Sobriety and congruence biframes

Graham Manuell graham@manuell.me University of Edinburgh

Workshop on Algebra, Logic and Topology September 2018

- Sober spaces are the only topological spaces that can be faithfully represented by frames.
- But strictly zero-dimensional biframes can represent all T₀ spaces.
- So in that setting sobriety is a nontrivial property.
- A T₀ space X is sober iff these equivalent conditions hold:
 - Every irreducible closed set is the closure of a discrete subspace.
 - X is universally Skula-closed.
 - X is bicomplete in the well-monotone quasi-uniformity.¹
- We will see that congruence biframes have analogous characterisations amongst strictly zero-dimensional biframes.

¹Künzi and Ferrario, 1991

- Sober spaces are the only topological spaces that can be faithfully represented by frames.
- But strictly zero-dimensional biframes can represent all T₀ spaces.
- So in that setting sobriety is a nontrivial property.
- A T_0 space X is sober iff these equivalent conditions hold:
 - Every irreducible closed set is the closure of a discrete subspace.
 - X is universally Skula-closed.
 - X is bicomplete in the well-monotone quasi-uniformity.¹
- We will see that congruence biframes have analogous characterisations amongst strictly zero-dimensional biframes.

¹Künzi and Ferrario, 1991

- Sober spaces are the only topological spaces that can be faithfully represented by frames.
- But strictly zero-dimensional biframes can represent all T₀ spaces.
- So in that setting sobriety is a nontrivial property.
- A T_0 space X is sober iff these equivalent conditions hold:
 - Every irreducible closed set is the closure of a discrete subspace.
 - X is universally Skula-closed.
 - X is bicomplete in the well-monotone quasi-uniformity.¹
- We will see that congruence biframes have analogous characterisations amongst strictly zero-dimensional biframes.

¹Künzi and Ferrario, 1991

- Sober spaces are the only topological spaces that can be faithfully represented by frames.
- But strictly zero-dimensional biframes can represent all T₀ spaces.
- So in that setting sobriety is a nontrivial property.
- A T_0 space X is sober iff these equivalent conditions hold:
 - Every irreducible closed set is the closure of a discrete subspace.
 - X is universally Skula-closed.
 - X is bicomplete in the well-monotone quasi-uniformity.¹
- We will see that congruence biframes have analogous characterisations amongst strictly zero-dimensional biframes.

¹Künzi and Ferrario, 1991

- Sober spaces are the only topological spaces that can be faithfully represented by frames.
- But strictly zero-dimensional biframes can represent all T₀ spaces.
- So in that setting sobriety is a nontrivial property.
- A T_0 space X is sober iff these equivalent conditions hold:
 - Every irreducible closed set is the closure of a discrete subspace.
 - X is universally Skula-closed.
 - X is bicomplete in the well-monotone quasi-uniformity.¹
- We will see that congruence biframes have analogous characterisations amongst strictly zero-dimensional biframes.

¹Künzi and Ferrario, 1991

- The quotients of a frame *L* can be represented by their kernel equivalence relations, which are called congruences. This correspondence is *order-reversing*.
- That lattice $\mathbb{C}L$ of all congruences on L is itself a frame.
- A congruence ∇_a which induces a closed quotient is called a closed congruence. These form a subframe of ℂL isomorphic to L.
- Each closed congruence has a complement in CL, which is called an open congruence.
- Together the closed and open congruences generate $\mathbb{C}L$.

- The quotients of a frame *L* can be represented by their kernel equivalence relations, which are called congruences. This correspondence is *order-reversing*.
- That lattice $\mathbb{C}L$ of all congruences on L is itself a frame.
- A congruence ∇_a which induces a closed quotient is called a closed congruence. These form a subframe of ℂL isomorphic to L.
- Each closed congruence has a complement in CL, which is called an open congruence.
- Together the closed and open congruences generate $\mathbb{C}L.$

Strictly zero-dimensional biframes

- A biframe L is a triple (L₀, L₁, L₂) where L₀ is a frame and L₁ and L₂ are subframes of L₀ which together generate L₀.
- \mathcal{L}_1 , \mathcal{L}_2 and \mathcal{L}_0 are called the first, second and total parts of \mathcal{L} .
- A biframe homomorphism f: L → M is a frame homomorphism
 f₀: L₀ → M₀ which restricts to maps f_i: L_i → M_i.
- The congruence frame has a biframe structure (CL, ∇L, ΔL), where ∇L is the subframe of closed congruences and ΔL is a subframe generated by the open congruences.
- The congruence biframe satisfies the following conditions.
 - 1) Every element of ∇L has a complement which lies in ΔL .
 - 2) ΔL is generated by these complements.

