Closed morphisms via neighbourhood operators

Ando Razafindrakoto and David Holgate

Department of Mathematical Sciences University of Stellenbosch, South Africa

Coimbra, 9-13 July 2012

э

< □ > < @ >

• Neighbourhoods offer a natural concept of convergence;

 Neighbourhoods provide insight in the study of local properties.

- Neighbourhoods offer a natural concept of convergence;
- Neighbourhoods provide insight in the study of local properties.

- Neighbourhoods were previously introduced with respect to a closure operator (E. Giuli and J. Šlapal - 2006, 2009);
- A general theory of neighbourhood operators was introduced by D. Holgate and J. Šlapal (2011) on a category C equipped with a (*ε*, *M*)-factorisation system:

A neighbourhood operator ν on **C** is a family $(\nu_X)_{X \in \mathbf{C}}$ with $\nu_X : \mathcal{M}/X \to Sub(\mathcal{M}/X)$ and such that:

- Neighbourhoods were previously introduced with respect to a closure operator (E. Giuli and J. Šlapal - 2006, 2009);
- A general theory of neighbourhood operators was introduced by D. Holgate and J. Šlapal (2011) on a category C equipped with a (*ε*, *M*)-factorisation system:

A neighbourhood operator ν on **C** is a family $(\nu_X)_{X \in \mathbf{C}}$ with $\nu_X : \mathcal{M}/X \to Sub(\mathcal{M}/X)$ and such that:

(N1) If $p \in \nu_X(m)$ and $p \leq q$, then $q \in \nu_X(m)$; (N2) If $n \in \nu_X(m)$, then $m \leq n$; (N3) If $m \leq n$ then $\nu_X(n) \subseteq \nu_X(m)$; (N4) If $m \leq n$ then $\nu_X(n) \subseteq \nu_X(m)$; (N4) If $m \leq n$ then $\nu_X(n) \subseteq \nu_X(m)$;

(N1) If $p \in \nu_X(m)$ and $p \leq q$, then $q \in \nu_X(m)$; (N2) If $n \in \nu_X(m)$, then $m \leq n$; (N3) If $m \leq n$ then $\nu_X(n) \subseteq \nu_X(m)$; (N4) If $f : X \to Y$ is in **C** and $k \in \nu_Y(n)$, then $f^{-1}[k] \in \nu_X(f^{-1}[n])$. (N5) If $\mathcal{G} \subseteq \mathcal{M}/X$ and for any $g \in \mathcal{G}$, $m \in \nu_X(g)$, the $m \in \nu_X(\mathcal{G})$

(N1) If
$$p \in \nu_X(m)$$
 and $p \leq q$, then $q \in \nu_X(m)$;

- (N2) If $n \in \nu_X(m)$, then $m \leq n$;
- (N3) If $m \leq n$ then $\nu_X(n) \subseteq \nu_X(m)$;
- (N4) If $f: X \to Y$ is in **C** and $k \in \nu_Y(n)$, then $f^{-1}[k] \in \nu_X(f^{-1}[n])$.
- (N5) If $\mathcal{G} \subseteq \mathcal{M}/X$ and for any $g \in \mathcal{G}$, $m \in \nu_X(g)$, then $m \in \nu_X(\lor \mathcal{G})$.

Motivation Background and setting

・ロン・雪と・雪と・ ヨン・

æ

Notation

For any $f : X \to Y$ in \mathbb{C} , $\mathcal{G} \subseteq \mathcal{M}/X$ and $\mathcal{H} \subseteq \mathcal{M}/Y$, denote: $f[\mathcal{G}] := \uparrow \{f[g] \mid g \in \mathcal{G}\}$

and

$$f^{-1}[\mathcal{H}] := \uparrow \{f^{-1}[h] \mid h \in \mathcal{H}\}$$

Thus

(N4)
$$\simeq f^{-1}[\nu_{Y}(n)] \subseteq \nu_{X}(f^{-1}[n]).$$

Motivation Background and setting

Remark

- (N5) holds in C = Top with the usual neighbourhood system since a union of open sets is open.
 Is it essential?
- Rather consider very basic properties of neighbourhoods and eliminate (N5).

