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The theory of uniform hyperspaces is well known in the literature:

1. J. R. Isbell, Uniform spaces (1964)

- hyperspace of non-empty closed sets of a uniform space.

- supercomplete.

2. K. Morita, Completion of hyperspaces of compact subsets and
topological completion of open-closed maps, Gen. Top. and its
Appl.,(1974), 217-233.

- completeness result.

3. P. T. Johnstone, Vietoris Locales and Localic Semilattices, Continuous
lattices and their applications (Bremen, 1982), 155-180, Lecture Notes in
Pure and Appl. Math., 101, Dekker, New York (1985)
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We recall the classical construction of the hyperspace of non-empty
compact subsets of any topological space X . Let

2X = {∅ 6= A ⊆ X |A is compact.}

For every open U ⊆ X , let

t(U) = {A ∈ 2X |A ⊆ U} and m(U) = {A ∈ 2X |A ∩ U 6= ∅}.

The Vietoris topology on 2X is the topology having as subbase the
collection α = {t(U),m(U)|U ∈ OX}, where OX is the frame of all open
subsets of X . This subbase determines a base β, which can be described
in the following way:
For a finite collection U1,U2, . . . ,Un in OX , let

< U1,U2, . . . ,Un > = {A ∈ 2X |A ⊆
n⋃

i=1

Ui and A∩Ui 6= ∅ for each i = 1, 2, . . . , n}.

Then β = {< U1,U2, . . . ,Un > |Ui ∈ OX for each i , and n ∈ N}.
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We list below the properties satisfied by t and m, all of which follow easily
from their definitions. These properties give insight into the definition of
the Vietoris locale defined by Johnstone [3], which we discuss later.

t(U ∩ V ) = t(U) ∩ t(V ) for all U,V ∈ OX , and (i)

t(X ) = 2X .

t(
⋃

Ui ) =
⋃

t(Ui ) whenever {Ui} is updirected. (ii)

m(
⋃

Ui ) =
⋃

m(Ui ) for all subcollections {Ui}, and (iii)

m(∅) = ∅.
t(U) ∩m(V ) ⊆ m(U ∩ V ) for all U,V ∈ OX . (iv)

t(U ∪ V ) ⊆ t(U) ∪m(V ) for all U,V ∈ OX . (v)

t(∅) = ∅. (vi)
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Remark

(a) Note that in (ii) above, the fact that t(
⋃
Ui ) ⊆

⋃
t(Ui ) for updirected

{Ui} is because all A ∈ 2X are compact.

(b) Note that in (vi) above, t(∅) = ∅ follows because we are considering
the hyperspace of all non-empty compact sets. If we were to consider all
compact sets, i.e. including the empty set, then t(∅) = {∅}.
(c) It is customary in spaces that the definition of hyperspace deals with
non-empty sets, since otherwise ∅ would be an isolated point in the
hyperspace. This is mentioned by Isbell in ( [2], p. 28).
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Johnstone [3] makes use of the properties (i) - (v) above satisfied by t
and m, to define the Vietoris locale V (A) of a locale A in terms of
generators and relations. Specifically, for each a ∈ A let t(a) and m(a) be
abstract symbols. Then V (A) is the frame freely generated by these
symbols subject to the following relations:

t(a ∧ b) = t(a) ∧ t(b) for all a, b ∈ A, and (i)

t(1) = 1.

t(
∨

S) =
∨

t(s)(s ∈ S) for all updirected S ⊆ A. (ii)

m(
∨

S) =
∨

m(s)(s ∈ S) for all S ⊆ A, and (iii)

m(0) = 0.

m(a ∧ b) ≥ t(a) ∧m(b) for all a, b ∈ A. (iv)

t(a ∨ b) ≤ t(a) ∨m(b) for all a, b ∈ A. (v)
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As Johnstone remarks in his paper one can think informally of V (A) as the
space of all compact subspaces, of t(a) of those compact subspaces
contained in a, and of m(a) as the set of those compact subspaces that
meet a.

Let X = {m(a), t(a)|a ∈ A}. The above relations give the construction of
V (A) diagrammatically as shown below:
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X FX FX/Θ = V (A)

A

f
f̄

ν

ϕ

Here f is the map t(a) 7−→ a, and m(a) 7−→ a, X ↪→ FX is the insertion
of generators, and f̄ is the unique frame homomorphism making the left
triangle in the diagram commute.

