On some mysterious Mal’tsev conditions and the associated imaginary co-operations

dedicated to George Janelidze

Tim Van der Linden

joint work with Diana Rodelo

Fonds de la Recherche Scientifique–FNRS
Université catholique de Louvain

Workshop on Category Theory
Coimbra, 13th July 2012
Some mysterious Mal’tsev conditions

Theorem [Hagemann & Mitschke, *On n-permutable congruences*, 1973]

For any equational class \mathcal{V} and any $A \in \mathcal{V}$, the following are equivalent:

1. the congruence relations on A are n-permutable;
2. every reflexive relation R on A satisfies $R^{\text{op}} \leq R^{n-1}$;
3. every reflexive relation R on A satisfies $R^n \leq R^{n-1}$.

The mystery

- Conditions 2 and 3 do not appear in [Carboni, Kelly & Pedicchio, *Some remarks on Maltsev and Goursat categories*, 1993]
- Nevertheless, all three conditions are purely categorical!
- We could, however, not find a categorical argument, and
- the proof Hagemann and Mitschke refer to was never published:
 [Hagemann, *Grundlagen der allgemeinen topologischen Algebra*, in preparation]

What’s going on?
Some mysterious Mal’tsev conditions

Theorem [Hagemann & Mitschke, *On n-permutable congruences*, 1973]

For any equational class \mathcal{V} and any $A \in \mathcal{V}$, the following are equivalent:

1. the congruence relations on A are n-permutable;
2. every reflexive relation R on A satisfies $R^{\text{op}} \leq R^{n-1}$;
3. every reflexive relation R on A satisfies $R^n \leq R^{n-1}$.

The mystery

- Conditions 2 and 3 do not appear in [Carboni, Kelly & Pedicchio, *Some remarks on Maltsev and Goursat categories*, 1993]

Nevertheless, all three conditions are purely categorical!

- We could, however, not find a categorical argument, and
- the proof Hagemann and Mitschke refer to was never published:
 [Hagemann, *Grundlagen der allgemeinen topologischen Algebra*, in preparation]

What’s going on?
Some mysterious Mal’tsev conditions

Theorem [Hagemann & Mitschke, *On n-permutable congruences*, 1973]

For any equational class \(\mathcal{V} \) and any \(A \in \mathcal{V} \), the following are equivalent:

1. the congruence relations on \(A \) are \(n \)-permutable;
2. every reflexive relation \(R \) on \(A \) satisfies \(R^{\text{op}} \leq R^{n-1} \);
3. every reflexive relation \(R \) on \(A \) satisfies \(R^n \leq R^{n-1} \).

The mystery

- Conditions 2 and 3 do not appear in [Carboni, Kelly & Pedicchio, *Some remarks on Maltsev and Goursat categories*, 1993]

Nevertheless, all three conditions are purely categorical!

- We could, however, not find a categorical argument, and

 - the proof Hagemann and Mitschke refer to was never published: [Hagemann, *Grundlagen der allgemeinen topologischen Algebra*, in preparation]

What’s going on?
Some mysterious Mal’tsev conditions

Theorem [Hagemann & Mitschke, On n-permutable congruences, 1973]

For any equational class \(\mathcal{V} \) and any \(A \in \mathcal{V} \), the following are equivalent:

1. the congruence relations on \(A \) are \(n \)-permutable;
2. every reflexive relation \(R \) on \(A \) satisfies \(R^{\text{op}} \leq R^{n-1} \);
3. every reflexive relation \(R \) on \(A \) satisfies \(R^n \leq R^{n-1} \).

The mystery

- Conditions 2 and 3 do not appear in [Carboni, Kelly & Pedicchio, Some remarks on Maltsev and Goursat categories, 1993]
 Nevertheless, all three conditions are purely categorical!
- We could, however, not find a categorical argument, and
- the proof Hagemann and Mitschke refer to was never published:
 [Hagemann, Grundlagen der allgemeinen topologischen Algebra, in preparation]

What’s going on?
Some mysterious Mal’tsev conditions

Theorem [Hagemann & Mitschke, *On n-permutable congruences*, 1973]

For any equational class \mathcal{V} and any $A \in \mathcal{V}$, the following are equivalent:

1. the congruence relations on A are n-permutable;
2. every reflexive relation R on A satisfies $R^{\text{op}} \subseteq R^{n-1}$;
3. every reflexive relation R on A satisfies $R^n \subseteq R^{n-1}$.