Motivation Background and setting

Remark

- (N5) holds in C = Top with the usual neighbourhood system since a union of open sets is open. Is it essential?
- Rather consider very basic properties of neighbourhoods and eliminate (N5).

Motivation Background and setting

< □ > < 同 > < 三 >

Remark

- (N5) holds in C = Top with the usual neighbourhood system since a union of open sets is open. Is it essential?
- Rather consider very basic properties of neighbourhoods and eliminate (N5).

Motivation Background and setting

Remark

- (N5) holds in C = Top with the usual neighbourhood system since a union of open sets is open. Is it essential?
- Rather consider very basic properties of neighbourhoods and eliminate (N5).

Motivation Background and setting

 $NBH(\mathbf{C}, \mathcal{M})$ denotes the category of neighbourhood operators with natural inclusion and $RNBH(\mathbf{C}, \mathcal{M})$ denotes that of the regular neighbourhood operators.

Proposition

- 1. $RNBH(\mathbf{C}, \mathcal{M})$ is reflective subcategory of $NBH(\mathbf{C}, \mathcal{M})$;
- 2. RNBH(**C**, *M*) is equivalent to the category of the so-called interior operators.

Interior operators were first introduced by S. R. J Vorster (2000).

Definition

(*Castellini, 2011; Ochoa and Luna-Torres, 2010*) An interior operator *i* on **C** is a family $(i_X)_{X \in \mathbf{C}}$ with $i_X : \mathcal{M}/X \to \mathcal{M}/X$ and such that:

- (11) For any $m \in \mathcal{M}/X$, $i_X(m) \leq m$;
- (12) If $m \leq n$, then $i_X(m) \leq i_X(n)$;
- (13) If $f : X \to Y$ is in **C** and $n \in M/Y$, then $f^{-1}[i_X(n)] < i_X(f^{-1}[n])$.

- How do we treat the notion of closedness with respect to a concept which is thought to be natural for openness?
- Compactness and separation have been extensively studied in categories on which were given some notion of closure (cf. M.M. Clementino, E. Giuli and W. Tholen, *A Functional Approach to General Topology*, 2004). The idea of defining these notions by requiring the diagonal map *X* → *X* × *X* and the terminal map *X* → 1 to be closed could be traced back to Penon (1972) and Manes (1974).

- How do we treat the notion of closedness with respect to a concept which is thought to be natural for openness?
- Compactness and separation have been extensively studied in categories on which were given some notion of closure (cf. M.M. Clementino, E. Giuli and W. Tholen, A Functional Approach to General Topology, 2004). The idea of defining these notions by requiring the diagonal map X → X × X and the terminal map X → 1 to be closed could be traced back to Penon (1972) and Manes (1974).

- How do we treat the notion of closedness with respect to a concept which is thought to be natural for openness?
- Compactness and separation have been extensively studied in categories on which were given some notion of closure (cf. M.M. Clementino, E. Giuli and W. Tholen, *A Functional Approach to General Topology*, 2004). The idea of defining these notions by requiring the diagonal map *X* → *X* × *X* and the terminal map *X* → **1** to be closed could be traced back to Penon (1972) and Manes (1974).

A map $f : X \to Y$ is said to be ν -closed, where $\nu \in NBH(\mathbf{C}, \mathcal{M})$, if for any $n \in \mathcal{M}/Y$

$$f^{-1}[\nu_Y(n)] = \nu_X(f^{-1}[n]).$$

f is closed if for any $n \in \mathcal{M}/Y$ and $k \in \nu_X(f^{-1}[n])$, there is $p \in \nu_Y(n)$ such that $f^{-1}[p] \leq k$.

Motivation and Definition Properties

Remarks

Recall that a map f : X → Y is closed with respect to a closure operator c if for any m ∈ M/X, f[c_X(m)] ≅ c_Y(f[m]);

This "symmetry" is present in other notions:

- We say that f is ν -open if $f[\nu_X(m)] = \nu_Y(f[m])$;
- We say that f is ν -initial if $\nu_X(m) = f^{-1}[\nu_Y(f[m])];$
- . . .