We call such a biframe strictly zero-dimensional.

Strictly zero-dimensional biframes

- A biframe L is a triple (L₀, L₁, L₂) where L₀ is a frame and L₁ and L₂ are subframes of L₀ which together generate L₀.
- \mathcal{L}_1 , \mathcal{L}_2 and \mathcal{L}_0 are called the first, second and total parts of \mathcal{L} .
- A biframe homomorphism f: L → M is a frame homomorphism
 f₀: L₀ → M₀ which restricts to maps f_i: L_i → M_i.
- The congruence frame has a biframe structure (CL, ∇L, ΔL), where ∇L is the subframe of closed congruences and ΔL is a subframe generated by the open congruences.
- The congruence biframe satisfies the following conditions.
 - 1) Every element of ∇L has a complement which lies in ΔL .
 - 2) ΔL is generated by these complements.

We call such a biframe strictly zero-dimensional.

- We can get other examples of strictly zero-dimensional biframes from topological spaces.
- Let (X, τ) be a T₀ space. Let v be the topology generated by taking the closed sets as open. The Skula topology σ is the join of τ and v. We call (σ, τ, v) the Skula biframe of (X, τ).
- Skula biframes are the *spatial* strictly zero-dimensional biframes.
- We obtain a fully faithful functor Sk: $\operatorname{Top}_0^{\operatorname{op}} \to \operatorname{Str0DBiFrm}$, which is right adjoint to the functor Σ_1 : $\operatorname{Str0DBiFrm} \to \operatorname{Top}_0^{\operatorname{op}}$ that sends \mathcal{L} to the set of points of \mathcal{L}_0 equipped with the topology of \mathcal{L}_1 .

- We can get other examples of strictly zero-dimensional biframes from topological spaces.
- Let (X, τ) be a T₀ space. Let v be the topology generated by taking the closed sets as open. The Skula topology σ is the join of τ and v. We call (σ, τ, v) the Skula biframe of (X, τ).
- Skula biframes are the *spatial* strictly zero-dimensional biframes.
- We obtain a fully faithful functor Sk: $\operatorname{Top}_0^{\operatorname{op}} \to \operatorname{Str0DBiFrm}$, which is right adjoint to the functor Σ_1 : $\operatorname{Str0DBiFrm} \to \operatorname{Top}_0^{\operatorname{op}}$ that sends \mathcal{L} to the set of points of \mathcal{L}_0 equipped with the topology of \mathcal{L}_1 .

The universal property of congruence biframes

- There is an obvious forgetful functor $\mathfrak{F}\colon Str0DBiFrm\to Frm$ which takes first parts.
- The congruence biframe gives a functor that is left adjoint to $\mathfrak{F}.$

 Note that C is fully faithful. The counit χ_M: C𝔅M → M gives the congruential coreflection of M.

The universal property of congruence biframes

- There is an obvious forgetful functor $\mathfrak{F}: Str0DBiFrm \to Frm$ which takes first parts.
- The congruence biframe gives a functor that is left adjoint to $\mathfrak{F}.$

 Note that C is fully faithful. The counit χ_M: C𝔅M → M gives the congruential coreflection of M.

The congruential coreflection as an analogue of sobrification

 Σ₁(C^{*}₃)Sk is the sobrification functor and so sobrification appears as the 'spatial shadow' of the congruential coreflection.

- Here the functors Sk and Σ_1 are used to transport spaces into the setting of strictly zero-dimensional biframes and back.
- Note that $\Sigma_1 \mathrm{Sk}$ is naturally isomorphic to the identity functor.

- A biframe map *f* between strictly zero-dimensional biframes is surjective iff *f*₁ is surjective and dense iff *f*₁ is injective.
- So χ_M: CM₁ → M is a dense surjection and every strictly zerodimensional biframe is a dense quotient of a congruence biframe.

Lemma

Congruence biframes are precisely the universally closed strictly zero-dimensional biframes.

Proof.

If \mathcal{M} is universally closed, then $\chi_{\mathcal{M}} \colon \mathbb{C}\mathcal{M}_1 \to \mathcal{M}$ is an isomorphism. Conversely, if $f \colon \mathcal{M} \to \mathbb{C}L$ is a dense surjection, then $\mathfrak{F}f$ is an iso. Hence, $f\chi_{\mathcal{M}} = \mathbb{C}\mathfrak{F}f$ is also an iso. But then f is a split bimorphism and therefore an isomorphism.