The mystery

- Conditions 2 and 3 do not appear in [Carboni, Kelly & Pedicchio, *Some remarks on Maltsev and Goursat categories*, 1993]
 Nevertheless, all three conditions are purely categorical!
- We could, however, not find a categorical argument, and
- the proof Hagemann and Mitschke refer to was never published:
 [Hagemann, *Grundlagen der allgemeinen topologischen Algebra*, in preparation]

What’s going on?
The associated imaginary co-operations

Hagemann and Mitschke’s result is correct

- 1 ⇔ 2 is treated in [Martins–Ferreira & VdL, 2010]
- 2 ⇔ 3 is also true for varieties

But what about general categories?

- the result holds in regular categories with finite sums
- proof technique mimics the varietal proof,
- based on Dominique Bourn and Zurab Janelidze’s
 approximate or imaginary co-operations
 [Bourn & Janelidze, Approximate Mal’tsev operations, 2008]

Basic idea [Bourn & Janelidze, 2008]

A Mal’tsev theory contains a Mal’tsev term \(p(x, y, z) \).
A regular Mal’tsev category has approximate Mal’tsev co-operations
\[
X \xleftarrow{\alpha_x} A(X) \xrightarrow{p_X} X + X + X
\]
which may be considered as *imaginary co-operations* \(p_X : X \longrightarrow 3X \).
The associated imaginary co-operations

Hagemann and Mitschke’s result is correct

- $1 \iff 2$ is treated in [Martins–Ferreira & VdL, 2010]
- $2 \iff 3$ is also true for varieties

But what about general categories?

- the result holds in regular categories with finite sums
- proof technique mimics the varietal proof,
- based on Dominique Bourn and Zurab Janelidze’s approximate or imaginary co-operations
 [Bourn & Janelidze, Approximate Mal’tsev operations, 2008]

Basic idea [Bourn & Janelidze, 2008]

A Mal’tsev theory contains a Mal’tsev term $p(x, y, z)$.

A regular Mal’tsev category has approximate Mal’tsev co-operations

$$X \xleftarrow{\alpha_X} A(X) \xrightarrow{p_X} X + X + X$$

which may be considered as imaginary co-operations $p_X: X \xrightarrow{\sim} 3X$.
The associated imaginary co-operations

Hagemann and Mitschke’s result is correct

- $1 \iff 2$ is treated in [Martins–Ferreira & VdL, 2010]
- $2 \iff 3$ is also true for varieties

But what about general categories?

- the result holds in regular categories with finite sums
 - proof technique mimics the varietal proof,
 - based on Dominique Bourn and Zurab Janelidze’s approximate or imaginary co-operations
 [Bourn & Janelidze, Approximate Mal’tsev operations, 2008]

Basic idea [Bourn & Janelidze, 2008]

A Mal’tsev theory contains a Mal’tsev term $p(x, y, z)$.
A regular Mal’tsev category has approximate Mal’tsev co-operations

\[
X \xleftarrow{\alpha_x} A(X) \xrightarrow{p_X} X + X + X
\]

which may be considered as imaginary co-operations $p_X : X \sim 3X$.
The associated imaginary co-operations

Hagemann and Mitschke’s result is correct

- $1 \iff 2$ is treated in [Martins–Ferreira & VdL, 2010]
- $2 \iff 3$ is also true for varieties

But what about general categories?

- the result holds in regular categories with finite sums
- proof technique mimics the varietal proof,
- based on Dominique Bourn and Zurab Janelidze’s
 approximate or imaginary co-operations
 [Bourn & Janelidze, Approximate Mal’tsev operations, 2008]

Basic idea [Bourn & Janelidze, 2008]

A Mal’tsev theory contains a Mal’tsev term $p(x, y, z)$.