Motivation and Definition Properties

▲ロト ▲圖ト ▲ 国ト ▲ 国ト

Remarks

- Recall that a map f : X → Y is closed with respect to a closure operator c if for any m ∈ M/X, f[c_X(m)] ≅ c_Y(f[m]);
 This "symmetry" is present in other notions:
- We say that *f* is ν -open if $f[\nu_X(m)] = \nu_Y(f[m])$;
- We say that f is ν -initial if $\nu_X(m) = f^{-1}[\nu_Y(f[m])];$
- . . .

Motivation and Definition Properties

▲ロト ▲圖ト ▲ 国ト ▲ 国ト

Remarks

- Recall that a map f : X → Y is closed with respect to a closure operator c if for any m ∈ M/X, f[c_X(m)] ≅ c_Y(f[m]); This "symmetry" is present in other notions:
- We say that f is ν -open if $f[\nu_X(m)] = \nu_Y(f[m])$;
- We say that *f* is *ν*-initial if *ν_X(m) = f⁻¹[ν_Y(f[m])]*;
 ...

Motivation and Definition Properties

< □ > < □ > < □ > < □ >

Remarks

- Recall that a map f : X → Y is closed with respect to a closure operator c if for any m ∈ M/X, f[c_X(m)] ≅ c_Y(f[m]);
 This "symmetry" is present in other notions:
- We say that f is ν -open if $f[\nu_X(m)] = \nu_Y(f[m])$;
- We say that *f* is ν -initial if $\nu_X(m) = f^{-1}[\nu_Y(f[m])];$
- . . .

▲ロト ▲圖ト ▲ 国ト ▲ 国ト

Given $\nu \in NBH(\mathbf{C}, \mathcal{M})$, let $\mathcal{F}(\nu) := \{f \mid f \nu - \text{closed} \}$

Proposition

- 1. $\mathcal{F}(\nu)$ contains isomorphisms and is closed under composition;
- 2. If $gf \in \mathcal{F}(\nu)$ and $f \in \mathcal{E}'$, where \mathcal{E}' is the class in \mathcal{E} stable under pullback along morphisms in \mathcal{M} , then $g \in \mathcal{F}(\nu)$.

 $\mathcal{F}(\nu)$ is well-behaved:

Given $\nu \in NBH(\mathbf{C}, \mathcal{M})$, let $\mathcal{F}(\nu) := \{f \mid f \ \nu - \text{closed} \ \}$

Proposition

- 1. $\mathcal{F}(\nu)$ contains isomorphisms and is closed under composition;
- 2. If $gf \in \mathcal{F}(\nu)$ and $f \in \mathcal{E}'$, where \mathcal{E}' is the class in \mathcal{E} stable under pullback along morphisms in \mathcal{M} , then $g \in \mathcal{F}(\nu)$.

 $\mathcal{F}(\nu)$ is well-behaved:

Proposition

- If m : M → X ∈ F(ν) ∩ M, then m is ν-initial and satisfies the property that if m ∧ k = 0_X for any k ∈ M/X, then there is n ∈ ν_X(k) such that m ∧ n = 0_X;
- In the following pullback diagram:

If $f \in \mathcal{F}(\nu)$ and a is ν -initial, then $g \in \mathcal{F}(\nu)$. If $g \in \mathcal{F}(\nu)$ and b is ν -final, then $f \in \mathcal{F}(\nu)$.

Proposition

- If m : M → X ∈ F(v) ∩ M, then m is v-initial and satisfies the property that if m ∧ k = 0_X for any k ∈ M/X, then there is n ∈ v_X(k) such that m ∧ n = 0_X;
- In the following pullback diagram:

$$\begin{array}{c} A \xrightarrow{g} B \\ a \downarrow & \downarrow^{k} \\ X \xrightarrow{f} Y \end{array}$$

If $f \in \mathcal{F}(\nu)$ and a is ν -initial, then $g \in \mathcal{F}(\nu)$. If $g \in \mathcal{F}(\nu)$ and b is ν -final, then $f \in \mathcal{F}(\nu)$.