It is easily verified that the relation R on FX determined by the relations
(i)-(v) is such that R ⊆ ker f̄ . Thus if Θ is the congruence on FX
generated by R, we obtain a unique frame homomorphism
ϕ : FX/Θ −→ A making the second triangle in the diagram commute.
The Vietoris locale V (A) is defined to be the frame FX/Θ.
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If w ∈ FX , then ν(w) ∈ V (A). We will write ν(w) as w , i.e. we will
suppress the quotient map ν. Bearing this in mind, we then see that
ϕ(t(a)) = a and ϕ(m(a)) = a.

Hence:

(a) ϕ : V (A) −→ A is an onto frame homomorphism. Thus, A is a
sublocale of V (A) ( [3]).

(b) t(0) and m(1) are complements of each other in V (A) ([3]).

To see this, note from the relation (iv) above that
t(0) ∧m(1) ≤ m(0 ∧ 1) = m(0) = 0. Thus t(0) ∧m(1) = 0. Also
1 = t(1) = t(0 ∨ 1) ≤ t(0) ∨m(1), hence t(0) ∨m(1) = 1. Of course
m(0) and t(1) are also complements of each other in V (A).

(c) Every element x of V (A) is a join of elements of the type
t(a1) ∧ t(a2) ∧ . . . ∧ t(am) ∧m(b1) ∧m(b2) ∧ . . . ∧m(bn).

Using the fact that t preserves finite meet, and using relation (iv) above
we can show that the basic generators have the form
t(a) ∧m(b1) ∧m(b2) ∧ . . . ∧m(bn) where bi ≤ a for each i ( [3]).
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(d) From (b) above we see that V (A) can be written as the disjoint join of
the two closed sublocales ↑ m(1) and ↑ t(0). Of course these sublocales
are also open, hence they are clopen ( [3]).

(e) If one adjoins the relation

t(0) = 1

to those relations (i)-(v) that define V (A), then one gets the sublocale
V0(A) referred to in ([3]). Note that t(0) = 1⇔ m(1) = 0 since t(0) and
m(1) are complementary. Now the identification of m(1) with 0 in V (A)
determines the closed sublocale ↑ m(1) of V (A). Hence V0(A) =↑ m(1).
It is shown in [3] that V0(A) ∼= 2, where 2 is the terminal object in Loc.
Hence ↑ m(1) is a one-point sublocale of V (A), and therefore m(1) is a
prime element of V (A) (see III,10 [7]).
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(f) If one adjoins the relation

t(0) = 0

to those relations (i)-(v) that define V (A), then one gets what is referred
to in ( [3]) as the sublocale V+(A) of V (A). Hence V+(A) =↑ t(0). The
sublocale V+(A) corresponds to the hyperspace 2X in the setting of
spaces.
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Since V+(A) would be our primary interest of study from now on, it may
be better to change notation and refer to V+(A) as H(A). Thus H(A) is
the Vietoris (or hyperlocale) of all ”non-empty compact subspaces” of A.
The relations (i)-(v) as well as (vi) t(0) = 0, then determine H(A), and we
can represent this diagrammatically as
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X FX FX/Φ = H(A)

A

f
f̄

ν

g

Just as before, g is a frame homomorphism which is onto since
g(m(a)) = a and g(t(a)) = a for all a ∈ A.
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The extra relation t(0) = 0 means that H(A) satisfies some properties not
enjoyed by V (A). We list these useful properties which are of crucial
importance in the sequel.

(a) t(0) = 0⇔ t(a) ≤ m(a) for all a ∈ A.

To see this note that t(a) = t(0 ∨ a) ≤ t(0) ∨m(a) = 0 ∨m(a) = m(a).
For the other direction, if t(a) ≤ m(a) for all a, then t(0) ≤ m(0) = 0.
Hence t(0) = 0.

(b) m(1) = 1.
This follows since, as we saw before, t(0) and m(1) are complementary.
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(b) m(1) = 1.
This follows since, as we saw before, t(0) and m(1) are complementary.
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Proposition

In H(A), the collection

T = {t(a)∧m(b1)∧m(b2)∧. . .∧m(bn)| a = b1∨b2∨. . .∨bn, a ∈ A, bi ∈ A, n ∈ N}

is a basis for H(A).

Proof.