A regular Mal’tsev category has approximate Mal’tsev co-operations

$$X \leftarrow \underbrace{\alpha_x}_{\text{opposite}} A(X) \xrightarrow{p_x} X + X + X$$

which may be considered as imaginary co-operations $p_X : X \rightsquigarrow 3X$.
The associated imaginary co-operations

Hagemann and Mitschke’s result is correct
- $1 \Leftrightarrow 2$ is treated in [Martins–Ferreira & VdL, 2010]
 - $2 \Leftrightarrow 3$ is also true for varieties

But what about general categories?
- the result holds in regular categories with finite sums
- proof technique mimics the varietal proof,
- based on Dominique Bourn and Zurab Janelidze’s
 approximate or imaginary co-operations
 [Bourn & Janelidze, Approximate Mal’tsev operations, 2008]

“Whatever can be said about varieties can be proved categorically”
[Hans-E. Porst, yesterday]
The associated imaginary co-operations

Hagemann and Mitschke’s result is correct

- \(1 \Leftrightarrow 2\) is treated in [Martins–Ferreira & VdL, 2010]
- \(2 \Leftrightarrow 3\) is also true for varieties

But what about general categories?

- the result holds in regular categories with finite sums
- proof technique mimics the varietal proof,
- based on Dominique Bourn and Zurab Janelidze’s approximate or imaginary co-operations
 [Bourn & Janelidze, Approximate Mal’tsev operations, 2008]

Basic idea [Bourn & Janelidze, 2008]

A Mal’tsev theory contains a Mal’tsev term \(p(x, y, z)\).

A regular Mal’tsev category has approximate Mal’tsev co-operations

\[
X \xleftarrow{\alpha_X} A(X) \xrightarrow{p_X} X + X + X
\]

which may be considered as imaginary co-operations \(p_X : X \sim 3X\).
The associated imaginary co-operations

Hagemann and Mitschke’s result is correct

- $1 \leftrightarrow 2$ is treated in [Martins–Ferreira & VdL, 2010]
 - $2 \leftrightarrow 3$ is also true for varieties

But what about general categories?

- the result holds in regular categories with finite sums
- proof technique mimics the varietal proof,
- based on Dominique Bourn and Zurab Janelidze’s
 approximate or imaginary co-operations
 [Bourn & Janelidze, Approximate Mal’tsev operations, 2008]

Basic idea [Bourn & Janelidze, 2008]

A Mal’tsev theory contains a Mal’tsev term $p(x, y, z)$.

A regular Mal’tsev category has approximate Mal’tsev co-operations

\[
X \xleftarrow{\alpha_X} A(X) \xrightarrow{p_X} X + X + X
\]

which may be considered as imaginary co-operations $p_X : X \rightsquigarrow 3X$.
Overview

0 Introduction
1 Mal’tsev conditions
 ▷ The Mal’tsev case: 2-permutability
 ▷ The Goursat case: 3-permutability
 ▷ n-permutable categories
2 Imaginary co-operations
 ▷ Approximate Mal’tsev co-operations
 ▷ Approximate Goursat co-operations
 ▷ Main theorem: n-permutability
3 Conclusion
4 Further questions
The Mal’tsev case: 2-permutability

Theorem [Mal’tsev, 1954]

For any variety of algebras \mathcal{V}, the following are equivalent:

1. 2-permutability of congruences: $RS = SR$
2. existence of a ternary operation p satisfying
 \[
 \begin{align*}
 p(x, y, y) &= x \\
 p(x, x, y) &= y
 \end{align*}
 \]

Such a \mathcal{V} is called a **Mal’tsev variety**.

Theorem [Meisen, 1974; Faro, 1989; Carboni, Lambek & Pedicchio, 1990]

For any regular category \mathcal{A}, the following are equivalent:

1. 2-permutability of congruences: $RS = SR$
2. every reflexive relation R is symmetric: $R^{\text{op}} \leq R$;
3. every reflexive relation R is transitive: $R^2 \leq R$.

Such an \mathcal{A} is called a (regular) **Mal’tsev category**.
The Mal’tsev case: 2-permutability

Theorem [Mal’tsev, 1954]

For any variety of algebras \mathcal{V}, the following are equivalent:

1. 2-permutability of congruences: $RS = SR$
2. existence of a ternary operation p satisfying
 \[
 \begin{align*}
 p(x, y, y) &= x \\
 p(x, x, y) &= y
 \end{align*}
 \]

Such a \mathcal{V} is called a **Mal’tsev variety**.

