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Overview

• Sober spaces are the only topological spaces that can be faithfully

represented by frames.

• But strictly zero-dimensional biframes can represent all T0 spaces.

• So in that setting sobriety is a nontrivial property.

• A T0 space X is sober iff these equivalent conditions hold:

• Every irreducible closed set is the closure of a discrete subspace.

• X is universally Skula-closed.

• X is bicomplete in the well-monotone quasi-uniformity.1

• We will see that congruence biframes have analogous

characterisations amongst strictly zero-dimensional biframes.

1Künzi and Ferrario, 1991
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Congruence frames

• The quotients of a frame L can be represented by their kernel

equivalence relations, which are called congruences. This

correspondence is order-reversing.

• That lattice CL of all congruences on L is itself a frame.

• A congruence ∇a which induces a closed quotient is called a

closed congruence. These form a subframe of CL isomorphic to L.

• Each closed congruence has a complement in CL, which is called

an open congruence.

• Together the closed and open congruences generate CL.
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Strictly zero-dimensional biframes

• A biframe L is a triple (L0,L1,L2) where L0 is a frame and L1
and L2 are subframes of L0 which together generate L0.

• L1, L2 and L0 are called the first, second and total parts of L.

• A biframe homomorphism f : L →M is a frame homomorphism

f0 : L0 →M0 which restricts to maps fi : Li →Mi .

• The congruence frame has a biframe structure (CL,∇L,∆L),

where ∇L is the subframe of closed congruences and ∆L is a

subframe generated by the open congruences.

• The congruence biframe satisfies the following conditions.

1) Every element of ∇L has a complement which lies in ∆L.

2) ∆L is generated by these complements.

We call such a biframe strictly zero-dimensional.
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Skula biframes

• We can get other examples of strictly zero-dimensional biframes

from topological spaces.

• Let (X , τ) be a T0 space. Let υ be the topology generated by

taking the closed sets as open. The Skula topology σ is the join

of τ and υ. We call (σ, τ, υ) the Skula biframe of (X , τ).

• Skula biframes are the spatial strictly zero-dimensional biframes.

• We obtain a fully faithful functor Sk : Top0
op → Str0DBiFrm,

which is right adjoint to the functor Σ1 : Str0DBiFrm→ Top0
op

that sends L to the set of points of L0 equipped with the

topology of L1.
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The universal property of congruence biframes

• There is an obvious forgetful functor F : Str0DBiFrm→ Frm

which takes first parts.

• The congruence biframe gives a functor that is left adjoint to F.

FCL FM

L

∼

Ff

f

• Note that C is fully faithful. The counit χM : CFM→M gives

the congruential coreflection of M.
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The congruential coreflection as an analogue of sobrification

• Σ1(CF)Sk is the sobrification functor and so sobrification appears

as the ‘spatial shadow’ of the congruential coreflection.

Str0DBiFrm Str0DBiFrm

Top0
op Top0

op

Sk Σ1

CF

sobop

• Here the functors Sk and Σ1 are used to transport spaces into the

setting of strictly zero-dimensional biframes and back.

• Note that Σ1Sk is naturally isomorphic to the identity functor.
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Dense quotients and universal closedness

• A biframe map f between strictly zero-dimensional biframes is

surjective iff f1 is surjective and dense iff f1 is injective.

• So χM : CM1 →M is a dense surjection and every strictly zero-

dimensional biframe is a dense quotient of a congruence biframe.

Lemma

Congruence biframes are precisely the universally closed strictly

zero-dimensional biframes.

Proof.

If M is universally closed, then χM : CM1 →M is an isomorphism.

Conversely, if f : M� CL is a dense surjection, then Ff is an iso.

Hence, f χM = CFf is also an iso. But then f is a split bimorphism

and therefore an isomorphism.
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Permissible quotients

• Let L be a strictly zero-dimensional biframe. Since the right

adjoint χ∗ of the congruential coreflection χL is injective, we can

view elements of L as certain congruences on L1.

Proposition

For any a ∈ L0, we have F(L/∇a) ∼= L1/χ∗(a).

• So the elements of L0 can be thought of as the ‘permissible’

quotients of L1.

• The congruence biframe permits taking all quotients.

• The Skula biframe only permits spatial quotients — these

correspond to the Skula-closed subspaces.
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Clear elements of strictly zero-dimensional biframes

• Let M be a strictly zero-dimensional biframe. The closure of an

element a ∈M0 is the largest element c`(a) ofM1 lying below a.

• (Recall the order in CL is the reverse of the lattice of quotients.)

• Due to the existence of smallest dense sublocales, there is always

a largest element of CL with a given closure.

• Such an element might not exist in a general strictly

zero-dimensional biframe. When it does, we call this element

clear and its closure clarifiable.
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A characterisation of congruence biframes via clear elements

Lemma

Let L be strictly zero-dimensional and a ∈ L0. Then a is clear iff

χ∗(a) is a clear congruence iff the first part of L/∇a is Boolean.

Corollary

In a Skula biframe SkX , an element U ∈ (SkX )1 is clarifiable iff the

closed subspace Uc is the closure of a discrete subspace. In particular,

every prime element of (SkX )1 is clarifiable iff X is sober.

Theorem

A strictly zero-dimensional biframe L is a congruence biframe iff all its

closed elements are clarifiable.
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Quasi-uniform biframes

• A paircover U on a biframe L is a downset on L1 × L2 that

satisfies
∨

(x ,y)∈U x ∧ y = 1.

• A quasi-uniform biframe (L,U) is a biframe L equipped with a

filter U of paircovers satisfying certain axioms.

• A quasi-uniform biframe is bicomplete if whenever it is a

quasi-uniform quotient of another quasi-uniform biframe, the

quotient is a closed quotient.

• Every quasi-uniform biframe has a unique bicompletion.
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The well-monotone quasi-uniformity

• The well-monotone quasi-uniformity on a strictly zero-dimensional

biframe L is generated by paircovers of the form

CA =
⋂
a∈A

(↓(a, 1) ∪ ↓(1, ac))

where A is a well-ordered cover of L1.

• Then CA =
⋃

b∈A ↓(b, (b−)c), where b− =
∨
{a ∈ A | a < b}.
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Bicompleteness in the well-monotone quasi-uniformity

Theorem

A strictly zero-dimensional biframe L is bicomplete in the

well-monotone quasi-uniformity iff it is a congruence biframe.

Furthermore, the underlying biframe of the bicompletion with respect

to the well-monotone quasi-uniformity is the congruential coreflection.

Corollary (Plewe)

Congruence frames are ultraparacompact — i.e. every open cover

admits a refinement into a partition.

14



Bicompleteness in the well-monotone quasi-uniformity

Theorem

A strictly zero-dimensional biframe L is bicomplete in the

well-monotone quasi-uniformity iff it is a congruence biframe.

Furthermore, the underlying biframe of the bicompletion with respect

to the well-monotone quasi-uniformity is the congruential coreflection.

Corollary (Plewe)

Congruence frames are ultraparacompact — i.e. every open cover

admits a refinement into a partition.

14



In summary

T0 spaces ' Skula biframes Strictly 0d biframes

Sober spaces Sober Skula biframes Congruence biframes

Irreducible closed

sets are closures of

discrete subspaces

Prime closed elements

are clarifiable
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Universally

Skula-closed

Universally closed Universally closed

Bicomplete in the

well-monotone

quasi-uniformity

Cauchy bicomplete in

the well-monotone

quasi-uniformity

Bicomplete in the

well-monotone

quasi-uniformity

sob ∼= Σ1(CF)Sk SkΣF ∼= (SkΣ1)(CF) CF
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