Take a basic generator of H(A), say, t(a) ∧m(b1) ∧m(b2) ∧ . . . ∧m(bn)
with bi ≤ a for all i . Since t(a) ≤ m(a) in H(A), we have

t(a)∧m(b1)∧m(b2)∧. . .∧m(bn) = t(a)∧m(a)∧m(b1)∧m(b2)∧. . .∧m(bn)

with a ∨ b1 ∨ b2 ∨ . . . ∨ bn = a, and the latter is in T .
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The following lemma will be useful in the section on the Vietoris
uniformity.

Lemma

For elements a1, a2, . . . , an, an+1 in A, we have:
t(a1 ∨ . . . ∨ an+1) ∧m(a1) ∧ . . . ∧m(an) ≤ [t(a1 ∨ . . . ∨ an+1) ∧ (m(a1) ∧
m(a2) ∧ . . .m(an+1))] ∨ [t(a1 ∨ . . . ∨ an) ∧ (m(a1) ∧ . . . ∧m(an))].

Proof.

LHS ≤ [t(a1 ∨ . . . ∨ an) ∨m(an+1)] ∧ [m(a1) ∧ . . . ∧m(an)]

= [t(a1 ∨ . . . ∨ an) ∧m(a1) ∧ . . . ∧m(an)] ∨ [m(a1) ∧ . . . ∧m(an+1)]

≤ t(a1 ∨ . . . ∨ an+1) ∧ {[t(a1 ∨ . . . ∨ an) ∧m(a1) ∧ . . . ∧m(an)] ∨ [m(a1) ∧ . . . ∧m(an+1)]}
= [t(a1 ∨ . . . ∨ an) ∧m(a1) ∧ . . . ∧m(an)] ∨ [t(a1 ∨ . . . ∨ an+1) ∧m(a1) ∧ . . . ∧m(an+1)].
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We note that the two terms in square brackets that appear in the last line
in the above proof each have the following property: The join of the
arguments of m is the argument of t. We shall refer to these terms as
terms of type A. The above lemma allows us to make some computations:

t(a1 ∨ a2) ∧m(a1) ≤ [t(a1 ∨ a2) ∧m(a1) ∧m(a2)] ∨ [t(a1) ∧m(a1)].

Thus the lhs of the above expression is less than or equal to the join of
terms of type A.
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Lemma

For elements a1, a2, . . . , an in A, we have that the expression
t(a1 ∨ . . .∨ an)∧m(a1) is less than or equal to the join of terms of type A.
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Let (A, µ) be a uniform locale.

Proposition

If C ∈ µ, then

C̃ = {t(c1 ∨ c2 ∨ . . . ∨ cn) ∧m(c1) ∧ . . . ∧m(cn) | ci ∈ C , n ∈ N}

is a cover of H(A).

Proof.
Since C is a cover of A, we have

1 = t(1) = t(
∨

C ) = t(
∨
{∨F |F ⊆ C is finite }) =

∨
{t(∨F )|F ⊆ C is finite }

the latter following because t preserves directed joins.
Also 1 = m(1) = m(

∨
C ) =

∨
{m(c)|c ∈ C}. Hence

1 =
∨
{t(∨F )|F ⊆ C is finite} ∧

∨
{m(c)|c ∈ C}

=
∨
{t(∨F ) ∧m(c)|F ⊆ C is finite , c ∈ C}.
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Consider a typical element t(∨F ) ∧m(c) in the above join. If the element
c is not already in F , we can let F ′ = F ∪ {c}, and then
t(∨F ) ∧m(c) ≤ t(F ′) ∧m(c). The latter term is, according to Lemma
2.3, less than or equal to the join of terms of type A. Each of these terms
of type A are in C̃ . Hence C̃ is a cover of H(A).
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Proposition

If C ,D ∈ µ with C≤∗D, then C̃≤∗D̃ in H(A).

Proof. Take any t(c1 ∨ . . .∨ cn)∧m(c1)∧ . . .∧m(cn) ∈ C̃ . Now Cci ≤ di
for some di ∈ D, and for all i = 1, 2, . . . , n. We claim that
C̃ (t(c1∨. . .∨cn)∧m(c1) . . .∧m(cn)) ≤ t(d1∨. . .∨dn)∧m(d1)∧. . .∧m(dn):
Take any t(c ′1 ∨ . . . ∨ c ′k) ∧m(c ′1) ∧ . . . ∧m(c ′k) ∈ C̃ such that
t(c ′1∨. . .∨c ′k)∧m(c ′1)∧. . .∧m(c ′k)∧t(c1∨. . .∨cn)∧m(c1)∧. . .∧m(cn) 6= 0.
For each j ∈ {1, 2, . . . , k}, c ′j ∧ ci 6= 0 for some i ∈ {1, 2, . . . ,m},
otherwise there exists a j such that c ′j ∧