Theorem [Meisen, 1974; Faro, 1989; Carboni, Lambek & Pedicchio, 1990]

For any regular category \mathcal{A}, the following are equivalent:

1. 2-permutability of congruences: $RS = SR$
2. every reflexive relation R is symmetric: $R^{\text{op}} \leq R$;
3. every reflexive relation R is transitive: $R^2 \leq R$.

Such an \mathcal{A} is called a (regular) **Mal’tsev category**.
The Mal’tsev case: 2-permutability

Theorem [Mal’tsev, 1954]

For any variety of algebras \mathcal{V}, the following are equivalent:

1. 2-permutability of congruences: $RS = SR$
2. existence of a ternary operation p satisfying

$$\begin{cases} p(x, y, y) = x \\ p(x, x, y) = y \end{cases}$$

Such a \mathcal{V} is called a Mal’tsev variety.

Theorem [Meisen, 1974; Faro, 1989; Carboni, Lambek & Pedicchino, 1990]

For any regular category \mathcal{A}, the following are equivalent:

1. 2-permutability of congruences: $RS = SR$
2. every reflexive relation R is symmetric: $R^{op} \leq R$; $R^{op} \leq R^{n-1}$
3. every reflexive relation R is transitive: $R^2 \leq R$; $R^n \leq R^{n-1}$

Such an \mathcal{A} is called a (regular) Mal’tsev category.
The Goursat case: 3-permutability

Theorem [Schmidt, 1969; Grötzer, Wille, 1970; Hagemann & Mitschke, 1973]

For any variety of algebras \mathcal{V}, the following are equivalent:

1. 3-permutability of congruences: $RSR = SRS$;
2. existence of quaternary operations p and q satisfying
 $$ p(x, y, y, z) = x, \quad p(x, x, y, y) = q(x, x, y, y), \quad q(x, y, y, z) = z; $$
3. existence of ternary operations r and s satisfying
 $$ r(x, y, y) = x, \quad r(x, x, y) = s(x, y, y), \quad s(x, x, y) = y; $$
4. every reflexive relation R satisfies $R^\text{op} \leq R^2$;
5. every reflexive relation R satisfies $R^3 \leq R^2$.

Such a \mathcal{V} is called a 3-permutable or Goursat variety.

A regular category with 3-permutable congruences is called a (regular) Goursat category
[Carboni, Lambek & Pedicchio, 1990; Carboni, Kelly & Pedicchio, 1993].
The Goursat case: 3-permutability \(n = 3 \)

Theorem [Schmidt, 1969; Grötzer, Wille, 1970; Hagemann & Mitschke, 1973]

For any variety of algebras \(\mathcal{V} \), the following are equivalent:

1. 3-permutability of congruences: \(RSR = SRS \);
2. existence of quaternary operations \(p \) and \(q \) satisfying
 \[
 p(x, y, y, z) = x, \quad p(x, x, y, y) = q(x, x, y, y), \quad q(x, y, y, z) = z;
 \]
3. existence of ternary operations \(r \) and \(s \) satisfying
 \[
 r(x, y, y) = x, \quad r(x, x, y) = s(x, y, y), \quad s(x, x, y) = y;
 \]
4. every reflexive relation \(R \) satisfies \(R^{\text{op}} \leq R^2 \);
5. every reflexive relation \(R \) satisfies \(R^3 \leq R^2 \).

Such a \(\mathcal{V} \) is called a 3-permutable or Goursat variety.

A regular category with 3-permutable congruences is called a (regular) Goursat category
[Carboni, Lambek & Pedicchio, 1990; Carboni, Kelly & Pedicchio, 1993].
Theorem [Schmidt, 1969; Grötzer, Wille, 1970; Hagemann & Mitschke, 1973]

\mathcal{V} is n-permutable when the following equivalent conditions hold:

1. n-permutability of congruences: $\overbrace{RSRS \cdots}^{n} = \overbrace{SRSR \cdots}^{n}$;

2. existence of $(n + 1)$-ary operations v_0, \ldots, v_n satisfying

 \[
 \begin{align*}
 v_0(x_0, \ldots, x_n) &= x_0, & v_n(x_0, \ldots, x_n) &= x_n, \\
 v_{i-1}(x_0, x_0, x_2, x_2, \ldots) &= v_i(x_0, x_0, x_2, x_2, \ldots), & i & \text{ even}, \\
 v_{i-1}(x_0, x_1, x_1, x_3, x_3, \ldots) &= v_i(x_0, x_1, x_1, x_3, x_3, \ldots), & i & \text{ odd};
 \end{align*}
 \]

