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Definition
An approach space (X, d) with distance

§: X x2X 5[0, 00]
is a non-Archimedean approach spaces if

3(x,A) < §(x, A®)ve.
— strong triangular inequality

in App: J(x,A) < 5(X,A(€))+6
— NA-App
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» non-Archimedean limit operator A : X — [0, 0o]X

AZo(U) < Mp(U) V sup inf Ao (j) (¥()))
veuijey

» non-Archimedean tower (7;).cr+

tower of topologies satisfying 7. = \/ T, (CC)
y>€

» NEW: non-Archimedean gauge

Gauge has basis consisting of quasi-ultrametrics



— How to present NA-App as (T, V)-Cat for suitable monad T
and quantale V




INSPIRATION

Ultrametric
d: X x X — [0, 00] satisfying strong triangular inequality

d(x,z) < d(x,y)vd(y,z)

— gMet"
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(X, a) with a: X—— X a P, -relation satisfying

transitivity a(x, z) < a(x,y)+a(y,z) Vx,y,ze X
reflexivity a(x,x) =0 Vx € X.
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gMet" = (1,P, )-Cat
(X, a) with a: X—— X a Py-relation satisfying
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M.M. Clementino & D. Hofmann, Topological features of lax
algebras, Appl. Categ. Structures 11: 267-286, 2003.

App = ( ,P )-Cat

(X, a) with a: fX—— X a P, -relation satisfying

transitivity a(mx(X),U) < B(X,U)+a(ld, x)
VX € BBX,VU € BX,
Vx € X
reflexivity a(x,x) =0 Vx € X.

a:BX—= X < X:BX = [0,00]X limit operator (Lowen).



... TO NON-ARCHIMEDEAN APPROACH SPACES

(X, a) with a: BX—— X a Py-relation satisfying

transitivity a(mx(X),U) < B(X,U)Va(ld, x)
VX € BAX,YU € BX,
Vx e X
reflexivity a(x,x) =0 Vx € X.

a:BX—— X < X: X — [0,00]X non-Archimedean limit operator
(Brock & Kent)

NA-App = (,Py)-Cat



App = ( , P, )-Cat

r

NA-App = (,Py)-Cat ™

(GRS

Top = ( ,2)-Cat gMet? = P.-Cat
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TOPOLOGICAL PROPERTIES IN NA-App

(X7 (E)E€R+)

> ( aPV)'p
— definitions for (T, V)-p as introduced in Monoidal
Topology,

» X strongly has p
— (X, 7T¢:) has p, Ve > 0

» X almost strongly has p
— (X, 7T¢:) has p, Ve > 0

» X has p at level 0
— TX = (X, To) has p.
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HAUSDORFF SEPARATION

( ,Py)-Hausdorff

MU(x) < o0 }
M(y) < oo

strongly Hausdorff
(X, 7z) Hausdorff: Ve € R"

U— xin (X,7z) L
U—yin (X, T2) x=Y

=>X=y

MA(x) <e }
N(y)<e
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almost strongly Hausdorff
(X, 7z) Hausdorff, Ve € R[')F

M(x) <e
M(y)<e }=>x:y
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almost strongly Hausdorff
(X, 7z) Hausdorff, Ve € R(')F

M(x) <e
AU(y)<e }éx:y

Hausdorff at level 0
(X, 7o) Hausdorff
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Conclusion

( ,Pv)-Hausdorff < (almost) strongly Hausdorff
4

Hausdorff at level 0

Counterexample
(X7 (E)EGR*) with

T _ P(X) 0<e<l,
{0, X} 1<e..
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(X,7T:) compact: Ve € RT

YU e pXTAxe XU — xin(X,T2)

YU e BXIxe X NU(x)<e
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(X, 7Tz) compact: Ve € R§

YU e XAxe X NU(x)<e
compact at level 0
(X, 7o) compact

YU e fXIxe X : NU(x)=0
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Conclusion

( ,Py)-compact < almost strongly compact

T

compact at level 0 < strongly compact

Counterexample
(10, 00[, (72 )eer+) with

To = right order topology

10,00 x<e¢;

€>O:VE(X):{ Vo(x) €< x.
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COMPACT HAUSDORFF

Theorem
( ,Py)-compact + ( ,Py)-Hausdorff = topological

Bewijs.
( ,Pv)-compact + ( ,Py)-Hausdorff
= almost strongly compact Hausdorff
By (CC)
Ty CTese <7
we get
T, =T, Ve,v>0

and To = \/ oo 7e-

= all the levels of the tower coincide! O
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COMPACTIFICATION

» ( ,Py)-compact + ( ,Py)-Hausdorff = topological

» compact Hausdorff at level 0
> NA-App,
» epireflective + closed under construction of finer structures,
hence quotient relfective
Monotopological
f: X — Y epiin NA-App, < f(X) is TY-dense
C|Ty(f(X)) =Y
f: X — Y regular mono in NA-App,
& extremal mono in NA-App,
& clyy-closed embedding
7y (F(X)) = £(X)
Cowellpowered
NA-App,, is epireflective subcategory of NA-App,

vy

v

vy
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» Categorical construction of an epireflector

E : NA-App, — NA-App,
with epireflection morphisms
ex : X - KX

for every X € NA-App,

» are the epireflection morphisms ex embeddings?
— in general, this is not the case

Theorem

A Hausdorff non-Archimedean approach space X that can be

embedded in a compact Hausdorff non-Archimedean approach
space Y has a topological coreflection TX that is a Tychonoff
space.
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COMPACTIFICATION

v

Based on Shanin’s compactification of topological spaces
& collection of closed sets of topological space X

(i) 0,Xes
(II) Gl,G2€6:>G1UG266

» F C G isa G-family if it satisfies f.i.p
vanishing if per F =0

maximal

v

v

v
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SHANIN’S COMPACTIFICATION

G closed basis for the topology on X
= construction of compact topological space

o(X,6)=(S,S)

in which X is densely embedded

» S=XUX
with X’ set of all maximal vanishing G-families
» S={5(G) | G € &} with

S(G)=GuU{peX'|Gep}
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COMPACTIFICATION IN NA-App

Theorem

Any non-Archimedean approach space X can be densely embedded
in a compact non-Archimedean approach space (X, S)
constructed from the closed basis & = | .., C: of TX and such
that the topological coreflection TX(X, &) is the Shanin
compactification o(TX, &) of the topological coreflection TX.
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Let o(TX,8) = (S,S) be Shanin’s compacification

{S(G) | G € C.} basis for the topology R on S
Not necessarily (CC)

v

v

v

v

v

Define a tower of topologies

Sa=\ Rs

B>a

v

Z(Xv 6) = (57 (Sa)aEFH)
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>

) (7::‘)66R+)

‘Tower’ of closed sets (C:).cr+

Take & = J,(Ce
by (CC): .~ C: basis for (X, 7o) =
Let o(TX,8) = (S,S) be Shanin’s compacification

{S(G) | G € C.} basis for the topology R on S
Not necessarily (CC)

Define a tower of topologies

Sa=\ Rs

B>a

Z(Xv 6) = (57 (88)66R+)
TX(X,6)=(S,S)
Embedding

Dense
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HAUSDORFF COMPACTIFICATION

To ensure Hausdorff, other conditions need to be fulfilled
1. Hausdorff at level 0
2. Ve>0:VG e€C.,Vx ¢ G:30 <y <e,3H €C, such that
x€Hand HNG =0,
‘regularity’ condition
3. Ve>0:VF,GeC, ,FNG=0:30<vy<¢,3H,KeC,
suchthat FNH=0,GNK=0, HUK = X.
‘normality” condition
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