- A biframe map *f* between strictly zero-dimensional biframes is surjective iff *f*₁ is surjective and dense iff *f*₁ is injective.
- So χ_M: CM₁ → M is a dense surjection and every strictly zerodimensional biframe is a dense quotient of a congruence biframe.

Lemma

Congruence biframes are precisely the universally closed strictly zero-dimensional biframes.

Proof.

If \mathcal{M} is universally closed, then $\chi_{\mathcal{M}} \colon \mathbb{C}\mathcal{M}_1 \to \mathcal{M}$ is an isomorphism. Conversely, if $f \colon \mathcal{M} \to \mathbb{C}L$ is a dense surjection, then $\mathfrak{F}f$ is an iso. Hence, $f\chi_{\mathcal{M}} = \mathbb{C}\mathfrak{F}f$ is also an iso. But then f is a split bimorphism and therefore an isomorphism.

- A biframe map *f* between strictly zero-dimensional biframes is surjective iff *f*₁ is surjective and dense iff *f*₁ is injective.
- So χ_M: CM₁ → M is a dense surjection and every strictly zerodimensional biframe is a dense quotient of a congruence biframe.

Lemma

Congruence biframes are precisely the universally closed strictly zero-dimensional biframes.

Proof.

If \mathcal{M} is universally closed, then $\chi_{\mathcal{M}} \colon \mathbb{C}\mathcal{M}_1 \to \mathcal{M}$ is an isomorphism. Conversely, if $f \colon \mathcal{M} \to \mathbb{C}L$ is a dense surjection, then $\mathfrak{F}f$ is an iso. Hence, $f\chi_{\mathcal{M}} = \mathbb{C}\mathfrak{F}f$ is also an iso. But then f is a split bimorphism and therefore an isomorphism.

- A biframe map *f* between strictly zero-dimensional biframes is surjective iff *f*₁ is surjective and dense iff *f*₁ is injective.
- So χ_M: CM₁ → M is a dense surjection and every strictly zerodimensional biframe is a dense quotient of a congruence biframe.

Lemma

Congruence biframes are precisely the universally closed strictly zero-dimensional biframes.

Proof.

If \mathcal{M} is universally closed, then $\chi_{\mathcal{M}} \colon \mathbb{C}\mathcal{M}_1 \to \mathcal{M}$ is an isomorphism. Conversely, if $f \colon \mathcal{M} \to \mathbb{C}L$ is a dense surjection, then $\mathfrak{F}f$ is an iso. Hence, $f\chi_{\mathcal{M}} = \mathbb{C}\mathfrak{F}f$ is also an iso. But then f is a split bimorphism and therefore an isomorphism.

- A biframe map *f* between strictly zero-dimensional biframes is surjective iff *f*₁ is surjective and dense iff *f*₁ is injective.
- So χ_M: CM₁ → M is a dense surjection and every strictly zerodimensional biframe is a dense quotient of a congruence biframe.

Lemma

Congruence biframes are precisely the universally closed strictly zero-dimensional biframes.

Proof.

If \mathcal{M} is universally closed, then $\chi_{\mathcal{M}} \colon \mathbb{C}\mathcal{M}_1 \to \mathcal{M}$ is an isomorphism. Conversely, if $f \colon \mathcal{M} \to \mathbb{C}L$ is a dense surjection, then $\mathfrak{F}f$ is an iso. Hence, $f\chi_{\mathcal{M}} = \mathbb{C}\mathfrak{F}f$ is also an iso. But then f is a split bimorphism and therefore an isomorphism.

- A biframe map *f* between strictly zero-dimensional biframes is surjective iff *f*₁ is surjective and dense iff *f*₁ is injective.
- So χ_M: CM₁ → M is a dense surjection and every strictly zerodimensional biframe is a dense quotient of a congruence biframe.

Lemma

Congruence biframes are precisely the universally closed strictly zero-dimensional biframes.

Proof.

If \mathcal{M} is universally closed, then $\chi_{\mathcal{M}} \colon \mathbb{C}\mathcal{M}_1 \to \mathcal{M}$ is an isomorphism. Conversely, if $f \colon \mathcal{M} \to \mathbb{C}L$ is a dense surjection, then $\mathfrak{F}f$ is an iso. Hence, $f\chi_{\mathcal{M}} = \mathbb{C}\mathfrak{F}f$ is also an iso. But then f is a split bimorphism and therefore an isomorphism.