3. existence of ternary operations w_1, \ldots, w_{n-1} satisfying

 \[
 \begin{align*}
 w_1(x, y, y) &= x, & w_{n-1}(x, x, y) &= y, \\
 w_i(x, x, y) &= w_{i+1}(x, y, y), & \text{ for } i & \in \{1, \ldots, n - 2\};
 \end{align*}
 \]

4. every reflexive relation R satisfies $R^{\text{op}} \subseteq R^{n-1}$;

5. every reflexive relation R satisfies $R^n \subseteq R^{n-1}$.

Notion of n-permutable category [Carboni, Kelly & Pedicchio, 1993].
Overview

0 Introduction

1 Mal’tsev conditions
 ▶ The Mal’tsev case: 2-permutability
 ▶ The Goursat case: 3-permutability
 ▶ n-permutable categories

2 Imaginary co-operations
 ▶ Approximate Mal’tsev co-operations
 ▶ Approximate Goursat co-operations
 ▶ Main theorem: n-permutability

3 Conclusion

4 Further questions
Approximate Mal’tsev co-operations

Natural **approximate Mal’tsev co-operation** on \(\mathcal{A} \):

\[
\begin{align*}
X &\xrightarrow{\alpha_X} A(X) \\
\downarrow{\iota_1} &\quad &\uparrow{\iota_2} \\
2X &\xleftarrow{p_X} &2X \\
\downarrow{1_X + \nabla_X} &\quad &\downarrow{\nabla_X + 1_X} \\
3X
\end{align*}
\]

\[
\begin{align*}
\left\langle \frac{x}{x} \right\rangle \circ p_X &= y \circ \alpha_X \\
\left\langle \frac{x}{y} \right\rangle \circ p_X &= x \circ \alpha_X
\end{align*}
\]

Universal means \(A(X) \) limit of outer square

Theorem [Bourn & Janelidze, 2008]

Let \(\mathcal{A} \) be a regular category with binary coproducts. TFAE:

1. If \((\alpha, p)\) is universal, then \(\alpha\) is a regular epimorphism;
2. there exists an approximate Mal’tsev co-operation such that \(\alpha : A \Rightarrow 1_\mathcal{A}\) is a regular epimorphism;
3. \(\mathcal{A} \) is a Mal’tsev category.
Approximate Mal’tsev co-operations

Natural **approximate Mal’tsev co-operation** on \mathcal{A}:

![Diagram of approximate Mal’tsev co-operation](image)

Universal means $A(X)$ limit of outer square

Theorem [Bourn & Janelidze, 2008]

Let \mathcal{A} be a regular category with binary coproducts. TFAE:

1. If (α, p) is universal, then α is a regular epimorphism;
2. there exists an approximate Mal’tsev co-operation such that $\alpha: A \Rightarrow 1_\mathcal{A}$ is a regular epimorphism;
3. \mathcal{A} is a Mal’tsev category.
Approximate Mal’tsev co-operations

Natural approximate Mal’tsev co-operation on \mathcal{A}:

\[
\begin{align*}
X & \xrightarrow{\nu_1} A(X) \xrightarrow{\nu_2} X \\
2X & \xleftarrow{\rho_X} A(X) & 2X \\
1_x + \nabla_x & \xrightarrow{\rho_X} X & \nabla_x + 1_x \\
3X &
\end{align*}
\]

Universal means $A(X)$ limit of outer square

Theorem [Bourn & Janelidze, 2008]

Let \mathcal{A} be a regular category with binary coproducts. TFAE:

1. If (α, p) is universal, then α is a regular epimorphism;

2. there exists an approximate Mal’tsev co-operation such that $\alpha : \mathcal{A} \Rightarrow 1_{\mathcal{A}}$ is a regular epimorphism;

3. \mathcal{A} is a Mal’tsev category.
Approximate Goursat co-operations

Natural approximate Goursat co-operations on \mathcal{A}:

Theorem

Let \mathcal{A} be a regular category with binary coproducts. TFAE:

1. If α or β is universal, then it is a regular epimorphism;
2. there exist approximate Goursat co-operations such that α and β are regular epimorphisms;
3. \mathcal{A} is a Goursat category;
4. every reflexive relation R satisfies $R^{\text{op}} \subseteq R^2$.

