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The symmetric case of nearness frames:

Uniform =- strong = has enough regular Cauchy filters.

@ Completion is a coreflection for uniform frames (Isbell).

@ Completion is a coreflection for strong nearness frames
(Banaschewski, Hong, Pultr).

@ Completion is not a coreflection for nearness frames
(Banaschewski, Hong, Pultr).

Schauerte and Frith (UCT) Enough regular Cauchy filters GJ Birthday in Coimbra 2/15



Definition

A quasi-nearness bifran{&, /L) hasenough regular Cauchy bifiltgrer is
ercif, whenevery : L — T is a Cauchy bifilter, there exists a regular Cauch
bifilter ¢» : L — T such that) < ¢, meaning that)(a) < ¢(a) for all a € L.

Definition
Lety : L — T be a bifilter on(L,Z{L). We define itsegular reductiony®, as
follows. Fora € Lo,

=\{p(s) Ae(t) : (s,t) < (x,y),x Ay < a}.

Here(s,t) < (x,y) is taken to mean thgs, t), (X,y) € L3 x L, and that
S <y x andt <o y.
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Let (L,/L) be a quasi-nearness biframe.

Lemma
Letyp, : L — T be Cauchy bifilters, with) < . Theny® < ).

Corollary

Lety, 4 : L — T be bifilters, withy) < ¢ andy a regular Cauchy bifilter.
Theny = ¢°.

Corollary

A quasi-nearness bifran{&, /L) has enough regular Cauchy bifilters if an
only if, for any Cauchy bifilterp : L — T, ¢° : L — T is a regular Cauchy
bifilter.
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Questions of functoriality

Leth: (M,UM) — (L,UL) be uniform and (M, /M) have enough
regular Cauchy bifilters. We seek a biframe map h making this diagram
commute:

h
CM - -——————-— - CL
™ n
h
M
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We use the right adjoints of the completion maps:

CM - ——————- - CL
™ &
oM 5 oL
h L
M L

It remains to show that v_h = hvy by showing that

yh(oum(@)) = hym(om(@)) fora € Mo.

This suffices because {oy(a) : a € Mg} generates the total part of CM.
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Definition
We call (M,2/M) strongif C € M whenevelC € UM, where
C ={(d,d): (d,d) < (c,c) for some(c,c) € C}.

Leth: (M,UM) — (L,UL) be uniform and (M, /M) be strong and erc.
Then the biframe map h is uniform:

(CM, cum) —" (cL, cuL)
gV ™ || oL
(M, UM) (L,uL)

One checks that, for C € UM, o h(C) < hoy(C).
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Lemma

@ (M,UM) has enough regular Cauchy bifilters@M, /M) has enough

regular Cauchy bifilters.
@ (M,UM) is strong iff C(M,UM) is strong.
@ (M,UM) is quasi-uniform iffC(M, /M) is quasi-uniform.

Theorem

Denote byESQ the subcategory afuasi-nearness biframes that hameugh
regular Cauchy bifilters and asgong. The quasi-complete objectsESQ
form a coreflective subcategory BSQ.
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Characterizations and consequences

Theorem
For any quasi-nearness bifrarfd, /M), the following are equivalent:
(@) (M,UM) has enough regular Cauchy bifilters.

(b) 6° : M — CFM is a regular Cauchy bifilter ofM, (M), where) is the
the universal Cauchy bifilter.

(c) The quotientr : CFM — CM has a right inverse; that is, there exists a
biframe mag : CM — CFM such thatf = id¢y.

v
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If (M,UM) is totally bounded (meaning that the finite uniform
paircovers generate the quasi-nearness), then the nucleus defining the

Cauchy filter quotient CFM is:

k(U)=U{l(XAY):x € M1,y € Mg, x Ay ACS C U for someC € UM}

where x Ay ACS ={x Ay AcAC:(c,C)eC}

Theorem
If (M,UM) is totally bounded, the@FM is compact.

Corollary
If (M,UM) is totally bounded and has enough regular Cauchy bifiltees) t
(M,UM) is quasi-uniform aneC (M,/M) is compact.
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Example
This is an example of a totally bounded quasi-uniform bifeahmat does not
have enough regular Cauchy bifilters.

LetL = (DR, OR, DR) whereDR is the discrete topology on the reals and
OR is the usual topology on the reals. ¢t be the standard binary
quasi-nearness dn generated byCY : U UV =R,U € OR,V ¢ DR},
whereCY = {(U,R), (R,V)}.

@ L is a normal biframe.

@ SolL is a quasi-uniformity or..

@ (L,UL) is obviously totally bounded.

@ C(L,UL) is not compact.

® So(L,UL) does not have enough regular Cauchy bifilters.
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Examples of erc quasi-nearness biframes

We recall the doubling and symmetrizing functors that relate nearness
frames and quasi-nearness biframes:
D “doubling”
NearFrm QNearBiFrm
\S “symmetrizing”

@ For (L,UL) a nearness frame, DL = (L,L,L) and DUL is
generated by {DY : D € UL}, where DY = {(d,d):d € D}.

@ For (M,UM) a quasi-nearness biframe, SM = Mg and SUM is
generated by {C°: C e UM}, where C> = {c AC: (c,C) € C}.

NOte that SD — idNearFrm.
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Lemma

(a) A nearness fram@., /L) is erc if and only ifD(L, L) is erc.

(b) If a quasi-nearness bifrant®,/M) is erc, therS(M,UM) is erc, but
not conversely.

Example

This is a straightforward example of a quasi-nearnessrhérenat has enough
regular Cauchy bifilters, for the simple reason that allteiffl on it are regular.

LetL be an extremely zero-dimensional biframe. This means tdbee L,
has a complement’ in Lg that is a member df, and similarly forx € L.
Let SB(L) be the standard binary quasi-nearness.on

Now for anya € L, we havea <3 a, sop(a) = \/{¢(z) : z <1 a} trivially.
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Lemma

Let (M,U{M) be a strong quasi-nearness biframe andM — T a Cauchy
bifilter such thaty® : M — T is also a bifilter oM. Then° is a Cauchy
bifilter.

Lemma

Suppos€M, /M) is a quasi-nearness biframe in which the uniformly belo
relation< = (<11, <) interpolates.

Suppose thap : M — T andy® : M — T are bifilters orM.
Forael,i=1,2,

if o°(a) = V{p(z) : z < a}, thenp®(a) = V{¥°(2) : z < a}.
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Example

Let X be a set linearly ordered by.

We write(—o0,a) = {x € X : x < a}and(b,oc0) = {x € X : x > b}.
L, is the topology orK with base{(—oc,a) : a € X }.

L, is the topology orX with base{(b, c0) : b € X}.

Lo has subbasg(—oc,a) :a € X} U{(b,00) : b € X}.

We will call such(Lo, L1, L,) anorder topology biframe

Any order topology biframe with a quasi-nearness that @gfrand has an
interpolating uniformly below relation, has enough reg@auchy bifilters.
This clearly applies to the biframe of reals, the biframeationals and the
biframe of integers.
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