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NON-ARCHIMDEAN APPROACH SPACES
P. Brock & D. Kent, On convergence approach spaces, Appl.

Categ. Structures 6:117�125, 1998.

De�nition
An approach space (X , δ) with distance

δ : X × 2X → [0,∞]

is a non-Archimedean approach spaces if

δ(x ,A) ≤ δ
(
x ,A(ε)

)
∨ε.

→ strong triangular inequality

in App: δ(x ,A) ≤ δ
(
x ,A(ε)

)
+ε

→ NA-App
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EQUIVALENT DESCRIPTIONS

I non-Archimedean limit operator λ : βX → [0,∞]X

λΣσ(U) ≤ λψ(U) ∨ sup
U∈U

inf
j∈U

λσ(j)
(
ψ(j)

)
I non-Archimedean tower (Tε)ε∈R+

tower of topologies satisfying Tε =
∨
γ>ε

Tγ (CC)

I NEW: non-Archimedean gauge

Gauge has basis consisting of quasi-ultrametrics
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?

→ How to present NA-App as (T,V)-Cat for suitable monad T
and quantale V
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INSPIRATION

Ultrametric
d : X × X → [0,∞] satisfying strong triangular inequality

d(x , z) ≤ d(x , y)∨d(y , z)

→ qMetu
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→ P+ =
(
[0,∞],≤op,+, 0

)
qMet ∼= (1,P+)-Cat

(X , a) with a : X−→7 X a P+-relation satisfying

transitivity a(x , z) ≤ a(x , y)+a(y , z) ∀x , y , z ∈ X

re�exivity a(x , x) = 0 ∀x ∈ X .

→ P∨ =
(
[0,∞],≤op,∨, 0

)
qMetu ∼= (1,P∨)-Cat

(X , a) with a : X−→7 X a P∨-relation satisfying

transitivity a(x , z) ≤ a(x , y)∨a(y , z) ∀x , y , z ∈ X

re�exivity a(x , x) = 0 ∀x ∈ X .
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FROM APPROACH SPACES...
M.M. Clementino & D. Hofmann, Topological features of lax
algebras, Appl. Categ. Structures 11: 267�286, 2003.

App ∼= (�,P+)-Cat

(X , a) with a : βX−→7 X a P+-relation satisfying

transitivity a
(
mX (X),U

)
≤ β(X,U)+a(U , x)

∀X ∈ ββX ,∀U ∈ βX ,
∀x ∈ X

re�exivity a(ẋ , x) = 0 ∀x ∈ X .

a : βX−→7 X ↔ λ : βX → [0,∞]X limit operator (Lowen).
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... TO NON-ARCHIMEDEAN APPROACH SPACES

(X , a) with a : βX−→7 X a P∨-relation satisfying

transitivity a
(
mX (X),U

)
≤ β(X,U)∨a(U , x)

∀X ∈ ββX ,∀U ∈ βX ,
∀x ∈ X

re�exivity a(ẋ , x) = 0 ∀x ∈ X .

a : βX−→7 X ↔ λ : βX → [0,∞]X non-Archimedean limit operator

(Brock & Kent)

NA-App ∼= (�,P∨)-Cat
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App ∼= (�,P+)-Cat

NA-App ∼= (�,P∨)-Cat
?�

r

O

qMet ∼= P+-Cat
R2

c

d

Top ∼= (�, 2)-Cat
, �

r&c

:

qMetu ∼= P∨-Cat
?�

r

O

R2

c

d
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TOPOLOGICAL PROPERTIES IN NA-App
(
X , (Tε)ε∈R+

)

I (�,P∨)-p
→ de�nitions for (T,V)-p as introduced in Monoidal

Topology,

I X strongly has p
→ (X , Tε) has p, ∀ε ≥ 0

I X almost strongly has p
→ (X , Tε) has p, ∀ε > 0

I X has p at level 0

→ TX = (X , T0) has p.
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HAUSDORFF SEPARATION

(�,P∨)-Hausdor�

λU(x) <∞
λU(y) <∞

}
⇒ x = y

strongly Hausdor�

(X , Tε) Hausdor�: ∀ε ∈ R+

U → x in (X , Tε)
U → y in (X , Tε)

}
⇒ x = y

λU(x) ≤ ε
λU(y) ≤ ε

}
⇒ x = y
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almost strongly Hausdor�

(X , Tε) Hausdor�, ∀ε ∈ R+
0

λU(x) ≤ ε
λU(y) ≤ ε

}
⇒ x = y

Hausdor� at level 0
(X , T0) Hausdor�

λU(x) = 0

λU(y) = 0

}
⇒ x = y
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Conclusion

(�,P∨)-Hausdor� ⇔ (almost) strongly Hausdor�

⇓
Hausdor� at level 0

Counterexample(
X , (Tε)ε∈R+

)
with

Tε =

{
P(X ) 0 ≤ ε < 1,
{∅,X} 1 ≤ ε.
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COMPACTNESS

