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The formal theory of relative monads

The notion of relative monad, first introduced in the seminal paper [1], arose to resolve size-issues
related to monad-like correspondences; for example, the presheaf construction A 7→ [Ao,Set] fails
to be a pseudomonad for size reasons, since it sends small categories to locally small ones, making
it impossible to define a multiplication. These gadgets can be neatly characterized as monoids
internal to the skew monoidal category [5] of functors [C,D]. A rather satisfying theory of monads
can be regained in the relative setting if we allow T to be a pseudofunctor (this is precisely the
case of the presheaf construction): [3] proves that the Kleisli bicategory of P = [−,Set] coincides
with the bicategory Prof of Set-enriched profunctors.

In the present talk we suggest that these phenomena all fit in a bigger framework: relative monads
exist in every 2-category K (in the same way 2-monads do); the horizontal Kleisli bicategory [2]
of a relative monad T : A → B between virtual double categories becomes a virtual equipment
(ibi) as soon as T = [−,Ω] is induced by a dualizing object of K, and an equipment [6, 7] if Ω
satisfies some additional properties. When T is the lax idempotent, relative pseudomonad that
arises from the presheaf construction of an abstract Yoneda structure [4], this suggests how the
relative monad itself connects Yoneda structures and equipments, complementary frameworks in
which to deploy formal category theory.
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