∨n
i=1 ci = 0. But then from the

relation(iv) in Section 2 we get t(
∨n

i=1 ci ) ∧m(c ′j ) = 0. This is not
possible. Thus for each j ∈ {1, 2, . . . , k} there exists i(j) ∈ {1, 2, . . . , n}
such that c ′j ∧ ci(j) 6= 0. Thus c ′j ≤ di(j).
Similarly, for each i ∈ {1, 2, . . . , n} there exists j(i) ∈ {1, 2, . . . , k} such
that ci ∧ c ′j(i) 6= 0. Then c ′j(i) ≤ di . Thus every di is above some c ′j(i).

Now since c ′j ≤ di(j) for each j = 1, 2, . . . , n, we have

m(c ′1) ∧m(c ′2) ∧ . . . ∧m(c ′k) ≤ m(di(1)) ∧m(di(2)) ∧ . . . ∧m(di(k)).
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But since every di is above some c ′j(i), we have m(c ′j(i)) ≤ m(di ), and
hence

m(c ′1) ∧m(c ′2) ∧ . . . ∧m(c ′k) ≤ m(di ) for all i .

Thus

m(c ′1) ∧m(c ′2) ∧ . . . ∧m(c ′k) ≤ m(d1) ∧m(d2) ∧ . . . ∧m(dn).

Also each c ′j ≤ di(j) for each j = 1, 2, . . . , k , so c ′1 ∨ . . .∨ c ′k ≤ d1 ∨ . . .∨ dn
and thus t(c ′1 ∨ . . . ∨ c ′k) ≤ t(d1 ∨ . . . ∨ dn). Hence

t(c ′1∨. . .∨c ′k)∧m(c ′1)∧m(c ′2)∧. . .∧m(c ′k) ≤ t(d1∨. . .∨dn)∧m(d1)∧m(d2)∧. . .∧m(dn).

This proves the claim, and shows C̃≤∗D̃.
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Proposition

If C ,D ∈ µ and C ≤ D, then C̃ ≤ D̃.

Proof.

Take any t(c1 ∨ . . . ∨ cn) ∧m(c1) ∧ . . . ∧m(cn) ∈ C̃ with the ci ∈ C . Now
each ci ≤ di for some di ∈ D. Thus c1 ∨ . . . ∨ cn ≤ d1 ∨ . . . ∨ dn, and
hence t(c1 ∨ . . . ∨ cn) ≤ t(d1 ∨ . . . ∨ dn). Also m(ci ) ≤ m(di ) for each i ,
so m(c1) ∧ . . . ∧m(cn) ≤ m(d1) ∧ . . . ∧m(dn). Hence

t(c1∨ . . .∨cn)∧m(c1)∧ . . .∧m(cn) ≤ t(d1∨ . . .∨dn)∧m(d1)∧ . . .∧m(dn)

and the latter element belongs to D̃.
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Corollary

If C ,D ∈ µ, then C̃ ∧ D ≤ C̃ ∧ D̃.

Definition

We say that x / y in H(A) if there exists C ∈ µ such that C̃ x ≤ y .
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Proposition

If a / b in A, then t(a) / t(b) in H(A).

Proof.

If a / b, then there exists C ∈ µ such that Ca ≤ b. We claim that
C̃ t(a) ≤ t(b): Suppose that t(c1 ∨ . . . ∨ cn) ∧m(c1) ∧ . . . ∧m(cn) ∈ C̃ ,
and t(c1 ∨ . . . ∨ cn) ∧m(c1) ∧ . . . ∧m(cn) ∧ t(a) 6= 0. Now for every i we
have ci ∧ a 6= 0, for otherwise m(ci ) ∧ t(a) = 0 for some i , and this is not
possible. Thus ci ≤ b for every i , and this implies t(c1 ∨ . . . ∨ cn) ≤ t(b).
Hence t(c1 ∨ . . . ∨ cn) ∧m(c1) ∧ . . . ∧m(cn) ≤ t(b), thus proving the
claim. Therefore t(a) / t(b).
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Proposition

If a / b in A, then m(a) /m(b) in H(A).

Proof.

