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Neighbourhoods were previously introduced with respect
to a closure operator (E. Giuli and J. Šlapal - 2006, 2009);

A general theory of neighbourhood operators was
introduced by D. Holgate and J. Šlapal (2011) on a
category C equipped with a (E ,M)-factorisation system:
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A neighbourhood operator ν on C is a family (νX )X∈C with
νX : M/X → Sub(M/X ) and such that:
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(N1) If p ∈ νX (m) and p ≤ q, then q ∈ νX (m);

(N2) If n ∈ νX (m), then m ≤ n;

(N3) If m ≤ n then νX (n) ⊆ νX (m);

(N4) If f : X → Y is in C and k ∈ νY (n), then
f−1[k ] ∈ νX (f−1[n]).

(N5) If G ⊆ M/X and for any g ∈ G, m ∈ νX (g), then
m ∈ νX (∨G).
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Notation

For any f : X → Y in C, G ⊆ M/X and H ⊆ M/Y , denote:

f [G] :=↑ {f [g] | g ∈ G}

and

f−1[H] :=↑ {f−1[h] | h ∈ H}

Thus

(N4) ≃ f−1[νY (n)] ⊆ νX (f−1[n]).
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Remark

(N5) holds in C = Top with the usual neighbourhood
system since a union of open sets is open.
Is it essential?

Rather consider very basic properties of neighbourhoods
and eliminate (N5).

⇒ ν is a neighbourhood operator if it satisfies (N1), (N2), (N3)
and (N4). We call ν a regular neighbourhood operator if it
satisfies (N5) in addition.
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Facts

NBH(C,M) denotes the category of neighbourhood operators
with natural inclusion and RNBH(C,M) denotes that of the
regular neighbourhood operators.

Proposition

1. RNBH(C,M) is reflective subcategory of NBH(C,M);

2. RNBH(C,M) is equivalent to the category of the so-called
interior operators.
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Interior operators were first introduced by S. R. J Vorster
(2000).

Definition

(Castellini, 2011; Ochoa and Luna-Torres, 2010) An interior
operator i on C is a family (iX )X∈C with iX : M/X → M/X and
such that:

(I1) For any m ∈ M/X , iX (m) ≤ m;

(I2) If m ≤ n, then iX (m) ≤ iX (n);

(I3) If f : X → Y is in C and n ∈ M/Y , then
f−1[iY (n)] ≤ iX (f−1[n]).
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How do we treat the notion of closedness with respect to a
concept which is thought to be natural for openness?

Compactness and separation have been extensively
studied in categories on which were given some notion of
closure (cf. M.M. Clementino, E. Giuli and W. Tholen, A
Functional Approach to General Topology, 2004). The idea
of defining these notions by requiring the diagonal map
X → X × X and the terminal map X → 1 to be closed
could be traced back to Penon (1972) and Manes (1974).
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Definition

A map f : X → Y is said to be ν-closed, where
ν ∈ NBH(C,M), if for any n ∈ M/Y

f−1[νY (n)] = νX (f−1[n]).

f is closed if for any n ∈ M/Y and k ∈ νX (f−1[n]), there is
p ∈ νY (n) such that f−1[p] ≤ k .
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Remarks

Recall that a map f : X → Y is closed with respect to a
closure operator c if for any m ∈ M/X ,
f [cX (m)] ∼= cY (f [m]);
This "symmetry" is present in other notions:

We say that f is ν-open if f [νX (m)] = νY (f [m]);

We say that f is ν-initial if νX (m) = f−1[νY (f [m])];

. . .
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Given ν ∈ NBH(C,M), let F(ν) := {f | f ν − closed }

Proposition

1. F(ν) contains isomorphisms and is closed under
composition;

2. If gf ∈ F(ν) and f ∈ E ′, where E ′ is the class in E stable
under pullback along morphisms in M, then g ∈ F(ν).

F(ν) is well-behaved:
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Proposition

If m : M → X ∈ F(ν) ∩M, then m is ν-initial and satisfies
the property that if m ∧ k = 0X for any k ∈ M/X, then
there is n ∈ νX (k) such that m ∧ n = 0X ;

In the following pullback diagram:

A
g //

a
��

B

b
��

X
f

// Y

If f ∈ F(ν) and a is ν-initial, then g ∈ F(ν). If g ∈ F(ν) and
b is ν-final, then f ∈ F(ν).
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What makes F(ν) special?
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Definition

An object X ∈ C is ν-compact if for any Y ∈ C, the projection
pY : X × Y → Y belongs to F(ν).

In Top, this is sometimes called the Tube’s Lemma: " A space
X is compact iff for any space Y and y ∈ Y , if O an open set
containing X × {y}, then there is a neighbourhood N of y, such
that X × {y} ⊆ X × N ⊆ O."
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A family A = {fi : X → Xi | i ∈ I} is said to be ν-initial if for
any m ∈ M/X ,

νX (m) = ∪{f−1
i [νi(fi [m])] | i ∈ I}.

(If A is c-initial for a closure operator c, what would that mean?)
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Theorem

Let X =
∏

I Xi and ν ∈ NBH(C,M). Assume that:

{pXi
: X → Xi | i ∈ I} ⊆ E∗ and is ν-initial;

Every natural projection {πj : P → Pj | j ∈ J} is ν-initial for
any finite J;

Then if every Xi is ν-compact, then so is X .
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Definition

(Day-Kelly,1970) A topological space X is exponentiable if and
only if for every neighbourhood U of a point x ∈ X there is a
smaller neighbourhood U of x such that every open cover of U
admits a finite subcover of V .

Theorem

(E. Colebunders and G. Richter, 2001) The product functor
X ×− : Top → Top preserves quotients, if X is quasi-locally
compact.
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If V << U in X and y ∈ Y , then for any open set W containing
U × {y}, there is an open rectangle S × T ⊆ W such that
V × {y} ⊆ S × T .
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Kuratowski-Mrówka type theorem?

Definition
Let m : V → U be an embedding in Top. We say that V is
relatively compact with respect to U if for any space X , in the
following diagram:

U × X
π

##FF
FF

FF
FF

F

X

V × X

m×1Y

OO

p

;;xxxxxxxxx

we have (m × 1Y )[p−1[νY (x)]] = νU×Y (π−1[x ]).
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Happy Birthday!
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