\square
Approximate Goursat co-operations

Natural approximate Goursat co-operations on \mathcal{A}:

\[
\begin{align*}
\text{quaternary} & : \\
& \\
\text{ternary} & : \\
\end{align*}
\]

Theorem

Let \mathcal{A} be a regular category with binary coproducts. TFAE:

1. If α or β is universal, then it is a regular epimorphism;
2. there exist approximate Goursat co-operations such that α and β are regular epimorphisms;
3. \mathcal{A} is a Goursat category;
4. every reflexive relation R satisfies $R^\text{op} \leq R^2$. \qed
Approximate Goursat co-operations

Natural **approximate Goursat co-operations** on \mathcal{A}:

Theorem

Let \mathcal{A} be a regular category with binary coproducts. TFAE:

3. \mathcal{A} is a Goursat category;

4. every reflexive relation R satisfies $R^{\text{op}} \leq R^2$. □

What about condition 5?

5. Every reflexive relation R satisfies $R^3 \leq R^2$.

Follows from the characterisation of 4-permutability!
Approximate Goursat co-operations

Natural approximate Goursat co-operations on \mathcal{A}:

Theorem

Let \mathcal{A} be a regular category with binary coproducts. TFAE:

3. \mathcal{A} is a Goursat category;
4. every reflexive relation R satisfies $R^\text{op} \leq R^2$.

What about condition 5?

5. Every reflexive relation R satisfies $R^3 \leq R^2$.

Follows from the characterisation of 4-permutability!
Main theorem: \(n \)-permutability

Natural **approximate ternary co-operations** on \(\mathcal{A} \), for \(n \geq 2 \):

\[\begin{array}{c}
\text{Theorem} \\
\text{Let } \mathcal{A} \text{ be a regular category with binary coproducts. TFAE:}
\end{array}\]

1. If \(\alpha \) or \(\beta \) is universal, then it is a regular epimorphism;
2. there exist approximate co-operations with \(\alpha \) and \(\beta \) regular epi;
3. \(\mathcal{A} \) is an \(n \)-permutable category.
Main theorem: n-permutability

Natural approximate ternary co-operations on \mathcal{A}, for $n \geq 2$:

Theorem

Let \mathcal{A} be a regular category with binary coproducts. TFAE:

1. If α or β is universal, then it is a regular epimorphism;

2. There exist approximate co-operations with α and β regular epi;

3. \mathcal{A} is an n-permutable category.
Main theorem: n-permutability

Theorem

A regular category with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{\text{op}} \leq R^{n-1}$.

Lemma

If every reflexive relation R in \mathcal{A} satisfies $R^n \leq R^{n-1}$ then \mathcal{A} is $(2n - 2)$-permutable.

Theorem

A regular category \mathcal{A} with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^n \leq R^{n-1}$.

Proof of \Leftarrow in the Goursat case, $n = 3$.

$R^3 \leq R^2$ implies that \mathcal{A} is $2 \cdot 3 - 2 = 4$-permutable, so $R^{\text{op}} \leq R^{4-1} = R^3 \leq R^2 = R^{3-1}$, which gives 3-permutability.
Main theorem: n-permutability

Theorem

A regular category with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{\text{op}} \leq R^{n-1}$.

Lemma

If every reflexive relation R in \mathcal{A} satisfies $R^n \leq R^{n-1}$ then \mathcal{A} is $(2n - 2)$-permutable.

Theorem

A regular category \mathcal{A} with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^n \leq R^{n-1}$.

Proof of \Leftarrow in the Goursat case, $n = 3$.

$R^3 \leq R^2$ implies that \mathcal{A} is $2 \cdot 3 - 2 = 4$-permutable, so $R^{\text{op}} \leq R^{4-1} = R^3 \leq R^2 = R^{3-1}$, which gives 3-permutability.
Main theorem: n-permutability

Theorem

A regular category with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{\text{op}} \leq R^{n-1}$. \qed

Lemma

If every reflexive relation R in \mathcal{A} satisfies $R^n \leq R^{n-1}$ then \mathcal{A} is $(2n - 2)$-permutable. \qed

Theorem

A regular category \mathcal{A} with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^n \leq R^{n-1}$.