(�,P∨)-compact

inf
x∈X

λU(x) = 0

strongly compact

(X , Tε) compact: ∀ε ∈ R+

∀U ∈ βX ∃x ∈ X : U → x in (X , Tε)

∀U ∈ βX ∃x ∈ X : λU(x) ≤ ε
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almost strongly compact

(X , Tε) compact: ∀ε ∈ R+
0
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Conclusion

(�,P∨)-compact ⇔ almost strongly compact

⇑
compact at level 0 ⇔ strongly compact

Counterexample(
]0,∞[, (Tε)ε∈R+

)
with

T0 = right order topology

ε > 0 : Vε(x) =

{
]0,∞[ x ≤ ε;
V0(x) ε < x .
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COMPACT HAUSDORFF

Theorem
(�,P∨)-compact + (�,P∨)-Hausdor� ⇒ topological

Bew¼s.

(�,P∨)-compact + (�,P∨)-Hausdor�
⇒ almost strongly compact Hausdor�

By (CC)

Tγ ⊆ Tε, ε ≤ γ

we get

Tγ = Tε, ∀ε, γ > 0

and T0 =
∨
ε>0 Tε.

⇒ all the levels of the tower coincide!
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COMPACTIFICATION
I (�,P∨)-compact + (�,P∨)-Hausdor� ⇒ topological

I compact Hausdor� at level 0

I NA-App2
I epire�ective + closed under construction of �ner structures,

hence quotient relfective
I Monotopological
I f : X → Y epi in NA-App

2
⇔ f (X ) is TY -dense

clTY (f (X )) = Y
I f : X → Y regular mono in NA-App

2

⇔ extremal mono in NA-App
2

⇔ clTY -closed embedding
clTY (f (X )) = f (X )

I Cowellpowered
I NA-Appc2 is epire�ective subcategory of NA-App

2
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I Categorical construction of an epire�ector

E : NA-App2 → NA-Appc2

with epire�ection morphisms

eX : X → KX

for every X ∈ NA-App2

I are the epire�ection morphisms eX embeddings?

→ in general, this is not the case

Theorem
A Hausdor� non-Archimedean approach space X that can be

embedded in a compact Hausdor� non-Archimedean approach

space Y has a topological core�ection TX that is a Tychono�

space.
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COMPACTIFICATION

I Based on Shanin's compacti�cation of topological spaces

I S collection of closed sets of topological space X

(i) ∅,X ∈ S
(ii) G1,G2 ∈ S⇒ G1 ∪ G2 ∈ S

I F ⊆ S is a S-family if it satis�es f.i.p

I vanishing if
⋂

F∈F F = ∅
I maximal
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SHANIN’S COMPACTIFICATION

S closed basis for the topology on X
⇒ construction of compact topological space

σ(X ,S) = (S ,S)

in which X is densely embedded

I S = X ∪ X ′

with X ′ set of all maximal vanishing S-families

I S = {S(G ) | G ∈ S} with

S(G ) = G ∪ {p ∈ X ′ | G ∈ p}
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COMPACTIFICATION IN NA-App

Theorem
Any non-Archimedean approach space X can be densely embedded

in a compact non-Archimedean approach space Σ(X ,S)
constructed from the closed basis S =

⋃
ε>0 Cε of TX and such

that the topological core�ection TΣ(X ,S) is the Shanin

compacti�cation σ(TX ,S) of the topological core�ection TX .
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(
X , (Tε)ε∈R+

)
`Tower' of closed sets (Cε)ε∈R+

I Take S =
⋃
ε>0 Cε

I by (CC):
⋃
ε>0 Cε basis for (X , T0) = TX

I Let σ(TX ,S) = (S ,S) be Shanin's compaci�cation

I {S(G ) | G ∈ Cε} basis for the topology Rε on S
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HAUSDORFF COMPACTIFICATION

To ensure Hausdor�, other conditions need to be ful�lled

1. Hausdor� at level 0

2. ∀ε > 0 : ∀G ∈ Cε,∀x /∈ G : ∃0 < γ ≤ ε, ∃H ∈ Cγ such that

x ∈ H and H ∩ G = ∅,
`regularity' condition

3. ∀ε > 0 : ∀F ,G ∈ Cε,F ∩ G = ∅ : ∃0 < γ ≤ ε, ∃H,K ∈ Cγ
such that F ∩ H = ∅, G ∩ K = ∅, H ∪ K = X .

`normality' condition
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