Motivation and Definition Properties

What makes $\mathcal{F}(\nu)$ special?

An object $X \in \mathbf{C}$ is ν -compact if for any $Y \in \mathbf{C}$, the projection $p_Y : X \times Y \to Y$ belongs to $\mathcal{F}(\nu)$.

In **Top**, this is sometimes called the Tube's Lemma: " A space *X* is compact iff for any space *Y* and $y \in Y$, if O an open set containing $X \times \{y\}$, then there is a neighbourhood N of y, such that $X \times \{y\} \subseteq X \times N \subseteq O$."

An object $X \in \mathbf{C}$ is ν -compact if for any $Y \in \mathbf{C}$, the projection $p_Y : X \times Y \to Y$ belongs to $\mathcal{F}(\nu)$.

In **Top**, this is sometimes called the Tube's Lemma: " A space X is compact iff for any space Y and $y \in Y$, if O an open set containing $X \times \{y\}$, then there is a neighbourhood N of y, such that $X \times \{y\} \subseteq X \times N \subseteq O$."

• A family
$$\mathcal{A} = \{f_i : X \to X_i \mid i \in I\}$$
 is said to be ν -initial if for
any $m \in \mathcal{M}/X$,
 $\nu_X(m) = \cup \{f_i^{-1}[\nu_i(f_i[m])] \mid i \in I\}.$

(If $\mathcal A$ is *c*-initial for a closure operator *c*, what would that mean?)

• A family $\mathcal{A} = \{f_i : X \to X_i \mid i \in I\}$ is said to be ν -initial if for any $m \in \mathcal{M}/X$,

$$\nu_X(m) = \cup \{f_i^{-1}[\nu_i(f_i[m])] \mid i \in I\}.$$

(If A is *c*-initial for a closure operator *c*, what would that mean?)

Theorem

Let $X = \prod_{i} X_i$ and $\nu \in NBH(\mathbf{C}, \mathcal{M})$. Assume that:

- $\{p_{X_i}: X \to X_i \mid i \in I\} \subseteq \mathcal{E}^*$ and is ν -initial;
- Every natural projection {π_j : P → P_j | j ∈ J} is ν-initial for any finite J;

Then if every X_i is ν -compact, then so is X.

(Day-Kelly,1970) A topological space X is exponentiable if and only if for every neighbourhood U of a point $x \in X$ there is a smaller neighbourhood U of x such that every open cover of U admits a finite subcover of V.

Theorem

(E. Colebunders and G. Richter, 2001) The product functor $X \times -$: **Top** \rightarrow **Top** preserves quotients, if X is quasi-locally compact.

(Day-Kelly,1970) A topological space X is exponentiable if and only if for every neighbourhood U of a point $x \in X$ there is a smaller neighbourhood U of x such that every open cover of U admits a finite subcover of V.

Theorem

(E. Colebunders and G. Richter, 2001) The product functor $X \times -: \mathbf{Top} \to \mathbf{Top}$ preserves quotients, if X is quasi-locally compact.

If $V \ll U$ in X and $y \in Y$, then for any open set W containing $U \times \{y\}$, there is an open rectangle $S \times T \subseteq W$ such that $V \times \{y\} \subseteq S \times T$.

Tychonoff-Čzech Theorem A glance at local compactness

Kuratowski-Mrówka type theorem?

Definition

Let $m: V \rightarrow U$ be an embedding in **Top**. We say that V is *relatively compact* with respect to U if for any space X, in the following diagram:

we have $(m \times 1_Y)[p^{-1}[\nu_Y(x)]] = \nu_{U \times Y}(\pi^{-1}[x]).$

ヘロト ヘポト ヘヨト ヘヨト

Tychonoff-Čzech Theorem A glance at local compactness

Happy Birthday!