If a / b, then there exists C ∈ µ such that Ca ≤ b. We claim that
C̃m(a) ≤ m(b): Suppose that t(c1 ∨ . . . ∨ cn) ∧m(c1) ∧ . . . ∧m(cn) ∈ C̃ ,
and t(c1 ∨ . . . ∨ cn) ∧m(c1) ∧ . . . ∧m(cn) ∧m(a) 6= 0. Now there must
exist i such that ci ∧ a 6= 0. If not, then

∨n
i=1 ci ∧ a = 0. But this implies

t(
∨n

i=1 ci ) ∧m(a) = 0, which is not possible. Thus ci ≤ b. Hence
m(ci ) ≤ m(b), and so
t(c1 ∨ . . . ∨ cn) ∧m(c1) ∧ . . . ∧m(cn) ≤ m(ci ) ≤ m(b). This proves the
claim. Therefore m(a) /m(b).
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Proposition

For x , y , z ∈ H(A), the relation / satisfies:
(i) x , y / z =⇒ x ∨ y / z.
(ii) z / x , y =⇒ z / x ∧ y.

Proof.

(i) If x , y / z , then we can find C ,D ∈ µ such that C̃ x ≤ z and D̃y ≤ z .
Put E = C ∧ D ∈ µ. Then E ≤ C and E ≤ D, so by Proposition 3.3,
Ẽ ≤ C̃ and Ẽ ≤ D̃. Thus Ẽ x ≤ z and Ẽ y ≤ z . This implies Ẽ (x ∨ y) ≤ z ,
so x ∨ y / z .
(ii) If z / x , y , then then we can find C ,D ∈ µ such that C̃ z ≤ x and
D̃z ≤ y . Put E = C ∧ D ∈ µ. Then as in (i) above we can get Ẽ z ≤ x
and Ẽ z ≤ y . This implies Ẽ z ≤ x ∧ y , so z / x ∧ y .
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Proposition

If a / a′, and bi / b
′
i for i = 1, 2, . . . , n in A, then

t(a) ∧m(b1) ∧ . . . ∧m(bn) / t(a′) ∧m(b′1) ∧ . . . ∧m(b′n) in H(A).

Proof.

This follows from the last three propositions.
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Proposition

The relation / is an admissible relation on H(A), i.e. for each x ∈ H(A),
x =

∨
y(y / x).

Proof.
Take any basic generator t(a) ∧m(b1) ∧ . . . ∧m(bn) of H(A). Now
a =

∨
a′(a′ / a), and for each i , bi =

∨
b′i (b

′
i / bi ). Since the collection

{a′ ∈ A|a′ / a} is updirected, we have t(a) =
∨
t(a′)(a′ / a). Also for each

i we have m(bi ) =
∨
m(b′i )(b′i / bi ). Thus

t(a) ∧m(b1) ∧ . . . ∧m(bn) =
∨

t(a′)(a′ / a) ∧
∨

m(b′1)(b′1 / b1) ∧ . . . ∧
∨

m(b′n)(b′n / bn)

=
∨
{t(a′) ∧m(b′1) ∧ . . . ∧m(b′n)|a′ / a, b′1 / b1, . . . , b

′
n / bn}.

From the previous proposition

t(a′) ∧m(b′1) ∧ . . . ∧m(b′n) / t(a) ∧m(b1) ∧ . . . ∧m(bn).

From this we conclude that / is an admissible relation.
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From the above sequence of propositions we obtain:

Theorem

Let (A, µ) be a uniform locale, and let H(A) be the Vietoris locale of A.
The collection {C̃ |C ∈ µ} forms a basis for a uniformity µ̃ on H(A).

We will refer to (H(A), µ̃) as the Vietoris uniform locale associated with
the uniform locale (A, µ), and to the uniformity on H(A) as the Vietoris
uniformity.
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Proposition

The map g : H(A) −→ A is uniform and surjective.

Proof.

Take C̃ = {t(c1 ∨ c2 ∨ ...∨ cn)∧m(c1)∧m(c2)∧ ...∧m(cn)|ci ∈ C , n ∈ N}
any basic uniform cover of H(A). Then

g(C̃ ) = {g(t(c1 ∨ c2 ∨ ... ∨ cn) ∧m(c1) ∧m(c2) ∧ ... ∧m(cn))|ci ∈ C , n ∈ N}
= {c1 ∧ c2 ∧ ... ∧ cn|ci ∈ C , n ∈ N}.

Now C ≤ g(C̃ ), so g(C̃ ) ∈ µ and hence g is uniform. The map g is onto
as we saw earlier, and for any C ∈ µ we have g(C̃ ) ≤ C , so g is also
surjective.
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The End
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