Proof of \leq in the Goursat case, $n = 3$.

$R^3 \leq R^2$ implies that \mathcal{A} is $2 \cdot 3 - 2 = 4$-permutable, so $R^{\text{op}} \leq R^{4-1} = R^3 \leq R^2 = R^{3-1}$, which gives 3-permutability. \qed
Main theorem: n-permutability

Theorem

A regular category with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{\text{op}} \leq R^{n-1}$.

Lemma

If every reflexive relation R in \mathcal{A} satisfies $R^n \leq R^{n-1}$ then \mathcal{A} is $(2n - 2)$-permutable.

Theorem

A regular category \mathcal{A} with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^n \leq R^{n-1}$.

Proof of \Leftarrow in the Goursat case, $n = 3$.

$R^3 \leq R^2$ implies that \mathcal{A} is $2 \cdot 3 - 2 = 4$-permutable, so $R^{\text{op}} \leq R^{4-1} = R^3 \leq R^2 = R^{3-1}$, which gives 3-permutability.
Main theorem: n-permutability

Theorem
A regular category with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{op} \leq R^{n-1}$. □

Lemma
If every reflexive relation R in \mathcal{A} satisfies $R^n \leq R^{n-1}$ then \mathcal{A} is $(2n - 2)$-permutable. □

Theorem
A regular category \mathcal{A} with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^n \leq R^{n-1}$.

Proof of \Leftarrow in the Goursat case, $n = 3$.

$R^3 \leq R^2$ implies that \mathcal{A} is $2 \cdot 3 - 2 = 4$-permutable, so $R^{op} \leq R^{4-1} = R^3 \leq R^2 = R^{3-1}$, which gives 3-permutability. □
Main theorem: n-permutability

Theorem

A regular category with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{\text{op}} \leq R^{n-1}$. ∎

Lemma

If every reflexive relation R in \mathcal{A} satisfies $R^n \leq R^{n-1}$ then \mathcal{A} is $(2n - 2)$-permutable. ∎

Theorem

A regular category \mathcal{A} with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^n \leq R^{n-1}$.

Proof of \Leftarrow in the Goursat case, $n = 3$.

$R^3 \leq R^2$ implies that \mathcal{A} is $2 \cdot 3 - 2 = 4$-permutable, so $R^{\text{op}} \leq R^{4-1} = R^3 \leq R^2 = R^{3-1}$, which gives 3-permutability. ∎
Main theorem: n-permutability

Theorem

A regular category with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^{\text{op}} \leq R^{n-1}$.

Lemma

If every reflexive relation R in \mathcal{A} satisfies $R^n \leq R^{n-1}$ then \mathcal{A} is $(2n - 2)$-permutable.

Theorem

A regular category \mathcal{A} with binary coproducts is n-permutable if and only if every reflexive relation R satisfies $R^n \leq R^{n-1}$.

Proof of \iff in the Goursat case, $n = 3$.

$R^3 \leq R^2$ implies that \mathcal{A} is $2 \cdot 3 - 2 = 4$-permutable, so $R^{\text{op}} \leq R^{4-1} = R^3 \leq R^2 = R^{3-1}$,

which gives 3-permutability.
Main theorem: \(n \)-permutability

Theorem

A regular category with binary coproducts is \(n \)-permutable if and only if every reflexive relation \(R \) satisfies \(R^{\text{op}} \leq R^{n-1} \).

Lemma

If every reflexive relation \(R \) in \(\mathcal{A} \) satisfies \(R^n \leq R^{n-1} \) then \(\mathcal{A} \) is \((2n - 2)\)-permutable.

Theorem

A regular category \(\mathcal{A} \) with binary coproducts is \(n \)-permutable if and only if every reflexive relation \(R \) satisfies \(R^n \leq R^{n-1} \).

Proof of \(\Leftarrow \) in the Goursat case, \(n = 3 \).

