Javier Gutiérrez García

Department of Mathematics, University of the Basque Country UPV/EHU, Spain

The frame of the metric hedgehog and a cardinal extension of normality

Topological hedgehogs keep generating interest in point-set topology as they are a rich source of counterexamples and applications.

In this talk we will present the hedgehog metric topology in a pointfree form, by specifying its generators and relations, and some of its main properties. We will also study collectionwise normality in frames, a concept originally introduced by A. Pultr ([4]) in connection with metrizability, and present the counterparts of Urysohn's separation and Tietze's extension theorems for continuous hedgehog-valued functions.

The frame of the metric hedgehog with κ spines

Let κ be some cardinal and let I be a set of cardinality κ . The frame of the metric hedgehog with κ spines is the frame $\mathfrak{L}(J(\kappa))$ presented by generators $(r, -)_i$ and (-, r) for $r \in \mathbb{Q}$ and $i \in I$, subject to the defining relations

- (h0) $(r,-)_i \wedge (s,-)_j = 0$ whenever $i \neq j$,
- (h1) $(r,-)_i \wedge (-,s) = 0$ whenever $r \ge s$ and $i \in I$,
- (h2) $\bigvee_{i \in I} (r_i, -)_i \lor (-, s) = 1$ whenever $r_i < s$ for all $i \in I$,
- (h3) $(r,-)_i = \bigvee_{s>r} (s,-)_i$, for every $r \in \mathbb{Q}$ and $i \in I$,
- (h4) $(-, r) = \bigvee_{s < r} (-, s)$, for every $r \in \mathbb{Q}$.

Note that $\mathfrak{L}(J(1))$ is precisely the frame of the extended reals $\mathfrak{L}(\mathbb{R})$ and hence isomorphic to $\mathfrak{L}([0,1])$ (cf. [1, 2]).

We have the following:

- (1) The spectrum $\Sigma \mathfrak{L}(J(\kappa))$ is homeomorphic to the classical metric hedgehog $J(\kappa)$.
- (2) $\mathfrak{L}(J(\kappa))$ is a metric frame of weight $\kappa \cdot \aleph_0$ (cf. [4] and [3]).
- (3) $\mathfrak{L}(J(\kappa))$ is complete in its metric uniformity (cf. [5]).
- (4) The coproduct $\bigoplus_{n \in \mathbb{N}} \mathfrak{L}(J(\kappa))$ is universal in the class of metric frames of weight $\kappa \cdot \aleph_0$.

This presentation also allows us to define *continuous* (*metric*) hedgehog-valued functions on a frame L as frame homomorphisms $h: \mathfrak{L}(J(\kappa)) \to L$. Each continuous hedgehog-valued function determines a *join cozero* κ -family, i...e a disjoint collection $\{a_i\}_{i \in I}$, $|I| = \kappa$, of cozero elements of L such that $\bigvee_{i \in I} a_i$ is again a cozero element, and conversely.

Joint work with Imanol Mozo Carollo, Jorge Picado, and Joanne Walters-Wayland.

κ -collectionwise normality and the metric hedgehog

Being metrizable, the hedgehog frame is collectionwise normal [4, Theorem 2.5]. Recall that collectionwise normality is a stronger variant of normality introduced by A. Pultr in [4]: while a frame L is normal whether for any $x, y \in L$ satisfying $x \vee y = 1$ there exist disjoint $u, v \in L$ such that $x \vee u = 1 = y \vee v$, it is collectionwise normal if for each co-discrete system $\{x_i\}_{i \in I}$ there is a discrete $\{u_i\}_{i \in I}$ such that $x_i \vee u_i = 1$ for every $i \in I$. Here, by a co-discrete (resp. discrete) $\{x_i\}_{i \in I}$ it is meant a collection for which there is a cover C such that for each $c \in C$, $c \leq x_i$ (resp. $c \wedge x_i = 0$) for all i with possibly one exception. More generally, for a cardinal $\kappa \geq 2$, we say that L is κ -collectionwise normal if it satisfies the definition of collectionwise normality for sets I with cardinality $|I| \leq \kappa$. Hence collectionwise normality is κ -collectionwise normality. Hence, κ -collectionwise normality implies normality for every κ .

We have the following:

- (1) Any F_{σ} -sublocale (i.e. countable join of closed subocales) of a κ -collectionwise normal locale is κ -collectionwise normal.
- (2) Let h: M → L be a one-to-one closed frame homomorphism. If L is κ-collectionwise normal, then so is M.
- (3) (Urysohn-type theorem) A frame L is κ-collectionwise normal if and only if for each codiscrete system {x_i}_{i∈I} with |I| ≤ κ there exists a continuous hedgehog-valued function h: L(J(κ)) → L such that h((0,-)_i^{*}) ≤ x_i for each i ∈ I.
- (4) (Tietze-type theorem) A frame L is κ-collectionwise normal if and only if for every closed sublocale c(a) of L, each continuous hedgehog-valued function h: L(J(κ)) → c(a) has an extension to L.

References

- B. Banaschewski, The real numbers in Pointfree Topology, Textos de Matemática, Vol. 12, University of Coimbra, 1997.
- [2] B. Banaschewski, J. Gutiérrez García and J. Picado, Extended real functions in pointfree topology, J. Pure Appl. Algebra 216 (2012) 905–922.
- [3] L. Español, J. Gutiérrez García and T. Kubiak, Separating families of locale maps and localic embeddings, Algebra Univ. 67 (2012) 105–112.
- [4] A. Pultr, Remarks on metrizable locales, in: *Proc. of the 12th Winter School on Abstract Analysis*, pp. 247–258, *Rendiconti del Circolo Matematico di Palermo*, 1984.
- [5] A. Pultr, Pointless uniformities. II: (Dia)metrization, Comment. Math. Univ. Carolinae 25 (1984) 105– 120.