Permissible quotients

Let *L* be a strictly zero-dimensional biframe. Since the right adjoint *χ*_{*} of the congruential coreflection *χ_L* is injective, we can view elements of *L* as certain congruences on *L*₁.

Proposition

For any $a \in \mathcal{L}_0$, we have $\mathfrak{F}(\mathcal{L}/\nabla_a) \cong \mathcal{L}_1/\chi_*(a)$.

- So the elements of L₀ can be thought of as the 'permissible' quotients of L₁.
- The congruence biframe permits taking *all* quotients.
- The Skula biframe only permits *spatial* quotients these correspond to the Skula-closed subspaces.

Permissible quotients

Let *L* be a strictly zero-dimensional biframe. Since the right adjoint *χ*_{*} of the congruential coreflection *χ_L* is injective, we can view elements of *L* as certain congruences on *L*₁.

Proposition

For any $a \in \mathcal{L}_0$, we have $\mathfrak{F}(\mathcal{L}/\nabla_a) \cong \mathcal{L}_1/\chi_*(a)$.

- So the elements of \mathcal{L}_0 can be thought of as the 'permissible' quotients of \mathcal{L}_1 .
- The congruence biframe permits taking *all* quotients.
- The Skula biframe only permits *spatial* quotients these correspond to the Skula-closed subspaces.

Permissible quotients

Let *L* be a strictly zero-dimensional biframe. Since the right adjoint *χ*_{*} of the congruential coreflection *χ_L* is injective, we can view elements of *L* as certain congruences on *L*₁.

Proposition

For any $a \in \mathcal{L}_0$, we have $\mathfrak{F}(\mathcal{L}/\nabla_a) \cong \mathcal{L}_1/\chi_*(a)$.

- So the elements of L₀ can be thought of as the 'permissible' quotients of L₁.
- The congruence biframe permits taking *all* quotients.
- The Skula biframe only permits *spatial* quotients these correspond to the Skula-closed subspaces.

- Let *M* be a strictly zero-dimensional biframe. The closure of an element a ∈ *M*₀ is the largest element cℓ(a) of *M*₁ lying below a.
- (Recall the order in $\mathbb{C}L$ is the reverse of the lattice of quotients.)
- Due to the existence of smallest dense sublocales, there is always a largest element of $\mathbb{C}L$ with a given closure.
- Such an element might not exist in a general strictly zero-dimensional biframe. When it does, we call this element clear and its closure clarifiable.

- Let *M* be a strictly zero-dimensional biframe. The closure of an element a ∈ *M*₀ is the largest element cℓ(a) of *M*₁ lying below a.
- (Recall the order in $\mathbb{C}L$ is the reverse of the lattice of quotients.)
- Due to the existence of smallest dense sublocales, there is always a largest element of $\mathbb{C}L$ with a given closure.
- Such an element might not exist in a general strictly zero-dimensional biframe. When it does, we call this element clear and its closure clarifiable.

Lemma

Let \mathcal{L} be strictly zero-dimensional and $a \in \mathcal{L}_0$. Then a is clear iff $\chi_*(a)$ is a clear congruence iff the first part of \mathcal{L}/∇_a is Boolean.

Corollary

In a Skula biframe $\operatorname{Sk} X$, an element $U \in (\operatorname{Sk} X)_1$ is clarifiable iff the closed subspace U^c is the closure of a discrete subspace. In particular, every prime element of $(\operatorname{Sk} X)_1$ is clarifiable iff X is sober.

Theorem

A strictly zero-dimensional biframe \mathcal{L} is a congruence biframe iff all its closed elements are clarifiable.

Lemma

Let \mathcal{L} be strictly zero-dimensional and $a \in \mathcal{L}_0$. Then a is clear iff $\chi_*(a)$ is a clear congruence iff the first part of \mathcal{L}/∇_a is Boolean.

Corollary

In a Skula biframe $\operatorname{Sk} X$, an element $U \in (\operatorname{Sk} X)_1$ is clarifiable iff the closed subspace U^c is the closure of a discrete subspace. In particular, every prime element of $(\operatorname{Sk} X)_1$ is clarifiable iff X is sober.

Theorem

A strictly zero-dimensional biframe $\mathcal L$ is a congruence biframe iff all its closed elements are clarifiable.