\(R^3 \leq R^2 \) implies that \(\mathcal{A} \) is \(2 \cdot 3 - 2 = 4 \)-permutable, so \(R^{\text{op}} \leq R^{4-1} = R^3 \leq R^2 = R^{3-1} \), which gives \(3 \)-permutability.
Conclusion

- Hagemann and Mitschke’s theorem has a categorical counterpart:

Theorem [Rodelo & VdL, 2012]

For any regular category with binary sums \mathcal{A} and any $A \in \mathcal{A}$, TFAE:

1. the equivalence relations on A are n-permutable;
2. every reflexive relation R on A satisfies $R^{op} \leq R^{n-1}$;
3. every reflexive relation R on A satisfies $R^n \leq R^{n-1}$.

n-permutable categories with finite sums can be characterised in terms of approximate co-operations

but most importantly:

Dominique Bourn and Zurab Janelidze’s technique works!
Conclusion

- Hagemann and Mitschke’s theorem has a categorical counterpart:

Theorem [Rodelo & VdL, 2012]

For any regular category with binary sums \mathcal{A} and any $A \in \mathcal{A}$, TFAE:

1. the equivalence relations on A are n-permutable;
2. every reflexive relation R on A satisfies $R^{\text{op}} \leq R^{n-1}$;
3. every reflexive relation R on A satisfies $R^n \leq R^{n-1}$.

\square

- n-permutable categories with finite sums can be characterised in terms of approximate co-operations

- but most importantly:

Dominique Bourn and Zurab Janelidze’s technique works!
Hagemann and Mitschke’s theorem has a categorical counterpart:

Theorem [Rodelo & VdL, 2012]

For any regular category with binary sums \mathcal{A} and any $A \in \mathcal{A}$, TFAE:

1. the equivalence relations on A are n-permutable;
2. every reflexive relation R on A satisfies $R^{op} \leq R^{n-1}$;
3. every reflexive relation R on A satisfies $R^n \leq R^{n-1}$.

n-permutable categories with finite sums can be characterised in terms of approximate co-operations

but most importantly:

Dominique Bourn and Zurab Janelidze’s technique works!
Further questions

- Do we really need binary sums?
 - Counterexamples seem hard to construct:
 - varieties have sums
 - just “taking all finite algebras” or so will not work
 - Embedding theorem for n-permutable categories?
- Direct and simple “purely categorical” proof?
 - Closedness properties of relations
- How general is this technique?
 - I tried to do homotopy of chain complexes in semi-abelian categories… and failed
Further questions

- Do we really need binary sums?
 - Counterexamples seem hard to construct:
 - varieties have sums
 - just “taking all finite algebras” or so will not work
 - Embedding theorem for n-permutable categories?

- Direct and simple “purely categorical” proof?
 - Closedness properties of relations

- How general is this technique?
 - I tried to do homotopy of chain complexes in semi-abelian categories… and failed
Further questions

- Do we really need binary sums?
 - Counterexamples seem hard to construct:
 - varieties have sums
 - just “taking all finite algebras” or so will not work
 - Embedding theorem for n-permutable categories?

- Direct and simple “purely categorical” proof?
 - Closedness properties of relations

- How general is this technique?
 - I tried to do homotopy of chain complexes in semi-abelian categories… and failed
Further questions

- Do we really need binary sums?
 - Counterexamples seem hard to construct:
 - varieties have sums
 - just “taking all finite algebras” or so will not work
 - Embedding theorem for n-permutable categories?

- Direct and simple “purely categorical” proof?
 - Closedness properties of relations

- How general is this technique?
 - I tried to do homotopy of chain complexes in semi-abelian categories… and failed
Further questions

- Do we really need binary sums?
 - Counterexamples seem hard to construct:
 - varieties have sums
 - just “taking all finite algebras” or so will not work
 - Embedding theorem for n-permutable categories?

- Direct and simple “purely categorical” proof?
 - Closedness properties of relations

- How general is this technique?
 - I tried to do homotopy of chain complexes in semi-abelian categories… and failed
The image contains a diagram with various nodes and arrows between them. The nodes are labeled with expressions related to X, $B(X)$, $2X$, $3X$, $1_x + \nabla_x$, $\nabla_x + 1_x$, ν_1, ν_2, β_x, r_x, and s_x. The arrows indicate the relationships between these expressions, with some dashed arrows suggesting a specific direction or relationship not fully specified in the diagram. The diagram appears to represent a mathematical or algebraic relationship, possibly in the context of some formal system or theory.