbf{A} \text{-Top}_0$. If \mathbf{B} is enriched in the category \mathbf{Pos} of posets, one defines a preorder on an \mathbf{A}-space (X, τ) by $x_1 \sqsubseteq x_2$ iff $\alpha(x_1) \leqslant \alpha(x_2)$ for every $\alpha \in \tau$, which is an order on T_0 \mathbf{A}-spaces (thereby providing a functor $\mathbf{A} \text{-Top}_0 \xrightarrow{\mathcal{S}pec} \mathbf{Pos}$). For some \mathbf{A} and \mathbf{B}, one gets that \mathbb{T}_A^0 is of Kock-Zöberlein type [1].

Let $((X, \tau), h)$ be the Eilenberg-Moore category of \mathbb{T}_A^0. By [2], a \mathbb{T}_A^0-algebra $((X, \tau), h)$ is called \mathbb{T}_A^0-distributive provided that h has a left adjoint (in the sense of posets) $(X, \tau) \xrightarrow{\bot} \mathbb{T}_A^0(X, \tau)$ in $\mathbf{A} \text{-Top}_0$ (which is then a \mathbb{T}_A^0-homomorphism with $h \circ t = 1_{(X, \tau)}$). $\mathbf{Spl}(\mathbf{A} \text{-Top}_0)^{\mathbb{T}_A^0}$ is the full subcategory of $\mathbf{A} \text{-Top}_0^{\mathbb{T}_A^0}$ of \mathbb{T}_A^0-distributive \mathbb{T}_A^0-algebras. Moreover, a \mathbf{B}-algebra B is called \mathbf{A}-spatial provided that every $b_1, b_2 \in B$ with $b_1 \not\leq b_2$ have $p \in \mathbf{B}(B, \| A \|)$ with $p(b_1) \not\leq p(b_2)$. B is called a \mathbf{B}-frame provided that it has a \lor-semilattice reduct, and its primitive operations with non-zero arities distribute over \lor. $\mathbf{B} \text{- Frm}$ is the full subcategory of \mathbf{B} of \mathbf{A}-spatial \mathbf{B}-frames.

Following [2], we describe the objects of $\mathbf{Spl}(\mathbf{A} \text{-Top}_0^{\mathbb{T}_A^0})$ and $\mathbf{B} \text{- Frm}$, and show that the categories are dually equivalent. In particular, one gets the dualities of [2].

* This research was supported by ESF Project 2009/0223/1DP/1.1.1.2.0/09/APIA/VIAA/008 of the University of Latvia.
References

