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Let X beaset and v : X x X —

0,00) be a function mapping into the
set |0, 00) of non-negative reals. Then u
is an ultra-quasi-pseudometric on X if

(i) w(x,z) =0 for all x € X, and

(1) u(z, z) < max{u(z,y), uly, z)} when-
ever x,1y, z € X.

Note that the so-called conjugate ™t of
u, where u=(x,y) = u(y, ) whenever
x,y € X, Iis an ultra-quasi-pseudometric,
too.

The set of open balls
Hye X 1u(z,y) <e}:xe X,e>0}

yields a base for the topology 7(u) in-
duced by u on X.

If u also satisfies the condition

(iii) for any z,y € X, u(z,y) = 0 =
u(y, z) implies that x = y, then u is
called a Ty-ultra-quasi-metric.
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Observe that then v = w V ! is an
ultra-metric on X.

We next define a canonical Tp-ultra-quasi-
metric on |0, 00).

Example 1 Let X = |0, 00) be equipped
with n(z,y) =z if x,y € X and x >
y, and n(x,y) = 0 if x,y € X and
r <.

It is easy to check that (X, n) is a Tp-
ultra-quasi-metric space.

Note also that for x,y € |0,00) we
have n°(x,y) = max{z,y} if v # y
and n(z,y) =0 if x = y.

Observe that the ultra-metric n® 1s com-

plete on |0,00) (compare Example 2
below).

Furthermore 0 is the only non-isolated
point of T7(n®).

[ndeedA:{O}U{%:nEN} is a

compact subspace of (|0, 00),n?%).



In some cases we need to replace [0, o)

by |0, oo (where for an ultra-quasi-pseudometric
u attaining the value oo the strong tri-

angle inequality (ii) is interpreted in the
obvious way).

In such a case we shall speak of an ez-
tended ultra-quasi-pseudometric.

In the following we sometimes apply con-
cepts from the theory of (ultra-)quasi-
pseudometrics to extended (ultra-)quasi-
pseudometrics (without changing the usual
definitions of these concepts).



Amap f: (X,u) — (Y,v) between two
(ultra-)quasi-pseudometric spaces (X, u)
and (Y, v) is called non-expansive pro-
vided that v(f(z), f(y)) < u(x,y) when-
ever ,y € X.

It is called an isometric map provided

that v(f(x), f(y)) = u(x,y) whenever
r,y € X.

Two (ultra-)quasi-pseudometric spaces (X, u)
and (Y, v) will be called isometric pro-
vided that there exists a bijective iso-

metric map f: (X, u) — (Y,v).

Lemma 1 Let a,b,c € [0,00). Then
the following conditions are equivalent:

(a) n(a,b) < c.
(b) a < max{b, c}.



Corollary 1 Let (X,u) be an ultra-
quasi-pseudometric space. Consider f :
X — [0,00) and let z,y € X. Then
the following are equivalent:

(a) n(f(z), fly)) < ulz,y);

(b) flz) < max{f(y), u(z,y)}.

Corollary 2 Let (X,u) be an ultra-
quasi-pseudometric space.

(a) Then f:(X,u) — ([0,00),n) is a
contracting map if and only if f(x) <
max{ f(y), u(x,y)} wheneverz,y € X.
(b) Then f : (X,u) — ([0,00),n"1)
1s a contracting map if and only if

f(z) < max{f(y),u(y,x)} whenever
r,y € X.



Strongly tight function pairs

Definition 1 Let (X, u) be a Tj-ultra-
quasi-metric space and let FP(X, u)

be the set of all pairs f = (f1, fo)
of functions where f; : X — [0, 00)

(i =1,2).
For any such pairs (f1, f2) and (g1, 92)

set
N((f1, f2); (g1, 92)) =

maX{ Sup n(fl(a?),gl(a:)), Sup N(gg(l‘), fg(il?))}
reX reX

It s obvious that N 1s an extended 1j-
ultra-quasi-metric on the set FP(X, u)
of these function pairs.

