Monadic actions

Gavin J. Seal

A monoid M in a monoidal category (C, \otimes, E) gives rise to a monad whose Eilenberg-Moore category C^M is the category of M-actions and equivariant maps—a fact that is well-known in the case of M-actions in Set. Further examples, provided by the category of R-modules or the category of a quantale action on sup-semilattices, suggest the following general principle:

The category $(C^{\mathbb{T}})^M$ of actions of a monoid M in a monoidal Eilenberg– Moore category $C^{\mathbb{T}}$ is monadic over C.

However, before being able to define actions in $C^{\mathbb{T}}$, we need a tensor \circledast on $C^{\mathbb{T}}$ that encodes the "bilinear" nature of the action morphism $M \circledast X \to X$: this structure emerges in the form of a monoidal monad on (C, \otimes, E) that facilitates the definition of C-morphisms that are "T-algebra homomorphisms in each variable", as originally suggested in [1] and studied in [2].

References

- F.E.J. Linton. Coequalizers in categories of algebras. In Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), pages 75–90. Springer, Berlin, 1969.
- [2] R. Guitart. Tenseurs et machines. Cahiers Topologie Géom. Différentielle, 21(1):5-62, 1980.