Remarks on unique essential completions

Bernhard Banaschewski *

As usual, a monomorphism h in a category is called *essential* if kh monic, for any map k, implies k monic, and an *essential completion* of an object A is an essential monomorphism $A \to C$ where C is essentially complete, meaning: any essential monomorphism $C \to D$ is an isomorphism. Of particular interest here will be essential completions which are unique (up to isomorphism) and the question when the general existence of such in a given category \mathcal{K} induces the same in suitable subcategories \mathcal{M} of \mathcal{K} . We shall describe specific conditions for \mathcal{K} and \mathcal{M} which will ensure this and then discuss several concrete situations to which they apply, such as various categories of frames and uniform frames and of lattice-ordered rings and groups.

^{*}Joint work with A. W. Hager.