Let (X, u) be a Ty-ultra-quasi-metric space.

We shall say that a pair f € FP(X,u)
is strongly tight if for all z,y € X, we

have u(z, y) < max{ fa(z), f1(y)}-

The set of all strongly tight function pairs
of a Tp-ultra-quasi-metric space (X, u)
will be denoted by UT (X, u).
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Lemma 2 Let (X, u) be a Ty-ultra-quasi-
metric space. For eacha € X, fqo(x) =
(u(a, x),u(x,a)) whenever x € X, is a
strongly tight pair belonging toUT (X, u).

Let (X, u) be a T-ultra-quasi-metric space.

We say that a function pair f = (f1, fo)
1s minimal among the strongly tight pairs
on (X, u) if it is a strongly tight pair and
if g = (g1, g2) is strongly tight on (X, u)
and for each x € X, gi(x) < fi(x) and
g2(x) < folz), then f =g.

Minimal strongly tight function pairs are
also called extremal strongly tight func-
tion pairs.

By v4(X, u) (or more briefly, v4(X)) we
shall denote the set of all minimal strongly
tight function pairs on (X, u) equipped
with the restriction of N to v4(X), which
we shall denote again by V.



We note that the restriction of N to
vq(X) is indeed a Tp-ultra-quasi-metric
on vy(X, u).

In the following we shall call (v4(X), N)

the ultra-quasi-metrically injective hull
of (X, u).

Corollary 3 Let (X, u) be a Ty-ultra-

quasi-metric space. If f = (f1, fa) is
minimal strongly tight, then

filz) < max{ fi(y), u(y, z)}

and

falz) < maxy fo(y), u(z,y)}

whenever x,y € X. Thus
fi+ (X,u) = ([0,00),n7)
and
fo: (Xv u) — ([0700)777’)

are contracting maps.



Lemma 3 Suppose that (f1, f2) is a
minimal strongly tight pair on a 1j-
ultra-quasi-metric space (X, u).

Then fo(z) =
sup{u(x,y) :y € X and
u(z,y) > fi(y)}
and f1(x) =

sup{u(y,z) :y € X and u(y,xz) > fo(y)}
whenever x € X.

Lemma 4 Let (f1, f2), (91, g2) be min-
imal strongly tight pairs of functions
on a Ty-ultra-quasi-metric space (X, u).
Then

N((f1, f2), (91, 92))
= sup n(fi(z), g1(x)) = sup n(ga(x), f2(x)).

reX reX
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Corollary 4 Let (X, u) be a Ty-ultra-
quasi-metric space. Any minimal strongly
tight function pair f = (f1, fo) on X
satisfies the following conditions:

fi(x) = sup n(u(y, z), fo(y)) =

yeX

sup n(f1(y), u(z,y))
yeX

and

folx) = sup n(u(z,y), fi(y)) =

yeX

sup n(fa(y), u(y, ))
yeX

whenever x € X.
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Proposition 1 Let f = (f1, fo) be a
strongly tight function pair on a 1j-
ultra-quasi-metric space (X, u) such that

file) < max{fi(y), uly, =)} and
falz) < max{fo(y), u(z,y)}

whenever x,y € X.

Furthermore suppose that there is a
sequence (ap)peN tn X with
lim fi(an) =0

n—oo

and

n—o0
Then [ is a minimal strongly tight
pair.
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Envelopes or hulls of T-ultra-quasi-
metric spaces

Lemma 5 Let (X, u) be a Ty-ultra-quasi-
metric space. For each a € X, the pair
fa belongs to vy(X, u).

Theorem 1 Let (X, u) be a Ty-ultra-
quasit-metric space.

For each f € vy(X,u) and a € X
we have that N(f, fo) = fila) and

N(faaf) — f2<a’>‘

The map ex : (X, u) = (vg(X,u), N)
defined by ex(a) = fq whenever a €
X 15 an isometric embedding.

Corollary 5 Let (X, u) be a Ty-ultra-
quast-metric space.