Lemma

Let \mathcal{L} be strictly zero-dimensional and $a \in \mathcal{L}_0$. Then a is clear iff $\chi_*(a)$ is a clear congruence iff the first part of \mathcal{L}/∇_a is Boolean.

Corollary

In a Skula biframe $\operatorname{Sk} X$, an element $U \in (\operatorname{Sk} X)_1$ is clarifiable iff the closed subspace U^c is the closure of a discrete subspace. In particular, every prime element of $(\operatorname{Sk} X)_1$ is clarifiable iff X is sober.

Theorem

A strictly zero-dimensional biframe \mathcal{L} is a congruence biframe iff all its closed elements are clarifiable.

- A paircover U on a biframe L is a downset on L₁ × L₂ that satisfies V_{(x,y)∈U} x ∧ y = 1.
- A quasi-uniform biframe (L, U) is a biframe L equipped with a filter U of paircovers satisfying certain axioms.
- A quasi-uniform biframe is bicomplete if whenever it is a quasi-uniform quotient of another quasi-uniform biframe, the quotient is a closed quotient.
- Every quasi-uniform biframe has a unique bicompletion.

- A paircover U on a biframe L is a downset on L₁ × L₂ that satisfies V_{(x,y)∈U} x ∧ y = 1.
- A quasi-uniform biframe (L, U) is a biframe L equipped with a filter U of paircovers satisfying certain axioms.
- A quasi-uniform biframe is bicomplete if whenever it is a quasi-uniform quotient of another quasi-uniform biframe, the quotient is a closed quotient.
- Every quasi-uniform biframe has a unique bicompletion.

• The well-monotone quasi-uniformity on a strictly zero-dimensional biframe \mathcal{L} is generated by paircovers of the form

$$\mathcal{C}_{\mathcal{A}} = igcap_{a \in \mathcal{A}} \left({\downarrow}(a,1) \cup {\downarrow}(1,a^{\mathsf{c}})
ight)$$

where A is a *well-ordered cover* of \mathcal{L}_1 .

• Then $C_A = \bigcup_{b \in A} \downarrow (b, (b^-)^c)$, where $b^- = \bigvee \{a \in A \mid a < b\}$.

Theorem

A strictly zero-dimensional biframe \mathcal{L} is bicomplete in the well-monotone quasi-uniformity iff it is a congruence biframe. Furthermore, the underlying biframe of the bicompletion with respect to the well-monotone quasi-uniformity is the congruential coreflection.

Corollary (Plewe) Congruence frames are ultraparacompact — i.e. every open cover admits a refinement into a partition.

Theorem

A strictly zero-dimensional biframe \mathcal{L} is bicomplete in the well-monotone quasi-uniformity iff it is a congruence biframe. Furthermore, the underlying biframe of the bicompletion with respect to the well-monotone quasi-uniformity is the congruential coreflection.

Corollary (Plewe)

Congruence frames are ultraparacompact — *i.e. every open cover admits a refinement into a partition.*

T_0 spaces \simeq	Skula biframes	Strictly 0d biframes
Sober spaces	Sober Skula biframes	Congruence biframes
	Prime closed elements	All closed elements
Bicomplete in the		Bicomplete in the
	the well-monotone	
$\mathrm{sob}\cong \Sigma_1(\mathbb{C}\mathfrak{F})\mathrm{Sk}$	$\mathrm{Sk}\Sigma\mathfrak{F}\cong(\mathrm{Sk}\Sigma_1)(\mathbb{C}\mathfrak{F})$	

T_0 spaces \simeq	Skula biframes	Strictly 0d biframes
Sober spaces	Sober Skula biframes	Congruence biframes
Irreducible closed	Prime closed elements	All closed elements
sets are closures of	are clarifiable	are clarifiable
discrete subspaces		
Universally	Universally closed	Universally closed
Skula-closed		
Bicomplete in the	Cauchy bicomplete in	Bicomplete in the
well-monotone	the well-monotone	well-monotone
quasi-uniformity	quasi-uniformity	quasi-uniformity
$\mathrm{sob}\cong \Sigma_1(\mathbb{C}\mathfrak{F})\mathrm{Sk}$	$\mathrm{Sk}\Sigma\mathfrak{F}\cong(\mathrm{Sk}\Sigma_1)(\mathbb{C}\mathfrak{F})$	$\mathbb{C}\mathfrak{F}$