Then N is indeed a Ty-ultra-quasi-metric
on vy(X).
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Lemma 6 Suppose that (X, u) is a Tj-

ultra-quasi-metric space and (f1, fo) €
ve(X,u) such that fi(a) =0 = fo(a)
for some a € X.

Then (f1, f2) = ex(a).

Lemma 7 Let (X, u) be a Ty-ultra-quasi-

metric space. Then for any f, g € vy(X, u)
we have that

N(f,g) =sup{u(xy, 29) : 21,79 € X,
u(z1,w2) > folx1) and u(xy,w2) > g1(w2)}.
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Remark 1 It follows from the distance
formula in Lemma 7 that for any Ty-
ultra-quasi-metric space (X, u) the iso-
metric map ex : (X, u) = (v4(X), N)
has the following tightness property :

If q is any ultra-quasi-pseudometric
on vg(X,u) such that ¢ < N and

glex(x),ex(y)) = N(ex(z),ex(y))
whenever x,y € X, then

N(f,g)=q(f,9)

whenever f,g € vy(X,u).
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g-spherical completeness

Let (X, u) be an ultra-quasi-pseudometric
space and for each x+ € X and r €
0,00) let

Culz,r)={y € X :u(x,y) <r}

be the 7(u~1)-closed ball of radius r at
.

Lemma 8 Let (X, u) be an ultra-quasi-
pseudometric space.

Moreover let x,y € X and r,s > 0.

Then Cy(x,7)NC,,-1(y,s) # 0 if and
only if u(z,y) < max{r,s}.
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Definition 2 Let (X, u) be an ultra-
quasi-pseudometric space. Let (x;);c1
be a family of points in X and let
(15)ic1 and (s;);c1 be families of non-
negative reals. We say that

(Cul®,m7), C1(wi, 8i))ier
has the strong mixed binary intersec-
tion property provided that u(x;,x;) <
max{7;, s;} wheneveri,j € I.
We say that (X, u) is g-spherically com-
plete provided that each family

(Culzis i), Cp-1(4, 8:) )iel
possessing the strong mixed binary in-
tersection property satisfies

Nic1(Culwi, ri) N Cy—1(zy, 8)) # 0.

Remark 2 [t is important to note that
in Definition 2 we can assume with-
out loss of generality that the points
x; (¢ € I) are pairwise distinct.

Hence that seemingly weaker condi-
tion 1s equivalent to our definition.
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Example 2 The Ty-ultra-quasi-metric
space (|0,00),n) is q-spherically com-
plete.

Remark An ultra-metric space (X, m)
is called spherically complete it for any
family (x;);e7 of points of X and any
family of positive reals (r;); such that

m(xi,x]’) < max{fri,rj}
whenever ¢, 7 € I we have that

() Cinlwi,ri) # 0.

el
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Let (X, m) be an ultra-metric space.

We recall that the ultra-metrically injec-
tive hull (v4(X), E) of X is constructed
as follows:

Call a function f: X — [0
tight provided that m(z, y)
whenever x,y € X.

, 00) strongly
<

It is minimal strongly tight it it is mini-
mal with respect to the point-wise order
on the strongly tight functions on X.

Note that such a function f satisfies

fz) < max{f(y), m(z,y)}

whenever x,y € X.
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Let v4(X) be the set of all minimal strongly
tight functions on (X, m) equipped with

E(f,g) = sup n°(f(z), g(z))
reX
whenever f, g € vg(X).

Then the ultra-metric space (vg(X), E)
yields the ultra-metrically injective hull
of (X, m) with isometric embedding x
m(x, ) where x € X.
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Let us observe that there is a different,
but equivalent definition of the ultra-metric
distance E, namely

E(f,9) = inf max{f().g(x))

whenever f,g € vg(X) and f # g.
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Proposition 2 (a) Let (X,u) be an
ultra-quasi-pseudometric space.

Then (X, u) is q-spherically complete
if and only if (X, u™Y) is g-spherically
complete.

(b) Let (X, u) be a Ty-ultra-quasi-metric
space.

If (X, u) is q-spherically complete, then
(X, u®) is spherically complete.

As usual, we shall call a quasi-pseudometric

space (X, d) bicomplete provided that
the pseudometric d® on X is complete.

We recall that each Tj-ultra-quasi-metric
space (X, u) has an up-to-isometry unique
To-ultra-quasi-metric bicompletion (X, u),
in which X is 7(u”)-dense.

Proposition 3 Each q-spherically com-
plete Ty-ultra-quasi-metric space (X, u)
1s bicomplete.
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A Tpy-ultra-quasi-metric space (Y, uy ) is
called ultra-quasi-metrically injective pro-
vided that for any 7p-ultra-quasi-metric
space (X, ux ), any subspace A of (X, ux)
and any non-expansive map f : A —
(Y, uy), f can be extended to a non-
expansive map ¢ : (X, uyx) — (Y, uy).

Theorem 2 A Tj-ultra-quasi-metric space
15 q-spherically complete if and only if
it 1s ultra-quasi-metrically injective.
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Proposition 4 Let (X, u) be a Ty-ultra-
quasi-metric space. Then (f1, f2) € vg(X, u)

implies that (fo, f1) € Vq(X> U_l)-
It follows that
s+ (vg(X, ), N) = (vg(X,u™), N7

where s is defined by s((f,q)) = (g, f)
whenever (f,g) € vy(X,u) is a bijec-
tive 1sometric map.

(Indeed the ultra-quasi-metrically in-
jective hull (vy(X,u),N) of (X, u) s
isometric to the conjugate space of the
ultra-quasi-metrically injective hull

(vg(X,u™"), N)
of (X, u_l).)
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Proposition 5 Let (X, m) be an ultra-
metric space.

Then p(f) = (f, ) defines an isomet-

ric embedding of
<V8 (Xv m)? E)

into

(VCI(Xv m)a N)

Proposition 6 Let (X, u) be a Ty-ultra-
quasit-metric space.

If s = (s1,s9) s a minimal strongly
tight pair of functions on the 1y-ultra-
quasi-metric space (Vy(X), N), then

SO€X

15 a manimal strongly tight pair of func-
tions on (X, u).
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Lemma 9 Let A be a nonempty sub-
set of a Ty-ultra-quasi-metric space (X, u)
and let

(T17T2> A — [Oa OO)
be such that for all x,y € A, u(x,y) <
max{r2(z), 71(y)}-
Then there exists (R, Ry) : X —>

0,00) which extends the pair (11,79
such that for all

v,y € X, u(z,y) < max{Ro(x), Ri(y)}.

Moreover, there exists a minimal strongly

tight pair (f1, fo) of functions defined
on X such that for allx € X, fi(z) <
Ri(z) and fo(z) < Ro(x).

Proposition 7 The following statements
are true for any 1y-ultra-quasi-metric
space (X, u).

(a) (vg(X),N) is g-spherically com-
plete.

(b) (v4(X), N) is an ultra-quasi-metrically
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injective hull of X, 1.e. no proper sub-
set of vy(X) which contains X as a
subspace 1s q-spherically complete.

The ultra-quasi-metrically injective hull
of the Ty-ultra-quasi-metric space (X, u)
1S unique up to 1sometry.
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Corollary 6 The following statements

are equivalent for a ITy-ultra-quasi-metric
space (X, u) :

(a) (X, u) is q-spherically complete.

(b) For each f € vy(X) thereisz € X
such that f1 = (fo)1 and fo = (fz)2.

(c) For each f € vy(X) thereisz € X
such that fi(z) =0 = fo(x).
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Remark 3 Let (X,u) be a Ty-ultra-
quasi-metric space and let vy(X,u) be
its ultra-quasi-metrically injective hull.

Since vy( X, u) is bicomplete, the T(N?)-
closure of ex(X) in vy(X,u) yields a
subspace of vy(X,u) that is isometric

to the (quasi-metric) bicompletion of
(X, u).

Of course, f € vy(X,u) belongs to the
T(N?®)-closure of ex(X) if and only if
there is a sequence (an)peN 1 X such
that limp—o0 N°(fa,, f) = 0.

In the light of the distance formula
proved above, this statement is equiv-
alent to the existence of a sequence
(an)peN 0 X such that limy,—soo fi(an) =
0 and limy,—soo folan) = 0.
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Total boundedness in Ty-ultra-quasi-
metric spaces

Recall that a quasi-pseudometric space
(X, d) is called totally bounded provided

that the pseudometric space (X, d”) is
totally bounded.

Lemma 10 Let (X, u) be a Ty-ultra-

quasi-metric space that is totally bounded
and let € > 0.

Then there is a finite subset E of X
such that

{fi(z) : f € v(X),z € X, fi(x) > e}U
{folz): fev(X),z € X, folx) > €} =

{u(e,e’) e e’ € B u(e,e) > e}

It is known that each totally bounded
To-quasi-metric space (X, d) has a to-
tally bounded Isbell-hull €,4(X, d). Next

we establish a similar result for 7p-ultra-
quasl-metric spaces.
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Proposition 8 If (X, u) is a totally
bounded 1y-ultra-quasi-metric space, then
the Ty-ultra-quasi-metric space (vg(X, u), N)
1s totally bounded, too.

Recall that a compact ultra-metric space
(X, m) is spherically complete.

Corollary 7 Let (X, m) be a totally
bounded ultra-metric space. Then the

completion of (X, m) is isometric to
(vs(X), E).

As usual, we shall call an ultra-quasi-
pseudometric space (X, u) joitncompact
if 7(u%) is compact. It is readily seen that
a joincompact Ty-ultra-quasi-metric space
need not be g-spherically complete.

Example 3 Let X = {0, 1} be equipped
with the discrete metric u defined by
u(r,y) = 1if v #y, and u(z,y) = 0
otherwise. Then (X, u) is not g-spherically
complete, although it is spherically com-
plete.
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We now compute the ultra-quasi-metrically
injective hull of (X, u). If f = (f1, fo) €
vg(X) is strongly tight, then we have

L= u(0,1) < max{fs(0), f1(1)} and
I'=u(l,0) < max{fo(1), f1(0)}.

If f is also minimal strongly tight, then
we only find four pairs

((f100), f1(1)), (f2(0), f2(1)))
determined as follows:

((0,1),(0,1)), ((1,1),(0,0)),

((0,0), (1,1)), ((1,0), (1,0)).

[dentifying these points f = (f1, f2) ac-
cording to (f1(0), f1(1)) = (a, 8) with
a, 8 €{0,1}

we obtain
N((e, 8), (', 8) =1

if (@ =1and o =0)or (8 =1and
A" =0), and

N((a, B), (@, 8) =0
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otherwise.

In particular the example shows that a
spherically complete ultra-metric space
need not be g-spherically complete.
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Corollary 8 If (X, u) is a Ty-ultra-
quasi-metric space such that T(u®) is
compact, then N° induces a compact
topology on vg(X, u).

Lemma 11 Let (X, u) be a Ty-ultra-
quasi-metric space. Let f = (f1, fa) €
vq(X) be such that there is a € X with

fila) <infyex folz). Then fi(a) = 0.

(Note that the result remains true if
f1 and fo are interchanged in the state-
ment. )
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Lemma 12 Let (X, u) be a joincom-

pact Ty-ultra-quasi-metric space and

let f = (f1, f2) € vy(X). Then there is
r € X such that fi(x) =0 or fo(x) =
0.

We note that in the case of an ultra-
metric Lemma 12 implies the afore-mentioned
result that a compact ultra-metric space

(X, m) is spherically complete, since all
functions f € vg(X) must be of the form
m(x,-) for some x € X because they
have a zero (compare Lemma 6).

On the other hand Example 3 yields two
function pairs ((1, 1), (0,0)) and ((0,0), (1, 1))
witnessing that joincompactness does not
imply g-spherical completeness, since there

is no x € X such that fi(z) = 0 =

fo(z).
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